Understanding Electrochromic Processes initiated by Dithienylcyclopentene Cation Radicals

Gonzalo Guirado^a, Christophe Coudret*^a, Mohamed Hliwa^{a,b} and Jean-Pierre Launay*^a

Nanosciences Group (GNS)

^aCentre d'Elaboration de Materiaux et d'Etudes Structurales (CEMES-CNRS).

29, rue Jeanne Marvig, BP 94347,

31055 Toulouse Cedex 4, France

Tel: 33(0)5 62 25 78 59, Fax: 33(0)5 62 25 79 99

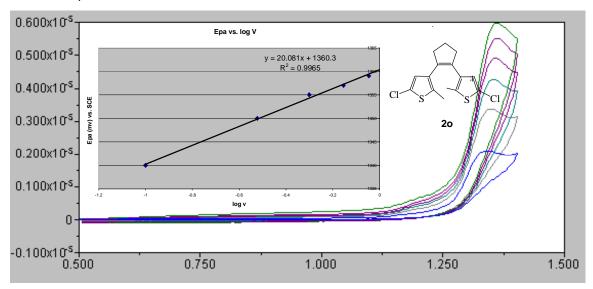
email: coudret@cemes.fr; launay@cemes.fr

^{a,b} Faculté des Sciences Ben M'Sik Université Hassan II-Mohammédia

BP 7955- Sidi Othman, Casablanca, Maroc

SUPPORTING INFORMATION

Contents


Determination of the order of the chemical reaction linked to the electron transfer for 20	
Cyclic Voltammetry of compound 10c	S4
Determination of the bond length alternation (BLA)	S5
Table of Selected distances for neutral and cation-radical compounds	S6
Frontier Orbital for neutral and cation-radical compounds	S7
References	S8

Determination of the order of the chemical reaction linked to the electron transfer

Compound 20

A) Solution 1.341 mM of 20 in ACN, Ep vs. $\log v$

Current / µA

Potential in V vs. SCE

Figure 1. Cyclic voltammetry CV of **60** (1.35mM) in ACN–0.1 M n-Bu₄NPF₆ at different scan rates : 0.1, 0.3, 0.5, 0.7, and 1 V.s⁻¹. Working electrode : Glassy carbon electrode (0.5 mm diameter). Inset : Linear dependence for Epa value with log v.

B) Solution 0.708 mM of 10 in ACN

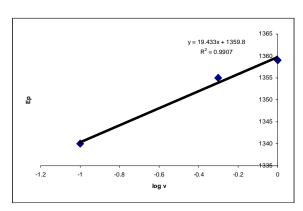
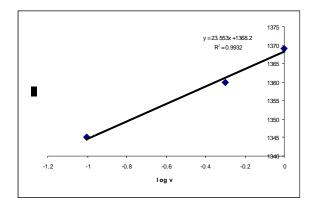
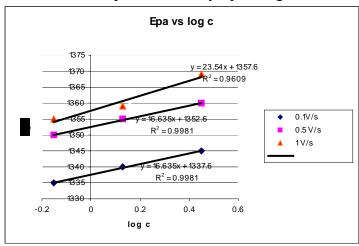
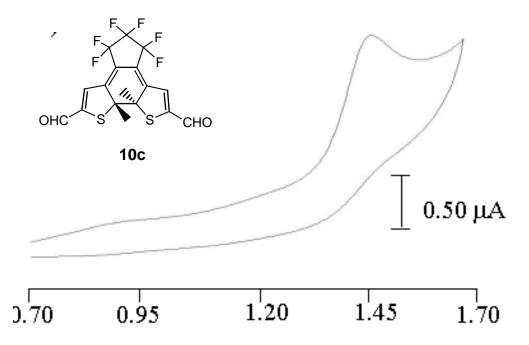



Figure 2. Linear dependence for Epa value with log v.


.

C) Solution 2.820 mM of **10** in ACN, Ep vs. log v


Figure 3. Linear dependence for Epa value with $\log v$.

Concentration Dependence Study Ep vs. log c

Figure 4. Linear dependence for Epa value with log c at different scan rates.

In ACN, 0.1M *n*-Bu₄NPF₆ (room temperature) at low scan rates, one chemically irreversible oxidation wave appears at 1.35 V. The shape of the voltammograms (peak width) suggests a fast electron transfer with kinetic control by chemical reaction. In the 0.5-5 mM range, the peak potential is concentration-dependent (19 mV by unit log concentration) and the variation of peak potential with the scan rate is 20 mV by unit log scan rate. We can therefore conclude that the initially produced cation-radical reacts following a second order reaction pathway.¹

Figure 5. CV of a solution of 10c (0.80 mM) in in ACN-0.1 M n-Bu₄NPF₆ at 1.00 V.s⁻¹. Working electrode: glassy carbon electrode (0.5 mm diameter).

A one electron irreversible wave ($Epa=1.42\ V$ vs. SCE at 0.1 V.s-1) was found for compound 10c in all the scan range investigated. The peak width analysis ($\Delta Ep=75\ \text{mV}$), and the shape of the voltagramm reveled that we are under pure kinetic conditions. A linear dependence between Epa and log v was found (slope = 33 mV). The α_{app} calculated value is 0.69. All this data is in agreement with an EC stepwise mechanism, as it was found for other ring-closed isomers. Controlled-potential electrolysis at 1.8 V vs. SCE was performed. The colored solution was discharged; analysis of the electrolysis sample by thin layer chromatography TLC, CV revealed the presence of the open isomer 10c.

 $\label{eq:Table 1} \textbf{Selected distances (Å) of 2c, 6c and 11c cation-radicals optimized at the B3LYP/DZVp level}$

	2c (X=Cl)	2c ^{+.} (X=Cl)	6c (X=S)	6c ⁺ · (X=S)	11c (X=C)	11c ^{+.} (X=C)
X-C5	1.809	1.779	1.831	1.795	1.480	1.504
C5-C4	1.378	1.404	1.390	1.418	1.394	1.409
C4-C3	1.464	1.432	1.460	1.427	1.449	1.428
C3-Ca	1.385	1.421	1.387	1.426	1.393	1.421
Ca-Ca'	1.481	1.441	1.479	1.440	1.471	1.438
Ca'-C3'	1.385	1.420	1.387	1.425	1.393	1.421
C3'-C4'	1.464	1.432	1.465	1.424	1.450	1.428
C4'-C5'	1.379	1.404	1.391	1.417	1.394	1.408
C5'-X'	1.808	1.779	1.832	1.795	1.481	1.503
BLA ₅₋₅ ,	0.087	0.023	0.079	0.009	0.064	0.016

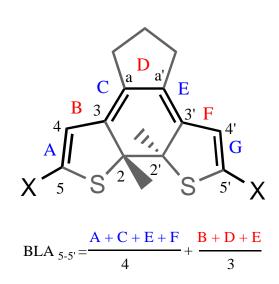
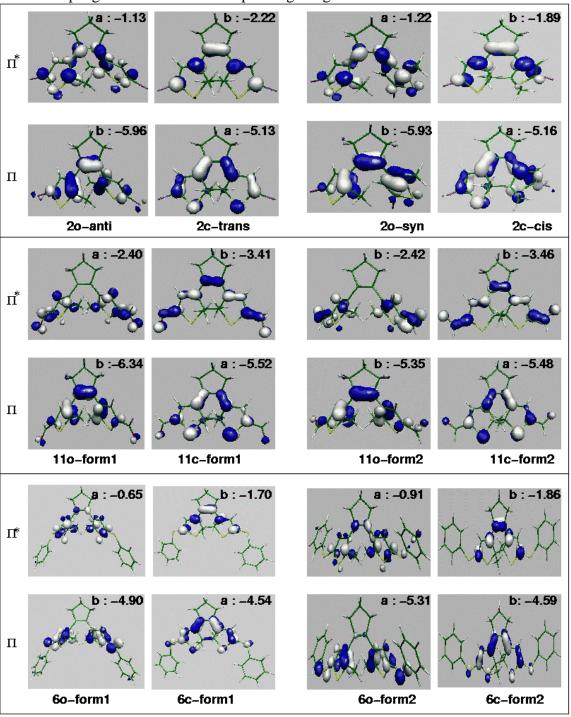



Table 2 $\label{eq:selected} \mbox{Selected distances (Å) of $2,6$ and 11 neutral and cation-radicals optimized at the $B3LYP/DZVp\ level}$

	20	2o+.	Δd_{N} - d_{RC}	60	60 ^{+.}	Δd_{N} - d_{RC}	110	11o ^{+.}	Δd_{N} - d_{RC}
C2-C3	1.404	1.401	+0.003	1.399	1.423	+0.024	1.411	1.442	+0.031
C3-Ca	1.494	1.496	-0.001	1.498	1.484	-0.014	1.495	1.465	-0.030
Ca-Ca'	1.376	1.377	-0.001	1.380	1.385	+0.005	1.377	1.418	+0.041
Ca'-C3'	1.494	1.496	-0.003	1.498	1.484	-0.014	1.495	1.465	-0.031
C3'-C2'	1.406	1.401	+0.004	1.399	1.423	+0.024	1.411	1.442	+0.041
C2-C2'	3.606	3.787	+0.181	3.616	3.333	-0.283	3.669	3.311	-0.358
	2c	2c+.	$\Delta d_{ m N}$ - $d_{ m RC}$	6c	6c+.	$\Delta d_{ m N}$ - $d_{ m RC}$	11c	11c+.	Δd_{N} - d_{RC}
C2-C3	1.562	1.555	-0.007	1.561	1.554	-0.007	1.560	1.555	-0.005
C3-Ca	1.385	1.421	+0.036	1.387	1.426	+0.039	1.393	1.421	+0.028
Ca-Ca'	1.481	1.441	-0.040	1.479	1.440	-0.040	1.471	1.438	-0.033
Ca'-C3'	1.385	1.421	+0.035	1.387	1.426	+0.039	1.393	1.421	+0.028
C3'-C2'	1.562	1.555	-0.007	1.561	1.554	-0.007	1.560	1.555	-0.005
C2-C2'	1.557	1.564	+0.007	1.556	1.554	+0.002	1.557	1.577	+0.020

Table 3

HOMO (π) and LUMO (π^*) frontier molecular orbitals (FMO) plots for the neutral ground state of dithienylcyclopentene derivatives **2**, **6 and 11**. The energy (in eV) and the symmetry (according to the C_2 ponctual group, except for the **20-syn and 2c-cis** compound which are of C_s molecular symmetry) label associated to each FMO are shown at up-right corner of the corresponding image.

References:

[1] L. Nadjo, J.-M. Savéant, *J. Electroanal. Chem.*, 1973, **48**, 113; C. P. Andrieux and J.-M. Savéant, Electrochemical Reactions, in *Investigation of Rates and Mechanism of Reactions, Techniques of Chemistry*, (Ed: C. F. Bernasconi) Wiley, New York, **1986**, vol. 6, ch. 2.1, p. 305.