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Supporting Information 

Calculation of the complex permittivity for concentrated suspensions of ellipsoidal particles 

The effective complex permittivity for a dilute suspension of randomly oriented ellipsoids (of 

complex permittivity εp
*, and semiaxes Rx, Ry and Rz) in a continuous medium (of εa

*) at volume 

fraction P is given by27 
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where the depolarization factor Lk is given by  
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with 
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For extending the mixture equation to high volume fractions, the effective medium theory proposed 

by Bruggeman provides a reasonable approximation. In the theory, each particle is supposed to be 

dispersed in an effective medium, though it includes particles, and the initially low volume fraction is 

gradually increased by infinitesimal additions of particles. When a small amount of particles of εp
* are 

added to an effective medium of ε*, eq S1 may be applicable to every addition process. Hence, the 

increment in complex permittivity ∆ε* due to an infinitesimal addition of particles is related to the 

increment in volume fraction ∆P' by substituting ε* + ∆ε*, ε* and ∆P'/(1-P') for ε*, εa
*, and P in eq S1, 

respectively. 
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By successive infinitesimal additions of particles, the system reaches the final volume fraction P and 

complex permittivity ε*, and thus we obtain an integral equation as:  
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Although eq S6 can be solved analytically, the obtained equation is complicated and its numerical 

solution requires iterative searching that often does not converge. Thus, an alternative algorithm has 

been developed, in which numerical integration is made with eq S7 derived from eq S5. 
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The volume fraction P' was successively increased by adding ∆P' until the final volume fraction P was 

attained after n addition steps, i.e., PnP ′∆= . The increment of complex permittivity ∆ε* is calculated 

for every addition steps and then the final complex permittivity εfinal
* is obtained after nth step as 

follows: 

1st step: to put ( ) **
1

*
aεεε =≡  and ( ) 01 =′≡′ PP  in eq S7, and then to calculate ( )*

1
* εε ∆≡∆ . 

2nd step: to put ( ) *
1

*
1

*
2

* εεεε ∆+=≡  and ( ) PPPP ′∆+′=′≡′ 12 , and then to calculate ( )*
2

* εε ∆≡∆ . 

 jth step: to put ( ) *
1

*
1

**
−− ∆+=≡ jjj εεεε  and ( ) PPPP jj ′∆+′=′≡′ −1 , and then to calculate ( )**

jεε ∆≡∆ . 

nth step: to put ( ) *
1

*
1

**
−− ∆+=≡ nnn εεεε  and ( ) PPPP nn ′∆+′=′≡′ −1 , and then to calculate ( )**

nεε ∆≡∆  and 

***
nnfinal εεε ∆+= . 
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