Supporting Information

Analogs of Thiolactomycin as Potential Antimalarial Agents

Simon M. Jones, ${ }^{\mathrm{a}, \dagger}$ Jonathan E. Urch, ${ }^{\mathrm{b}, \dagger}$ Marcel Kaiser, ${ }^{\text {c }}$ Reto Brun, ${ }^{\mathrm{c}}$ John L. Harwood, ${ }^{\text {b }}$ Colin Berry, ${ }^{\text {b }}$ Ian H. Gilbert. ${ }^{\text {a,* }}$

a. Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3XF, UK.
b. Cardiff School of Biosciences, Biomedical Building, Museum Avenue, Cardiff, CF10 3US, UK.
c. Swiss Tropical Institute, Socinstrasse 57, CH-4002 Basel, Switzerland.

* Corresponding Author: Tel: +44 292087 5800; Fax: +44 292087 4149;

E-mail: gilbertih@cf.ac.uk

Contents

Analytical Data S2
Microanalytical Data S11

Analytical Data

Cyclisation, general procedure A for compounds 6a, 6b, 6c, 6d

Potassium hydroxide (2.5 equiv) in water $(20 \mathrm{ml})$ was added to the bromide $5\left(1.0\right.$ equiv) at $0^{\circ} \mathrm{C}$. The resulting solution was then vigorously stirred at ambient temperature for 15 h . The aqueous layer was washed with diethyl ether ($2 \times 30 \mathrm{ml}$) and acidified to ph 1 with the addition of 2 M HCl ($\sim 20 \mathrm{ml}$). The aqueous layer was then extracted with diethyl ether (3 x 40 ml) and the combined organic solutions washed with brine $(100 \mathrm{ml})$, then dried over magnesium sulfate and the solvent removed in vacuo. The crude residue was purified by flash column chromatography (5-30\% ethyl acetate in hexanes). The coupling constants (J) are in Hz .

3-Ethyl-4-hydroxy-5-methyl-2,5-dihydro-2-furanone (6a)

As described in procedure A, starting from $\mathbf{5 a}(2.00 \mathrm{~g}, 8.47 \mathrm{mmol})$ and potassium hydroxide (1.18 $\mathrm{g}, 21.18 \mathrm{mmol}), \mathbf{6 a}$ was obtained as a colourless solid $(0.40 \mathrm{~g}, 33 \%) ; \mathrm{mp} 44-46^{\circ} \mathrm{C}, \delta_{\mathrm{H}}$ (acetone- d_{6}) $1.02\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4,2^{\prime}-\mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6, \mathrm{CH}_{3}\right), 2.18\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4,1^{\prime}-\mathrm{CH}_{2}\right)$ and $4.78(1 \mathrm{H}$, $\mathrm{q}, \mathrm{J}=6.6,5-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\right.$ acetone $\left.-\mathrm{d}_{6}\right) 13.4\left(2^{\prime}-\mathrm{CH}_{3}\right), 15.6\left(6-\mathrm{CH}_{3}\right), 18.7\left(1^{\prime}-\mathrm{CH}_{2}\right), 74.6(5-\mathrm{CH}), 102.9$ (3-C), 175.7 (4-C) and 175.8 (2-CO); MS (ES $) ~ m / z ~ 141.0(M-H,-100 \%)$.

5-Hexyl-4-hydroxy-3,5-dimethyl-2,5-dihydro-2-furanone (6b)

As described in procedure A, starting from $\mathbf{5 b}(1.14 \mathrm{~g}, 3.72 \mathrm{mmol})$ and potassium hydroxide (0.52 $\mathrm{g}, 9.31 \mathrm{mmol})$, $\mathbf{6 b}$ was obtained as a colourless solid ($72 \mathrm{mg}, 9 \%$), $\mathrm{mp} 52-54^{\circ} \mathrm{C}, \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.0,6{ }^{\prime}{ }^{\prime}-\mathrm{CH}_{3}\right), 1.29\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9$, 1'’ $\left.{ }^{-} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 6.2\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 22.9,23.3\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{3}\right), 29.5,32.0,36.7\left(\right.$ all $\left.\mathrm{CH}_{2}\right)$, 85.3 (5-C), 96.2 (3-C), 178.0 (4-C) and 179.5 (CO); MS (ES') m/z 211.0 (M-H,' 100\%); HRMS (ES) (M-H) ${ }^{-} \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}$ requires 211.1334, found 211.1337. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-Decyl-3-ethyl-4-hydroxy-5-methyl-2,5-dihydro-2-furanone (6c)

As described in procedure A, starting from $\mathbf{5 c}(320 \mathrm{mg}, 1.15 \mathrm{mmol})$ and potassium hydroxide (160 $\mathrm{mg}, 2.89 \mathrm{mmol}), \mathbf{6 c}$ was obtained as a colourless oil ($40 \mathrm{mg}, 13 \%$), $\delta_{\mathrm{H}} 0.92(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0,10$ ' $\left.\mathrm{CH}_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4,2{ }^{\prime}-\mathrm{CH}_{3}\right), 1.28\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.83-1.84(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right)$ and 2.22-2.32 (2H, m, 1'’- $\left.\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}} 13.3\left(10^{\prime}{ }^{\prime}-\mathrm{CH}_{3}\right)$, $14.5\left(2^{\prime}-\mathrm{CH}_{3}\right), 23.1,23.3,23.5$, 29.7, 30.0, 30.7, 32.3 and $36.7\left(\right.$ all CH_{2}), $84.85-\mathrm{C}$), 102.4 (3-C), 177.2 (4-C) and 178.7 (2-C); MS (ES) $m / z 281.0\left(\mathrm{M}-\mathrm{H},{ }^{-} 100 \%\right)$; HRMS $\left(\mathrm{ES}^{+}\right)\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} \mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}$ requires 300.2533, found 300.2536.

3-Butyl-5-decyl-4-hydroxy-5-methyl-2(5H)-furanone (6d)

As described in procedure A, starting from $\mathbf{5 d}(600 \mathrm{mg}, 1.48 \mathrm{mmol})$ and potassium hydroxide (200 $\mathrm{mg}, 3.71 \mathrm{mmol})$, $\mathbf{6 d}$ was obtained as a pale yellow oil $(52 \mathrm{mg}, 12 \%), \delta_{\mathrm{H}} 0.89-0.96\left(6 \mathrm{H}, \mathrm{m}, 15-\mathrm{CH}_{3}\right.$ and 4' $-\mathrm{CH}_{3}$), 1.24-1.28 ($18 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{CH}_{2}$), 1.30-1.36 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.77-1.84$ $\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right)$ and $2.27\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9,1^{\prime}-\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 14.3\left(15-\mathrm{CH}_{3}\right), 14.5\left(4{ }^{\prime}-\mathrm{CH}_{3}\right), 21.1,22.8,22.9$, 23.1, 23.4, 23.6, 29.7, 29.9, 30.0, 30.6, 30.8, 32.3, $36.7\left(\right.$ all CH$\left._{2}\right), 85.0$ (5-C), 101.1 (3-C), 177.7 (4C) and $181.2(2-\mathrm{CO})$; MS (ES $) m / z 309.1\left(\mathrm{M}-\mathrm{H},{ }^{-} 100 \%\right)$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)\left(\mathrm{M}+\mathrm{H}^{+}{ }^{+} \mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3}\right.$ requires 311.2581, found 311.2573 .

Alkylation, general procedure B for compounds 15, 16, 17, 18

Lithium bis (trimethylsilyl)amide (1.0 M solution in THF, 2.0 equiv) was added dropwise to a stirred solution of thiolactone $\mathbf{1 4}$ (1.0 equiv) in dry THF $(6 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. After stirring for 0.5 h at $78^{\circ} \mathrm{C}$, the halide (1.0 equiv) was added dropwise. After stirring for a further 0.5 h , the mixture was allowed to warm to ambient temperature and stirred overnight. The reaction was quenched with the addition of saturated aqueous ammonium chloride ($\sim 10 \mathrm{ml}$) and the organic layer separated. The aqueous layer was extracted with diethyl ether ($3 \times 10 \mathrm{ml}$). The organic layers were washed with water ($3 \times 20 \mathrm{ml}$) and brine (40 ml), dried over anhydrous magnesium sulfate and the solvent
removed in vacuo. The crude residue was purified by flash column chromatography (0 to 30% gradient of ethyl acetate in hexanes).

5-Hexadecyl-4-hydroxy-5-methyl-3-propyl-2(5H)-thiophenone (15)

As described in procedure B, starting from $\mathbf{1 4 b}$ (300 mg , 1.74 mmol), lithium bis (trimethylsilyl)amide ($3.48 \mathrm{ml}, 3.48 \mathrm{mmol}$) and 1-iododecane ($530 \mathrm{mg}, 1.74 \mathrm{mmol}$), $\mathbf{1 5}$ was obtained as a colourless solid ($103 \mathrm{mg}, 15 \%$); mp $55-56^{\circ} \mathrm{C}, \delta_{\mathrm{H}} 0.91-0.98\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.31$ $\left(26 \mathrm{H}, \mathrm{m}, 13 \mathrm{x} \mathrm{CH}_{2}\right), 1.49-1.57\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.88-1.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.21-$ $2.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $7.63(1 \mathrm{H}, \mathrm{OH})$; $\delta_{\mathrm{C}} 14.1,14.4\left(\right.$ both $\left.\mathrm{CH}_{3}\right), 21.7,23.1,25.0,25.5,26.6,29.7$, 29.7, 29.8, 29.9, 29.9, 30.0, 30.0, 30.1, 32.3, 38.9, 57.7 (5-C), 115.5 (3-C), 179.5 (4-C) and 196.3 (CO); MS (ES') m/z $395.2\left(\mathrm{M}-\mathrm{H},{ }^{-} 100 \%\right)$; $\mathrm{HRMS}\left(\mathrm{ES}^{-}\right)\left(\mathrm{M}-\mathrm{H}^{-} \mathrm{C}_{24} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{~S}\right.$ requires 395.2984, found 395.2977. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Benzyl-5-hexadecyl-4-hydroxy-5-methyl-2(5H)-thiophenone (16)

As described in procedure B, starting from $\mathbf{1 4 c}(100 \mathrm{mg}, 0.45 \mathrm{mmol})$, lithium bis (trimethylsilyl)amide ($0.90 \mathrm{ml}, 0.90 \mathrm{mmol}$) and 1-bromohexadecane ($130 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathbf{1 6}$ was obtained as a pale yellow solid ($42 \mathrm{mg}, 21 \%$); mp $44-45^{\circ} \mathrm{C}, \delta_{\mathrm{H}} 0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6, \mathrm{CH}_{3}\right), 1.32(28 \mathrm{H}$, $\left.\mathrm{m}, 14 \mathrm{xCH}_{2}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.85-1.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and 7.21-7.34 (5H, $\mathrm{m}, \mathrm{ArCH}) ; \delta_{\mathrm{C}} 14.5\left(\mathrm{CH}_{3}\right), 23.1,25.5,26.3,29.1,29.4,29.8,29.9,29.9,30.0,30.1,30.1,32.0,32.3$, 38.8, 41.7 (5-C), $58.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 114.2$ (3-C), 126.9 (ArC), 128.8 (ArCH), 129.1 (ArCH), 138.5 (ArC), 181.5 (4-C) and 197.2 (CO); MS (ES $)^{-} m / z 443.1$ ($\mathrm{M}-\mathrm{H}^{-}{ }^{-100 \%) ; ~ H R M S ~(E S) ~(M-H) ~}$ $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{~S}$ requires 443.2985, found 443.2984. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~S} .0 .1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Ethyl-5-\{2-[2-(hexyloxy)ethoxy]ethyl\}-4-hydroxy-5-methyl-2,5-dihydro-2thiophenone (17).
As described in procedure B, starting from $\mathbf{1 4 a}$ (300 mg , 1.74 mmol), lithium bis (trimethylsilyl)amide ($3.78 \mathrm{ml}, 3.78 \mathrm{mmol}$) and 1-(2-(2-bromoethoxy)ethoxy)hexane ($470 \mathrm{mg}, 1.74$ $\mathrm{mmol}), 17$ was obtained as a colourless oil ($60 \mathrm{mg}, 10 \%$), $\delta_{\mathrm{H}} 0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8,17-\mathrm{CH}_{3}\right), 1.07$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4,2^{\prime}-\mathrm{CH}_{3}\right), 1.31-1.45\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 1.62\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8, \mathrm{CH}_{2}\right), 1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 2.21-2.29 $\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6,12-\mathrm{CH}_{2}\right), 3.67\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.0, \mathrm{CH}_{2}\right), 3.72-3.79(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$ and $7.32(1 \mathrm{H}$, brs, OH$)$; $\delta_{\mathrm{C}} 12.9\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 16.7,22.9,25.0,26.1,29.9,32.0$ (all $\left.\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 54.6(5-\mathrm{C}), 67.9,69.5,71.1,72.1\left(\mathrm{all} \mathrm{CH}_{2}\right), 117.1(3-\mathrm{C}), 180.0(4-\mathrm{C})$ and 194.1 (CO); MS (ES) $m / z 329.0\left(\mathrm{M}-\mathrm{H}^{-}{ }^{-} 100 \%\right.$); HRMS (ES $)\left(\mathrm{M}-\mathrm{H}^{-} \mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~S}\right.$ requires 329.1787, found 329.1780. Anal. ($\left.\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S} .0 .5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-(6-\{[tert-butyl(dimethyl)silyl]oxy\}hexyl)-4-hydroxy-5-methyl-3-propyl-2(5H)-thiophenone (18)

As described in procedure B, starting from $\mathbf{1 4 b}$ (300 mg , 1.74 mmol), lithium bis (trimethylsilyl)amide ($5.54 \mathrm{ml}, 5.54 \mathrm{mmol}$) and (6-bromohexyloxy)(tert-butyl)dimethylsilane (810 $\mathrm{mg}, 1.74 \mathrm{mmol}), 18$ was obtained as a colourless oil $(0.20 \mathrm{~g}, 20 \%), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.10(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94\left(12 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{CH}_{3}\right), 1.38-1.36\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.45-1.55(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.24\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4, \mathrm{CH}_{2}\right), 3.66\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5,11-\mathrm{CH}_{2}\right)$ and $8.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{C}}-4.8\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 14.1,18.8,21.8,25.0,25.4,25.9,26.4,26.6,29.6,32.8,33.1,38.7,58.0$ (5-C), $63.6\left(11-\mathrm{CH}_{2}\right), 115.5(3-\mathrm{C}), 178.3(4-\mathrm{C})$ and $196.8(\mathrm{CO}) . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 409.2\left(\mathrm{M}+\mathrm{H},{ }^{+}\right.$ $100 \%)$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} \mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{SNSi}$ requires 404.2649, found 404.2651.

Alkylation, general procedure C for compounds 21a, 21b/22a, 21c/22b, 21d, 21e, 22c, 22d, 22e Thiophenone 20 (1.0 equiv) was added portionwise to a stirred suspension of sodium hydride (1.2 eqiuv) in dry THF (10 ml) at ambient temperature. After stirring for 0.5 h , the halide (1.1 equiv) was added dropwise. The resulting solution was then heated to reflux and stirred for 15-20 h . The
reaction was allowed to cool and quenched with the addition of aqueous saturated ammonium chloride (10 ml). The organic layer was separated and the aqueous layer extracted with diethyl ether ($3 \times 10 \mathrm{ml}$). The organic layers were washed with water $(2 \times 20 \mathrm{ml})$ and brine $(2 \times 20 \mathrm{ml})$, dried over anhydrous magnesium sulfate and the solvent removed in vacuo. The crude residue was purified by flash column chromatography ($0-20 \%$ ethyl acetate in hexanes).

3-Allyl-3,5-dimethyltetrahydro-2,4-thiophenedione (21a).

As described in procedure C, starting from 20a ($400 \mathrm{mg}, 2.77 \mathrm{mmol}$), sodium hydride (130 mg , $3.33 \mathrm{mmol})$ and allyl bromide $(0.26 \mathrm{ml}, 3.00 \mathrm{mmol})$, 21a was obtained as a mixture of diastereoisomers (3:1) ($310 \mathrm{mg}, 61 \%$), $\delta_{\mathrm{H}} 1.27$ and $1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60$ and $1.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1$, 5-CH3$), 2.44$ and $2.51\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2,1^{\prime}-\mathrm{CH}_{2}\right), 4.24$ and $4.36(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1,5-\mathrm{CH}), 5.08-5.18(2 \mathrm{H}$, $\left.\mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right)$ and $5.54-5.73\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}\right)$; $\delta_{\mathrm{C}} 17.7$ and $17.9\left(\mathrm{CH}_{3}\right), 20.1$ and $23.0\left(\mathrm{CH}_{3}\right), 40.3$ and $42.7\left(\mathrm{CH}_{2}\right), 49.3$ and $50.4(3-\mathrm{C}), 57.6$ and $57.8(5-\mathrm{CH}), 120.4$ and $120.8,130.9$ and 131.9, 203.8 and 204.1 (4-CO) and 210.9 and 211.2 (2-CO).

3-Allyl-5-decyl-3,5-dimethyl-2,4(3H, 5H)-thiophenedione (21b) and 4-(Allyloxy)-5-decyl-3,5-dimethyl-2(5H)-thiophenone (22a).

As described in procedure C, starting from $\mathbf{2 0 b}(140 \mathrm{mg}, 0.49 \mathrm{mmol})$, sodium hydride ($23 \mathrm{mg}, 0.59$ $\mathrm{mmol})$ and allyl bromide ($0.04 \mathrm{ml}, 0.54 \mathrm{mmol}$), 21b was obtained as a mixture of diastereoisomers (4:1) (50 mg, 61\%); $\delta_{\mathrm{H}} 0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8,15-\mathrm{CH}_{3}\right), 1.30-1.40\left(19 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right), 1.63$ and $1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.81-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.51\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2,1^{\prime}-\mathrm{CH}_{2}\right), 5.12-5.17\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right)$ and $5.60-5.74\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 14.5\left(15-\mathrm{CH}_{3}\right), 22.6,23.0,24.2,25.8$ and 26.0, 26.6, 28.6, 29.6 and 29.7, 29.9 and $30.0,32.3$ and $32.6,40.1,41.3$ and $41.8,42.5,58.5$ and $58.8,65.3$ and 65.5 , 120.5 and 120.6, 131.9 and 132.0, $205.0(\mathrm{CO}), 214.9(\mathrm{CO}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 347.2\left(\mathrm{M}+\mathrm{Na}^{+}{ }^{+} 100 \%\right)$; HRMS (ES $\left.{ }^{+}\right)\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} \mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{NS}$ requires 342.2461, found 342.2462.

Following column chromatography ($0-20 \%$ ethyl acetate in hexanes) compound 22a was isolated as a pale yellow oil $(15 \mathrm{mg}, 10 \%), \delta_{\mathrm{H}} 0.97\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8,15-\mathrm{CH}_{3}\right), 1.34\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right), 1.69(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.85-1.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.91-4.93\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.2\right.$ and $\left.1.5,1^{\prime}-\mathrm{CH}_{2}\right)$, 5.40-5.43 $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5\right.$ and $\left.1.2,3^{\prime}-\mathrm{CH}_{\mathrm{A}}\right), 5.46-5.52\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3\right.$ and $\left.1.2,3^{\prime}-\mathrm{CH}_{\mathrm{B}}\right)$ and 6.01-6.14 (1H, m, 2'-CH); $\delta_{\mathrm{C}} 10.1\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 23.1,25.6\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 29.7,29.8$, 30.0, 32.0, $32.3\left(\right.$ all CH$\left._{2}\right), 57.8(5-\mathrm{C}), 72.9\left(1^{\prime}-\mathrm{CH}_{2}\right), 112.1$ (3-C), $132.9\left(2^{\prime}-\mathrm{CH}\right), 179.8$ (4-C) and 196.3 (2-CO); MS ($\left.\mathrm{ES}^{+}\right) m / z 347.2\left(\mathrm{M}+\mathrm{Na},{ }^{+} 60 \%\right)$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~S}$ requires 325.2201, found 325.2202.

3-Allyl-5-decyl-5-methyl-3-propyl-2,4(3H, 5H)-thiophenedione (21c) and 4-(allyloxy)-5-methyl-3-propyl-2,5-dihydro-2-thiophenone (22b).

As described in procedure C, starting from $\mathbf{2 0 c}(400 \mathrm{mg}, 1.28 \mathrm{mmol})$, sodium hydride ($61 \mathrm{mg}, 1.53$ mmol) and allyl bromide ($0.12 \mathrm{ml}, 1.40 \mathrm{mmol}$), 21c was obtained as a pale yellow oil ($63 \mathrm{mg}, 14 \%$), $\delta_{\mathrm{H}} 0.89-0.95\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.30\left(18 \mathrm{H}, \mathrm{m}, 9 \mathrm{x} \mathrm{CH}_{2}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.73-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.86-1.94 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.48-2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.10-5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $5.61-5.77(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}) ; \delta_{\mathrm{C}} 14.5\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right), 18.4,23.0,25.6\left(\mathrm{CH}_{3}\right), 26.3,29.7,29.7,29.8,29.9,30.0,32.3$, 39.3, 40.8, 42.1, 63.4, 65.2, 120.4, $131.8(\mathrm{CH}), 204.9(\mathrm{CO})$ and $214.8(\mathrm{CO}) ; \mathrm{MS}(\mathrm{ES})^{+} \mathrm{m} / \mathrm{z} 375.2(\mathrm{M}$ $\left.+\mathrm{Na},{ }^{+} 70 \%\right)$ HRMS $\left(\mathrm{ES}^{+}\right)(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{NaS}$ requires 375.2328, found 375.2334.

Following column chromatography, compound 22b was isolated as a colourless oil ($12 \mathrm{mg}, 3 \%$), δ_{H} $0.84\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7, \mathrm{CH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3, \mathrm{CH}_{3}\right), 1.20\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right), 1.38-1.48(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.71-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.30\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{CH}_{2}\right), 4.71-4.73(2 \mathrm{H}, \mathrm{m}, \mathrm{O}-$ $\left.\mathrm{CH}_{2}\right)$, 5.26-5.39 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $5.88-6.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$; $\delta_{\mathrm{C}} 14.2$, $14.5\left(\right.$ both $\left.\mathrm{CH}_{3}\right), 23.1$, 23.7 (both CH_{2}), $25.5\left(\mathrm{CH}_{3}\right), 26.3,27.2,29.7,29.8,29.9,32.3,39.4\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 57.8(5-\mathrm{C}), 72.7\left(\mathrm{OCH}_{2}\right)$, $117.5(3-\mathrm{C}), 118.5\left(\mathrm{CH}_{2}\right), 132.8(\mathrm{CH}), 179.6(4-\mathrm{C})$ and $196.2(2-\mathrm{CO}) ; \mathrm{MS}(\mathrm{ES})^{+} \mathrm{m} / \mathrm{z} 375.2(\mathrm{M}+$ $\left.\mathrm{Na},{ }^{+} 60 \%\right)$; HRMS $\left(\mathrm{ES}^{+}\right)(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{2}$ S requires 353.2509, found 353.2508.

3-(3,7-Dimethyl-2,6-octadienyl)-5-methyl-3-propyl-2,4(3H, 5H)-thiophenedione (21d)

As described in procedure C , starting from $\mathbf{2 0 c}(130 \mathrm{mg}, 1.74 \mathrm{mmol})$, sodium hydride ($83 \mathrm{mg}, 2.09$ $\mathrm{mmol})$ and geranyl bromide $(0.41 \mathrm{ml}, 1.91 \mathrm{mmol})$, 21d was obtained as a mixture of diastereoisomers (120 mg, 23\%), $\delta_{\mathrm{H}} 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2, \mathrm{CH}_{3}\right), 1.08-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.60-1.61$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.62-1.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.64-1.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.69-1.71\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.74-1.81$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.95-2.13\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.44-2.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.08$ and $4.16(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1,5-$ $\mathrm{CH})$ and 5.06-5.11 $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{CH})$; $\delta_{\mathrm{C}} 14.6$ and $14.7\left(\mathrm{CH}_{3}\right), 16.4$ and 16.5, 17.6 and 18.0, 18.1 and 18.2, 26.0 and 26.1, 26.7 and $26.8,36.0,38.0$ and $38.4,40.1$ and $40.2,40.6,51.1$ and $51.2,62.7$ and $62.9,116.4$ and $117.5(\mathrm{CH}), 124.2$ and $124.3(\mathrm{CH}), 132.0$ and $132.2(\mathrm{C}), 140.5$ and $141.3(\mathrm{C})$, 204.1 and 204.2 (CO) and 213.0 and 213.3 (CO); MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 331.1\left(\mathrm{M}+\mathrm{Na}^{+}{ }^{+} 100 \%\right)$; HRMS (EI^{+}) $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$ requires 308.1805, found 308.1808. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S} .0 .15 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-Decyl-3-[(2Z)3,7-dimethyl-2,6-octadienyl]-5-methyl-3-propyl-2,4(3H,5H)

As described in procedure C, starting from $\mathbf{2 0 d}(63 \mathrm{mg}, 0.20 \mathrm{mmol})$, sodium hydride $(9 \mathrm{mg}, 2.09$ $\mathrm{mmol})$ and geranyl bromide $(0.04 \mathrm{ml}, 1.91 \mathrm{mmol})$, 21e was obtained as a colourless oil $(22 \mathrm{mg}$, $24 \%), \delta_{\mathrm{H}} 0.89-0.95\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.30\left(18 \mathrm{H}, \mathrm{m}, 9 \mathrm{x} \mathrm{CH}_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.75-1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.97-2.09\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.46-$ $2.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and 5.03-5.12 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 14.5\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 16.5,18.0,18.6,23.1$, $25.6,25.8,26.1,26.7,29.7,29.9,29.9,30.0,30.2,32.3,36.9,39.6,40.2,40.9,63.8,65.3,117.6$ $(\mathrm{CH}), 124.3(\mathrm{CH}), 132.0(\mathrm{C}), 140.5(\mathrm{C}), 205.7(\mathrm{CO})$ and $213.2(\mathrm{CO}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z 487.0\left(\mathrm{M}+\mathrm{K},{ }^{+}\right.$ $100 \%)$; HRMS $\left(\mathrm{ES}^{+}\right)\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} \mathrm{C}_{28} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{NS}$ requires 466.3713, found 466.3713 .

5-Decyl-5-methyl-4-phenoxy-3-propyl-2(5H)-thiophenone (22c)

As described in procedure C , starting from 20d ($230 \mathrm{mg}, 0.73 \mathrm{mmol}$), sodium hydride ($35 \mathrm{mg}, 0.88$ $\mathrm{mmol})$ and benzyl bromide ($0.10 \mathrm{ml}, 0.80 \mathrm{mmol}$), 22c was obtained as a colourless oil (43 mg , $14 \%), \delta_{\mathrm{H}} 0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4, \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4, \mathrm{CH}_{3}\right), 1.29\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right), 1.55-1.63$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.81-1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.49\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8, \mathrm{CH}_{2}\right), 5.36(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2}\right)$ and 7.41-7.51 $(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{x} \mathrm{ArCH}) ; \delta_{\mathrm{C}} 14.3$ and $14.5\left(\right.$ both $\left.\mathrm{CH}_{3}\right), 23.1,23.9\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 25.6$ $\left(\mathrm{CH}_{3}\right), 27.2,29.7,29.8,29.9,30.0,32.0,32.3,39.4\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 57.8(5-\mathrm{C}), 74.0\left(\mathrm{OCH}_{2}\right), 117.5(3-\mathrm{C})$, 127.8, 129.0, 129.2 (all ArCH), 136.3 (ArC), 179.7 (4-C) and 196.2 (2-CO); MS (ES ${ }^{+}$m/z 425.1 $\left(\mathrm{M}+\mathrm{Na},{ }^{+} 55 \%\right)$; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{~S}$ requires 403.2665, found 403.2660.

4-Methoxy-5-methyl-3-propyl-2,5-dihydro-2-thiophenone (22d)

As described in procedure C, starting from 20c ($800 \mathrm{mg}, 4.65 \mathrm{mmol}$), sodium hydride (220 mg , $5.58 \mathrm{mmol})$ and iodomethane ($0.34 \mathrm{ml}, 5.11 \mathrm{mmol}$), $\mathbf{2 2 d}$ was obtained as a colourless oil (40 mg , $5 \%), \delta_{\mathrm{H}} 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3,3^{\prime}-\mathrm{CH}_{3}\right), 1.35-1.51\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9,6-\mathrm{CH}_{3}\right), 2.23$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4,1^{\prime}-\mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $4.21(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.9,5-\mathrm{CH}) ; \delta_{\mathrm{C}} 14.2\left(\mathrm{CH}_{3}\right), 20.5$ $\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 41.7(5-\mathrm{CH}), 58.4\left(\mathrm{OCH}_{3}\right), 119.7(3-\mathrm{C}), 179.3(4-\mathrm{C})$ and $195.8(2-$ CO); MS (ES $\left.{ }^{+}\right) m / z 209.0\left(\mathrm{M}+\mathrm{Na}^{+}{ }^{+} 30 \%\right)$; HRMS (ES $\left.{ }^{+}\right)(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}$ requires 187.0787, found 187.0788.

4-[(6-\{[tert-Butyl(dimethyl)silyl]oxy\}hexyl)oxy]-5-methyl-3-propyl-2(5H)-thiophenone (22e)

As described in procedure C, starting from 20c ($300 \mathrm{mg}, 1.74 \mathrm{mmol}$), sodium hydride ($83 \mathrm{mg}, 2.09$ $\mathrm{mmol})$ and bromide ($0.41 \mathrm{ml}, 2.09 \mathrm{mmol}$), 22e was obtained as a colourless oil ($67 \mathrm{mg}, 10 \%$), δ_{H} $0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.44-1.62\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0,6-$ $\left.\mathrm{CH}_{3}\right), 1.77-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.28\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6, \mathrm{CH}_{2}\right), 3.67\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2, \mathrm{OCH}_{2}\right), 4.14(1 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $=7.0,5-\mathrm{CH})$ and $4.24-4.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right) ; \delta_{\mathrm{C}} 0.0 \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, 12.8\left(\mathrm{CH}_{3}\right), 17.3,19.2,20.9,24.4$,
24.4, 24.5, 24.9, 28.8, 31.6, 40.5, $61.9\left(\mathrm{OCH}_{2}\right), 69.7\left(\mathrm{OCH}_{2}\right), 118.5(3-\mathrm{C}), 177.6(4-\mathrm{C})$ and 194.5 (CO); MS $\left(\mathrm{ES}^{+}\right) m / z 425.0\left(\mathrm{M}+\mathrm{K},{ }^{+} 100 \%\right) ;$ HRMS $\left(\mathrm{ES}^{+}\right)(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{NaSiS}$ requires 409.2196, found 409.2209.

Microanalytical data

		Calc\%\%			Found\%		
Compd	Formula	\mathbf{C}	\mathbf{H}	\mathbf{N}	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{6 b}$	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}$	67.9	9.5	-	67.5	9.7	-
$\mathbf{1 3}$	$\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}$	68.3	9.7	5.0	68.0	9.7	4.9
$\mathbf{1 5}$	$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~S}$	72.7	11.3	-	72.7	11.2	-
$\mathbf{1 6}$	$\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~S} .0 .1 \mathrm{H}_{2} \mathrm{O}$	75.3	9.9	-	75.0	10.0	-
$\mathbf{1 7}$	$\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S} .0 .5 \mathrm{H}_{2} \mathrm{O}$	60.1	9.2	-	60.4	9.2	-
$\mathbf{1 9}$	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S} .0 .05 \mathrm{H}_{2} \mathrm{O}$	61.5	8.9	-	61.1	8.9	-
$\mathbf{2 1 d}$	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S} .0 .15 \mathrm{H}_{2} \mathrm{O}$	69.5	9.2	-	69.2	9.2	-
$\mathbf{2 2 f}$	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$	61.7	8.9	-	61.5	9.1	-

