Supporting Information

Antibody-Catalyzed Asymmetric Intramolecular Michael Addition of Aldehydes and Ketones to Yield the disfavored Cis-Product

Roy Weinstain ${ }^{\mathrm{a}}$, Richard A. Lerner ${ }^{\mathrm{b}}$, Carlos F. Barbas III $^{\mathrm{b}}$ and Doron Shabat ${ }^{\mathrm{a}}$ *
${ }^{\text {a }}$ School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, TelAviv University, Tel Aviv 69978 Israel. ${ }^{\text {b }}$ The Skaggs Institute for Chemical Biology, Departments of Molecular Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037

Experimental

General methods. Thin layer chromatography (TLC): silica gel plates Merck $60 \mathrm{~F}_{254}$: compounds were visualized by irradiation with UV light and/or by treatment with a solution of 25 g phosphomolybdic acid, $10 \mathrm{~g} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}, 60 \mathrm{~mL}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $940 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ followed by heating and/or by staining with a solution of $12 \mathrm{~g} \mathrm{2,4-}$ dinitrophenylhydrazine in 60 mL conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 80 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and $200 \mathrm{~mL} 95 \% \mathrm{EtOH}$ followed by heating. - Flash chromatography (FC): silica gel Merck 60 (particle size $0.040-0.063 \mathrm{~mm}$), eluent given in parentheses. ${ }^{1} \mathrm{H}$ NMR spectra were measured using Bruker Avance operated at 200 MHz or 400 MHz as mentioned. ${ }^{13} \mathrm{C}$ NMR spectra were measured using Bruker Avance operated at 50 MHz or 100 MHz as mentioned. The chemical shifts are expressed in δ relative to TMS ($\delta=0 \mathrm{ppm}$) and the coupling constants J in Hz . The spectra were recorded in CDCl_{3} as solvent at room temperature
unless stated otherwise. All general reagents, including salts and solvents, were purchased from Aldrich (Milwaukee, MN). All reactions were carried out at room temperature unless stated otherwise.

Abbreviations. OsO_{4} - Osmium tetraoxide, NMO - 4-Methylmorpholine N-Oxide, DCM- Dichloromethane, DMF- Dimethylformamide, EtOAc- Ethyl acetate, Hex- nHexanes, PBS- Phosphate buffer saline, THF - Tetrahydrofuran, NaOH - Sodium hydroxide.

8-(4-Methoxy-phenyl)-8-oxo-oct-6-enal (4)

(4'-Metoxyphenacyl)triphenylphosphonium bromide ($500 \mathrm{mg}, 1.02 \mathrm{mmol}, 1.02 \mathrm{eq}$) was dissolved in a mixture of $\mathrm{DCM}(15 \mathrm{~mL})$ and $\mathrm{NaOH} 2 \mathrm{~N}(10 \mathrm{~mL})$. The reaction was monitored by TLC (EtOAc:Hex 1:1) until complete disappearance of the phosphonium salt (0.5-3 hours). After completion, EtOAc was added and the solution was washed with brine. The organic phase was dried over sodium-sulphate, filtered and evaporated to yield the phosphonium ylide in an almost quantitative yield. The phosphonium ylide ($410 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1 eq) was dissolved in DCM (3mL) in a pressure tube, and Hexanedial ($171 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added. The reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 3 hours. The reaction was monitored by TLC (EtOAc:Hex 1:2) for disappearance of the phosphonium salt. After completion, the solvent was evaporated and the crude product was purified by FC (EtOAc:Hex 1:2) to yield enone 4 in 53% yield ($133 \mathrm{mg}, 0.53 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $9.77(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}), 7.94(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.86-6.99(4 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s})$, $2.48(2 \mathrm{H}, \mathrm{dt}, J=7.0,1.5 \mathrm{~Hz}), 2.33(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 1.52-1.78(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR
($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.5,29.6,34.4,45.6,57.4,115.7,127.8,132.6,132.7,149.7$, 190.9, 204.1. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 247.1326$, found 247.1333.

1-Phenyl-non-2-ene-1,8-dione (6)

Phenacyltriphenylphosphonium bromide ($1175 \mathrm{mg}, 2.55 \mathrm{mmol}, 1.02 \mathrm{eq}$) was dissolved in a mixture of DCM (15 mL) and $\mathrm{NaOH} 2 \mathrm{~N}(10 \mathrm{~mL})$. The reaction was monitored by TLC (EtOAc:Hex 1:1) until complete disappearance of the phosphonium salt. After completion, EtOAc was added and the solution was washed with brine. The organic phase was dried over sodium-sulphate, filtered and evaporated to yield the phosphonium ylide in a quantitative yield. The phosphonium ylide ($963 \mathrm{mg}, 2.53 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in DCM (3 mL) in a pressure tube, and 6-Oxo-heptanal (1.5 eq) was added. The reaction was heated to $60^{\circ} \mathrm{C}$, stirred for overnight and was monitored by TLC (EtOAc:Hex 1:2) for disappearance of the phosphonium salt. After completion, the solvent was evaporated and the crude product was purified by FC (EtOAc:Hex 1:2) to yield enone 6 in 85% yield (495 mg , $2.15 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.92(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.41-7.60(3 \mathrm{H}$, m), $7.04(1 \mathrm{H}, \mathrm{dt}, J=15.4,6.4 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 2.47(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz})$, $2.33(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.51-1.64(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=23.2,27.6,29.9,32.5,43.3,126.1,128.4,132.6,137.8,149.1,190.8,208.5$. CIHRMS calcd for $\mathrm{C}_{15 \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 231.1377 \text {, found 231.1382. }}^{\text {2 }}$

8-Oxo-8-phenyl-oct-6-enal (3)

Aldehyde 3 was prepared in the same manner as 4, starting from phenacyltriphenylphosphonium bromide ($1940 \mathrm{mg}, 4.20 \mathrm{mmol}, 1.01 \mathrm{eq}$), to yield 469 mg, 2.29 mmol (55\%). Known compound (Registry 190522-49-7).

Aldehyde 5 was prepared in the same manner as 4, starting from (4'nitrophenacyl)triphenylphosphonium bromide ($1520 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.00 \mathrm{eq}$), to yield $510 \mathrm{mg}, 1.95 \mathrm{mmol}(65 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.79(1 \mathrm{H}, \mathrm{t}, J=1.4$ Hz), 8.31 (2H, d, $J=8.8 \mathrm{~Hz}$), 8.05 (2H, d, $J=8.8 \mathrm{~Hz}$), 7.10 (1H, dd, $J=15.4,6.7$ $\mathrm{Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.4 \mathrm{~Hz}), 2.33-2.54(4 \mathrm{H}, \mathrm{m}), 1.48-1.66(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.3,27.4,32.6,43.5,123.7,125.7,129.4,142.6,149.9,151.2$, 189.1, 201.9. CI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 262.1071$, found 262.1079.

1-(4-Methoxy-phenyl)-non-2-ene-1,8-dione (7)

Ketone 7 was prepared in the same manner as 6, starting from (4'metoxyphenacyl)triphenylphosphonium bromide ($1823 \mathrm{mg}, 3.71 \mathrm{mmol}, 1.02 \mathrm{eq}$), to yield $549 \mathrm{mg}, 2.11 \mathrm{mmol}(58 \%) .{ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.9Hz), 6.85-7.06 (4H, m), $3.87(3 H, s), 2.45(2 H, t, J=6.8 \mathrm{~Hz}), 2.32(2 \mathrm{H}, \mathrm{q}, J=6.7$ $\mathrm{Hz}), 2.14(3 \mathrm{H}, \mathrm{s}), 1.47-1.68(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.2,29.6$, 31.8, 34.5, 57.4, 115.7, 127.7, 132.7, 150.0, 165.2, 190.9, 210.6. CI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 261.1482$, found 261.1492.

1-p-Tolyl-non-2-ene-1,8-dione (8)

Ketone 8 was prepared in the same manner as 6, starting from (4'methylphenacyl)triphenylphosphonium bromide ($600 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.00 \mathrm{eq} \mathrm{)}$, yield $200 \mathrm{mg}, 0.82 \mathrm{mmol}(65 \%) .{ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$ Hz), $7.24(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{dt}, J=15.4,6.4 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=15.4$ $\mathrm{Hz}), 2.44(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 2.38(3 \mathrm{H}, \mathrm{s}), 2.30(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 2.12(3 \mathrm{H}, \mathrm{s}), 1.49-$ $1.62(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (50MHz, CDCl_{3}): $\delta=21.5,23.2,27.6,29.8,32.5,43.3,126.0$,
128.6, 129.1, 135.2, 143.4, 148.5, 190.2, 208.5. CI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{MH}+]$ m/z 245.1533, found 245.1545.

1-(4-Bromo-phenyl)-non-2-ene-1,8-dione (9)

Ketone 9 was prepared in the same manner as 6, starting from (4'bromoyphenacyl)triphenylphosphonium bromide ($600 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.05 \mathrm{eq}$), to yield $227 \mathrm{mg}, 0.73 \mathrm{mmol}(69 \%) .{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta=7.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6$ $\mathrm{Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{dt}, J=15.4,6.6 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{dt}, J=15.4$, $1.1 \mathrm{~Hz}), 2.46(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 2.33(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 1.48-1.70(4 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.9,29.5,32.3,35.1,45.2,115.6,129.6,131.9$, 133.7, 138.5, 151.7, 191.8, 210.4. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O} 2 \mathrm{Br}[\mathrm{MH}+] \mathrm{m} / \mathrm{z}$ 309.0482, found 309.0483.

cis-2-[2-(4-Methoxy-phenyl)-2-oxo-ethyl]-cyclopentanecarbaldehyde (4a)

 Aldehye 4 ($165 \mathrm{mg}, 0.67 \mathrm{mmol}$, 1 eq) was dissolved in DMF (1 mL), and piperidine ($28 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.5 \mathrm{eq}$) was added. The reaction was monitored by TLC (EtOAc:Hex 1:2). After completion (2 hours), DMF was removed under reduced pressure and the crude product was purified by FC (EtOAc:Hex 1:2) to yield the intramolecular Michael addition product 4a in 10% yield ($16.5 \mathrm{mg}, 0.067 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=9.76(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.92(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.92$ ($2 \mathrm{H}, \mathrm{d}, ~ J=8.9 \mathrm{~Hz}$), $3.86(3 \mathrm{H}, \mathrm{s}), 3.17(1 \mathrm{H}, \mathrm{dd}, J=17.1,7.4 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{dd}, J=$ 17.1, 7.0 Hz), 3.00-3.09 $(1 \mathrm{H}, \mathrm{m}), 2.80-2.98(1 \mathrm{H}, \mathrm{m}), 1.42-1.99(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta=27.2,33.5,36.6,41.1,55.5,57.4,115.6,131.8,132.2,199.7$, 206.9. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 247.1326$, found 247.1334. The anti isomer was yielded as well in 85% yield ($140 \mathrm{mg}, 0.57 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR(200MHz,CDCl $): \delta=9.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}), 7.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.09(1 \mathrm{H}, \mathrm{dd}, J=16.7,7.1 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=16.7,6.7$ $\mathrm{Hz}), 2.71(1 \mathrm{H}$, sext, $J=7.4 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{ddd}, J=16.0,8.0,3.3 \mathrm{~Hz}), 1.25-2.11(6 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.7,34.9,38.8,45.1,57.4,59.7,115.7,131.8$, 132.3, 165.5, 199.6, 205.6. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OO}_{3}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 247.1326$, found 247.1334.
cis-2-(2-Acetyl-cyclopentyl)-1-phenyl-ethanone (6a)
Ketone 6 ($240 \mathrm{mg}, 1.05 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in DMF (1mL) and piperidine (44 $\mathrm{mg}, 0.52 \mathrm{mmol}, 0.5 \mathrm{eq})$ was added. The reaction was heated to $60^{\circ} \mathrm{C}$, stirred for overnight and was monitored by TLC (EtOAc:Hex 1:2). After completion, DMF was removed under reduced pressure and the crude product was purified by FC (EtOAc:Hex 1:2) to yield the intramolecular Michael addition product $\mathbf{6 a}$ in 40% yield (98 mg, 0.42 mmol$).{ }^{1} \mathrm{H}$ NMR (200MHz, CDCl_{3}): $\delta=7.94(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, 7.42-7.56 (3H, m), 3.15-3.27 (1H, m), 3.06 (2H, m), 2.65-2.93 (1H, m), $2.15(3 H, s)$, 1.57-1.93 (6H, m). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.6,28.8,29.6,32.5,38.1,43.9$, 58.2, 128.1, 128.5, 133.0, 136.8, 199.6, 210.8. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{MH}+]$ m / z 231.1377, found 231.1394. The anti isomer was yielded as well in 45% (115 mg , $0.48 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.97(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.43-7.57(3 \mathrm{H}$, m), $3.14(1 \mathrm{H}, \mathrm{dd}, J=15.8,6.0 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{dd}, \underline{\mathrm{J}}=15.8,7.3 \mathrm{~Hz}), 2.58-2.80(2 \mathrm{H}$, m), $2.20(3 \mathrm{H}, \mathrm{s}), 1.66-2.07(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.8,25.3,30.1$, 34.1, 40.1, 41.4, 55.8, 129.8, 130.5, 135.0, 139.0, 201.9, 214.1. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 231.1377$, found 231.1392.

Aldehyde 3a was prepared in the same manner as 4a, starting from aldehyde $\mathbf{3}$ (145 $\mathrm{mg}, 0.67 \mathrm{mmol}, 1 \mathrm{eq})$, to yield $24 \mathrm{mg}, 0.11 \mathrm{mmol}(9 \%)$ of $3 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR (200MHz, CDCl_{3}): $\delta=9.77(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.93(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.40-1.60$ $(3 \mathrm{H}, \mathrm{m}), 3.01-3.30(2 \mathrm{H}, \mathrm{m}), 2.81(1 \mathrm{H}$, sext, $J=7.1 \mathrm{~Hz}), 1.39-2.01(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (50MHz, CDCl_{3}): $\delta=25.4,32.1,38.2,39.5,53.4,127.9,128.5,133.2,136.7,199.2$, 204.9. CI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{MH}_{+}\right] \mathrm{m} / \mathrm{z}$ 217.1220, found 217.1222. The trans isomer was obtained as well in 17% ($13 \mathrm{mg}, 0.06 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.68(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}), 7.94(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.40-7.60$ $(3 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{dd}, J=6.8,4.0 \mathrm{~Hz}), 2.73(1 \mathrm{H}$, sext, $J=7.6 \mathrm{~Hz}), 2.43(1 \mathrm{H}, \mathrm{dd}, J=$ 8.0, 3.2 Hz), 1.97-2.09 ($1 \mathrm{H}, \mathrm{m}$), 1.83-1.92 (2H, m), 1.65-1.79 (2H, m), 1.37-1.45 (2H, m). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.7,28.7,34.9,38.6,45.5,59.7,190.0,130.6$, 135.1, 138.7, 201.0, 205.5. CI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 217.1220$, found 217.1223.

cis-2-[2-(4-nitro-phenyl)-2-oxo-ethyl]-cyclopentanecarbaldehyde (5a)

Aldehyde 5a was prepared in the same manner as 4a, starting from aldehyde 5 (70 $\mathrm{mg}, 0.26 \mathrm{mmol}, 1 \mathrm{eq})$, to yield $5 \mathrm{mg}, 0.07 \mathrm{mmol}(10 \%)$ of $5 \mathbf{a} .{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.75\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=2.26 \mathrm{~Hz}\right), 8.27-8.33(2 \mathrm{H}, \mathrm{m}), 8.06-8.12(2 \mathrm{H}, \mathrm{m})$, $3.28-3.40(1 \mathrm{H}, \mathrm{dd}, J=18.0,7.5 \mathrm{~Hz}), 3.04-3.17(2 \mathrm{H}, \mathrm{m}), 2.72-2.88(1 \mathrm{H}, \mathrm{m}), 1.4-2.0$ $(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (50MHz, CDCl_{3}): $\delta=23.5,25.7,32.0,37.8,40.2,53.1,123.8$, 128.9, 141.3, 150.3, 197.8, 204.7. CI-HRMS calcd for C14H15ONO4 [MH+] m/z 262.1071, found 262.1077. The trans isomer was obtained as well in 43% (30 mg , $0.29 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR (200MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.29(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 8.09(2 \mathrm{H}$, d, $J=7.0 \mathrm{~Hz}), 3.13(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.63-2.82(1 \mathrm{H}, \mathrm{m}), 2.36-2.50(1 \mathrm{H}, \mathrm{m}), 1.27-$
$2.12(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=28.8,31.6,32.9,34.9,46.0,59.6$, 125.7, 125.8, 131.0, 143.0, 152.3, 199.5, 208.9. CI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ONO}_{4}$
[MH+] m/z 262.1071, found 262.1078.
cis-2-(2-Acetyl-cyclopentyl)-1-(4-methoxy-phenyl)-ethanone (7a)
Ketone 7a was prepared in the same manner as 6a, starting from ketone 7 (265 mg , $1.02 \mathrm{mmol}, 1 \mathrm{eq}$), to yield $46 \mathrm{mg}, 0.17 \mathrm{mmol}$ (17\%) of $7 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s})$, $3.22(1 \mathrm{H}, \mathrm{q}, ~ J=7.4 \mathrm{~Hz}), 3.01(1 \mathrm{H}, \mathrm{dd}, J=17.2,7.2 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{dd}, J=17.2,7.0$ $\mathrm{Hz}), 2.75-2.83(1 \mathrm{H}, \mathrm{m}), 2.13(3 \mathrm{H}, \mathrm{s}), 1.54-1.63(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=23.3,28.0,31.3,32.1,38.4,39.0,53.9,55.4,113.6,130.2,130.3,163.4,198.5$, 212.2. CI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{MH}+] \mathrm{m} / \mathrm{z}$ 261.1482, found 261.1495. The trans isomer was obtained as well in 22% ($59 \mathrm{mg}, 0.23 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.94(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s})$, $3.06(1 \mathrm{H}, \mathrm{dd}, J=15.5,6.1 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=15.5,7.6 \mathrm{~Hz}), 2.66-2.75(1 \mathrm{H}, \mathrm{m})$, 2.59-2.65 ($1 \mathrm{H}, \mathrm{m}$), $2.19(3 \mathrm{H}, \mathrm{s}), 1.97-2.00(2 \mathrm{H}, \mathrm{m}), 1.67-1.71(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (50MHz, CDCl_{3}): $\delta=26.5,30.8,31.6,34.5,40.4,45.6,57.4,60.3,115.6,131.9$, 132.4, 165.4, 200.1, 212.9. CI-HRMS calcd for $\mathrm{C}_{16 \mathrm{H} 20 \mathrm{O} 3}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 261.1482$, found 261.1495. cis-2-(2-Acetyl-cyclopentyl)-1-p-tolyl-ethanone (8a)

Ketone 8a was prepared in the same manner as 6a, starting from ketone $\mathbf{8}$ (167 mg , $0.68 \mathrm{mmol}, 1.00 \mathrm{eq})$, to yield $41 \mathrm{mg}, 0.17 \mathrm{mmol}(25 \%)$ of $\mathbf{8 a} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.0), 3.22(1 \mathrm{H}, \mathrm{q}, J=$ $7.4 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=17.4,7.2 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=17.4,7.0 \mathrm{~Hz}), 2.80(1 \mathrm{H}$,
sept, $J=7.1 \mathrm{~Hz}), 2.39(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 1.57-1.89(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=21.5,23.3,29.6,31.2,32.1,38.2,39.2,53.8,128.2,129.1$, 134.6, 143.7, 199.5, 212.1. CI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 245.1533$, found 245.1550. The trans isomer was obtained as well in 26% ($44 \mathrm{mg}, 0.18 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}): $\delta=7.86(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 3.08$ $(1 \mathrm{H}, \mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \mathrm{dd}, J=15.6,7.3 \mathrm{~Hz}), 2.56-2.80(2 \mathrm{H}, \mathrm{m}), 2.40$ $(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s}), 1.90-2.01(2 \mathrm{H}, \mathrm{m}), 1.64-1.72(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (50MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=21.5,24.5,28.8,29.6,32.5,38.2,43.8,58.2,128.2,129.2$, 134.3, 143.7, 199.2, 204.5. CI-HRMS calcd for $\mathrm{C}_{16 \mathrm{H} 20 \mathrm{O} 2}[\mathrm{MH}+] \mathrm{m} / \mathrm{z} 245.1533$, found 245.1537.

cis-2-(2-Acetyl-cyclopentyl)-1-(4-bromo-phenyl)-ethanone (9a)

Ketone 9a was prepared in the same manner as 6a, starting from ketone 9 (320 mg , $1.03 \mathrm{mmol}, 1 \mathrm{eq})$, to yield $126 \mathrm{mg}, 0.41 \mathrm{mmol}(39 \%)$ of $9 \mathbf{9 a}{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 3.11(1 \mathrm{H}$, dd, $J=17.4,7.3 \mathrm{~Hz}), 2.92(1 \mathrm{H}, \mathrm{dd}, J=17.4,6.7 \mathrm{~Hz}), 2.70-2.85(1 \mathrm{H}, \mathrm{m}), 2.57-2.66$ $(1 \mathrm{H}, \mathrm{m}), 2.13(3 \mathrm{H}, \mathrm{s}), 1.40-2.17(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.3,30.2$, 31.6, 34.1, 39.9, 41.4, 55.7, 129.6, 131.5, 133.8, 137.7, 200.9, 214.1. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O} 2 \mathrm{Br}[\mathrm{MH}+] \mathrm{m} / \mathrm{z}$ 309.0482, found 309.0493. The trans isomer was obtained as well in 56% ($174 \mathrm{mg}, 0.58 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(2 \mathrm{H}, \mathrm{d}, J=6.82 \mathrm{~Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 3.07(1 \mathrm{H}$, dd, $J=15.8,6.0 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}), 2.69(1 \mathrm{H}$, sext, $J=7.9 \mathrm{~Hz}), 2.60$ $(1 \mathrm{H}, \mathrm{q}, J=7.9 \mathrm{~Hz}), 2.19(3 \mathrm{H}, \mathrm{s}), 1.97-2.03(3 \mathrm{H}, \mathrm{m})$ 1.68-1.71 $(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta=26.4,30.8,31.6,34.4,39.9,45.9,60.2,130.1,131.6,133.8$,
137.4, 200.6, 212.7. CI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Br}[\mathrm{MH}+] \mathrm{m} / \mathrm{z}$ 309.0482, found
309.0483.

Enantiomers separation

All the cis- and trans- Michael addition products enantiomers, were separated by RPHPLC (Hitachi LaChromeELITE equipped with an L-2000 series organizer box, L2300 column-oven, L-2450 diode array detector, L-2200 autosampler and L-2130) at various $5 \mu \mathrm{~m}$ pump) using CHIRALPAK® AD-RH column ($150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$,
proportions of Acetonitrile : Water at $0.5 \mathrm{ml} / \mathrm{min}$ flow-rate.

Table 1. Conditions for separation of intra molecular Michael products 3a-9a

Enone	Solvents ratio Acetonitrile : Water	Retention time cis enantiomers (min)	Retention time trans enantiomers (min)	enantiomers. nm] λ Wavelength for monitoring enantiomeric separation
3 a	$55 \%: 45 \%$	$16.57,28.79$	$17.06,17.66$	244
4 a	$55 \%: 45 \%$	$20.76,32.71$	$21.35,24.75$	274
5 a	$70 \%: 30 \%$	$15.14,22.62$	$16.12,17.14$	266
6a	$60 \%: 40 \%$	$9.36,10.90$	No separation. One pick 9.55	243
7 a	$55 \%: 45 \%$	$13.68,15.56$	$13.06,14.80$	274
8 a	$55 \%: 45 \%$	$15.26,16.41$	$15.62,17.34$	254
9 a	$60 \%: 40 \%$	$21.25,24.15$	$19.66,24.48$	256

The enantiomeric excess of all cis- products of the reaction of the corresponding ketone or aldehyde with Ab38C2, was determined under the same conditions as mentioned in the appropriate entry in table 1 . One example, the cis- product of ketone 7 with Ab38C2 (similar to 7a) was further purified under the same conditions , Acetonitrile $5 \mu \mathrm{~m}$ (LiChroCART 250-4 Purospher® RP-18e column 250mm x 4mm, : Water 55\% : 45\%) used to separate the cis-/trans- stereoisomers. The enantiomeric excess of the purified cis- product was then determined.

Figure 1. Separation of racemic 7a enantiomers.

1: $274 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

Retention Time	Area	Area Percent
13.687	21366960	49.8
15.540	21511123	50.2

Totals	100.0	
42878083		

Figure 2. Separation of Ab38C2 reaction product 7a enantiomres.

1: $274 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

Retention Time	Area	Area Percent
13.767	920136	2.3
15.687	38997299	97.7
 Totals 39917435 100.0		

In all other cis-enone products, a sample of the crude reaction solution was examined
without further purification.

Michaelis-Menten kinetic measurements

Lineweaver-Burk plots of Ab38C2-catalyzed intramolecular Michael addition of

Aldehydes and Ketones

. $25^{\circ} \mathrm{C}$ All reactions were carried out in phosphate buffered saline (PBS), pH 7.4 at . μM Reactions were typically carried out in concentrations ranging between 20-1250 Antibody 38C2 was typically used in concentrations ranging between $0.05-1 \mathrm{mg} / \mathrm{ml}$. Antibody catalyzed reactions were monitored by RP-HPLC (Hitachi LaChromeELITE equipped with an L-2000 series organizer box, L-2300 columnoven, L-2450 diode array detector, L-2200 autosampler and L-2130 pump) using) at various $5 \mu \mathrm{~m}$ LiChroCART 250-4 Purospher® RP-18e column ($250 \mathrm{~mm} \times 4 \mathrm{~mm}$, proportions of Acetonitrile : Water (0.1% trifluoroacetic acid) at $1 \mathrm{ml} / \mathrm{min}$ flow-rate. Conditions for monitoring the reaction of formyl-enone and methylketone-enone substrates with Ab38C2 were: Acetonitrile : Water (55\% : 45\%), except for ketone 9: Acetonitrile : Water (60\% : 40\%).
$.3 \rightarrow$ 3a Graph 1. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

1/[S] [1/ $\mu \mathrm{M}]$

$.4 \rightarrow$ 4a Graph 2. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

$.5 \rightarrow$ 5a Graph 3. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

$.6 \rightarrow \mathbf{6 a}$ Graph 4. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

. $7 \rightarrow$ 7a Graph 5. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

$.8 \rightarrow \mathbf{8 a}$ Graph 6. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

$.9 \rightarrow \mathbf{9 a}$ Graph 7. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

Table 2. $\mathrm{K}_{\text {uncat }}$ measurements for 3-9 in PBS:

Reaction	$\mathrm{K}_{\mathrm{uncat}}\left[\mathrm{min}^{-1}\right]$
$3 \rightarrow 3 a$	$3.5 \cdot 10^{-5}$
$4 \rightarrow 4 a$	$5.4 \cdot 10^{-5}$
$5 \rightarrow 5 a$	$5.7 \cdot 10^{-5}$
$6 \rightarrow 6 a$	$4.0 \cdot 10^{-7}$
$7 \rightarrow 7 a$	$3.0 \cdot 10^{-6}$
$8 \rightarrow 8 a$	$7.0 \cdot 10^{-7}$
$9 \rightarrow 9 a$	$1.0 \cdot 10^{-6}$

$\mathrm{K}_{\text {uncat }}$ measurements were made with the appropriate aldehyde or concentration in $500 \mu M$ ketone at PBS solution at pH 7.4.

