Supporting Information

Antibody-Catalyzed Asymmetric Intramolecular Michael Addition of Aldehydes and Ketones to Yield the disfavored Cis-Product

Roy Weinstain^a, Richard A. Lerner^b, Carlos F. Barbas III^b and Doron Shabat^a*

^aSchool of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978 Israel. ^bThe Skaggs Institute for Chemical Biology, Departments of Molecular Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037

Experimental

General methods. Thin layer chromatography (TLC): silica gel plates Merck 60 F_{254} : compounds were visualized by irradiation with UV light and/or by treatment with a solution of 25 g phosphomolybdic acid, 10 g Ce(SO₄)₂·H₂O, 60 mL conc. H₂SO₄ and 940 mL H₂O followed by heating and/or by staining with a solution of 12 g 2,4dinitrophenylhydrazine in 60 mL conc. H₂SO₄, 80 mL H₂O and 200 mL 95% EtOH followed by heating. – Flash chromatography (FC): silica gel Merck 60 (particle size 0.040-0.063 mm), eluent given in parentheses. ¹H NMR spectra were measured using Bruker Avance operated at 200 MHz or 400MHz as mentioned. ¹³C NMR spectra were measured using Bruker Avance operated at 50 MHz or 100MHz as mentioned. The chemical shifts are expressed in δ relative to TMS ($\delta = 0$ ppm) and the coupling constants *J* in Hz. The spectra were recorded in CDCl₃ as solvent at room temperature unless stated otherwise. All general reagents, including salts and solvents, were purchased from Aldrich (Milwaukee, MN). All reactions were carried out at room temperature unless stated otherwise.

Abbreviations. OsO₄ – Osmium tetraoxide, NMO – 4-Methylmorpholine N-Oxide, DCM- Dichloromethane, DMF- Dimethylformamide, EtOAc- Ethyl acetate, Hex- n-Hexanes, PBS- Phosphate buffer saline, THF – Tetrahydrofuran, NaOH – Sodium hydroxide.

8-(4-Methoxy-phenyl)-8-oxo-oct-6-enal (4)

(4'-Metoxyphenacyl)triphenylphosphonium bromide (500 mg, 1.02 mmol, 1.02 eq) was dissolved in a mixture of DCM (15 mL) and NaOH 2N (10 mL). The reaction was monitored by TLC (EtOAc:Hex 1:1) until complete disappearance of the phosphonium salt (0.5-3 hours). After completion, EtOAc was added and the solution was washed with brine. The organic phase was dried over sodium-sulphate, filtered and evaporated to yield the phosphonium ylide in an almost quantitative yield. The phosphonium ylide (410 mg, 1.00 mmol, 1 eq) was dissolved in DCM (3mL) in a pressure tube, and Hexanedial (171 mg,1.5 mmol,1.5 eq) was added. The reaction was heated to 50°C and stirred for 3 hours. The reaction was monitored by TLC (EtOAc:Hex 1:2) for disappearance of the phosphonium salt. After completion, the solvent was evaporated and the crude product was purified by FC (EtOAc:Hex 1:2) to yield enone **4** in 53% yield (133 mg, 0.53 mmol). ¹H NMR (200MHz,CDCl₃): δ = 9.77 (1H, t, *J* = 1.6 Hz), 7.94 (2H, d, *J* = 8.9 Hz), 6.86-6.99 (4H, m), 3.86 (3H, s), 2.48 (2H, dt, *J* = 7.0, 1.5 Hz), 2.33 (2H, q, *J* = 7.0 Hz), 1.52-1.78 (4H, m). ¹³C NMR

(50MHz,CDCl₃): δ = 23.5, 29.6, 34.4, 45.6, 57.4, 115.7, 127.8, 132.6, 132.7, 149.7, 190.9, 204.1. CI-HRMS calcd for C₁₅H₁₈O₃ [MH₊] *m/z* 247.1326, found 247.1333.

1-Phenyl-non-2-ene-1,8-dione (6)

Phenacyltriphenylphosphonium bromide (1175 mg, 2.55 mmol, 1.02 eq) was dissolved in a mixture of DCM (15 mL) and NaOH 2N (10 mL). The reaction was monitored by TLC (EtOAc:Hex 1:1) until complete disappearance of the phosphonium salt. After completion, EtOAc was added and the solution was washed with brine. The organic phase was dried over sodium-sulphate, filtered and evaporated to yield the phosphonium ylide in a quantitative yield. The phosphonium ylide (963 mg, 2.53 mmol, 1 eq) was dissolved in DCM (3 mL) in a pressure tube, and 6-Oxo-heptanal (1.5 eq) was added. The reaction was heated to 60° C, stirred for overnight and was monitored by TLC (EtOAc:Hex 1:2) for disappearance of the phosphonium salt. After completion, the solvent was evaporated and the crude product was purified by FC (EtOAc:Hex 1:2) to yield enone 6 in 85% yield (495 mg, 2.15 mmol). ¹H NMR (200MHz,CDCl₃): δ = 7.92 (2H, d, *J* = 7.9 Hz), 7.41-7.60 (3H, m), 7.04 (1H, dt, J = 15.4, 6.4 Hz), 6.88 (1H, d, J = 15.4 Hz), 2.47 (2H, t, J = 6.8 Hz), 2.33 (2H, q, J = 6.7 Hz), 2.04 (3H, s), 1.51-1.64 (4H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 23.2, 27.6, 29.9, 32.5, 43.3, 126.1, 128.4, 132.6, 137.8, 149.1, 190.8, 208.5$. CI-HRMS calcd for C15H18O2 [MH+] m/z 231.1377, found 231.1382.

8-Oxo-8-phenyl-oct-6-enal (3)

Aldehyde **3** was prepared in the same manner as **4**, starting from phenacyltriphenylphosphonium bromide (1940 mg, 4.20 mmol, 1.01 eq), to yield 469 mg, 2.29 mmol (55%). Known compound (Registry 190522-49-7).

8-(4-Nitro-phenyl)-8-oxo-oct-6-enal (5)

Aldehyde **5** was prepared in the same manner as **4**, starting from (4'nitrophenacyl)triphenylphosphonium bromide (1520 mg, 3.00 mmol, 1.00 eq), to yield 510 mg, 1.95 mmol (65%). ¹H NMR (400MHz,CDCl₃): $\delta = 9.79$ (1H, t, J = 1.4Hz), 8.31 (2H, d, J = 8.8 Hz), 8.05 (2H, d, J = 8.8 Hz), 7.10 (1H, dd, J = 15.4, 6.7 Hz), 6.87 (1H, d, J = 15.4 Hz), 2.33-2.54 (4H, m), 1.48-1.66 (4H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 21.3$, 27.4, 32.6, 43.5, 123.7, 125.7, 129.4, 142.6, 149.9, 151.2, 189.1, 201.9. CI-HRMS calcd for C14H15NO4 [MH+] m/z 262.1071, found 262.1079.

1-(4-Methoxy-phenyl)-non-2-ene-1,8-dione (7)

Ketone **7** was prepared in the same manner as **6**, starting from (4'metoxyphenacyl)triphenylphosphonium bromide (1823 mg, 3.71 mmol, 1.02 eq), to yield 549 mg, 2.11 mmol (58%). ¹H NMR (200MHz,CDCl₃): $\delta = 7.95$ (2H, d, J =8.9Hz), 6.85-7.06 (4H, m), 3.87 (3H, s), 2.45 (2H, t, J = 6.8 Hz), 2.32 (2H, q, J = 6.7Hz), 2.14 (3H, s), 1.47-1.68 (4H, m). ¹³C NMR (100MHz,CDCl₃): $\delta = 25.2$, 29.6, 31.8, 34.5, 57.4, 115.7, 127.7, 132.7, 150.0, 165.2, 190.9, 210.6. CI-HRMS calcd for C₁₆H₂₀O₃ [MH+] m/z 261.1482, found 261.1492.

1-p-Tolyl-non-2-ene-1,8-dione (8)

Ketone **8** was prepared in the same manner as **6**, starting from (4'methylphenacyl)triphenylphosphonium bromide (600 mg, 1.26 mmol, 1.00 eq), to yield 200 mg, 0.82 mmol (65%). ¹H NMR (200MHz,CDCl₃): δ = 7.82 (2H, d, *J* = 8.2 Hz), 7.24 (2H, d, *J* = 7.7 Hz), 7.01 (1H, dt, *J* = 15.4, 6.4 Hz), 6.86 (1H, d, *J* = 15.4 Hz), 2.44 (2H, t, *J* = 6.9 Hz), 2.38 (3H, s), 2.30 (2H, q, *J* = 6.6 Hz), 2.12 (3H, s), 1.49-1.62 (4H, m). ¹³C NMR (50MHz,CDCl₃): δ = 21.5, 23.2, 27.6, 29.8, 32.5, 43.3, 126.0, 128.6, 129.1, 135.2, 143.4, 148.5, 190.2, 208.5. CI-HRMS calcd for C₁₆H₂₀O₂ [MH+] *m/z* 245.1533, found 245.1545.

1-(4-Bromo-phenyl)-non-2-ene-1,8-dione (9)

Ketone **9** was prepared in the same manner as **6**, starting from (4'bromoyphenacyl)triphenylphosphonium bromide (600 mg, 1.11 mmol, 1.05 eq), to yield 227 mg, 0.73 mmol (69%). ¹H NMR (400MHz,CDCl₃): $\delta = 7.79$ (2H, d, J = 8.6Hz), 7.60 (2H, d, J = 8.6 Hz), 7.05 (1H, dt, J = 15.4, 6.6 Hz), 6.83 (1H, dt, J = 15.4, 1.1 Hz), 2.46 (2H, t, J = 6.8 Hz), 2.33 (2H, q, J = 6.6Hz), 2.15 (3H, s), 1.48-1.70 (4H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 23.9$, 29.5, 32.3, 35.1, 45.2, 115.6, 129.6, 131.9, 133.7, 138.5, 151.7, 191.8, 210.4. CI-HRMS calcd for C15H17O2Br [MH+] m/z309.0482, found 309.0483.

cis-2-[2-(4-Methoxy-phenyl)-2-oxo-ethyl]-cyclopentanecarbaldehyde (4a)

Aldehye **4** (165 mg, 0.67 mmol, 1 eq) was dissolved in DMF (1 mL), and piperidine (28 mg, 0.33 mmol, 0.5 eq) was added. The reaction was monitored by TLC (EtOAc:Hex 1:2). After completion (2 hours), DMF was removed under reduced pressure and the crude product was purified by FC (EtOAc:Hex 1:2) to yield the intramolecular Michael addition product **4a** in 10% yield (16.5 mg, 0.067 mmol). ¹H NMR (200MHz,CDCl₃): $\delta = 9.76$ (1H, d, J = 2.5 Hz), 7.92 (2H, d, J = 8.9 Hz), 6.92 (2H, d, J = 8.9 Hz), 3.86 (3H, s), 3.17 (1H, dd, J = 17.1, 7.4 Hz), 3.02 (1H, dd, J = 17.1, 7.0 Hz), 3.00-3.09 (1H, m), 2.80-2.98 (1H, m), 1.42-1.99 (6H, m). ¹³C NMR (100MHz,CDCl₃): $\delta = 27.2$, 33.5, 36.6, 41.1, 55.5, 57.4, 115.6, 131.8, 132.2, 199.7, 206.9. CI-HRMS calcd for C15H18O3 [MH+] m/z 247.1326, found 247.1334. The anti isomer was yielded as well in 85% yield (140 mg, 0.57 mmol). ¹H NMR

(200MHz,CDCl₃): δ = 9.66 (1H, d, *J* = 3.2 Hz), 7.92 (2H, d, J = 8.9 Hz), 6.92 (2H, d, *J* = 8.9 Hz), 3.86 (3H, s), 3.09 (1H, dd, *J* = 16.7, 7.1 Hz), 2.99 (1H, dd, *J* = 16.7, 6.7 Hz), 2.71 (1H, sext, *J* = 7.4 Hz), 2.42 (1H, ddd, *J* = 16.0, 8.0, 3.3 Hz), 1.25-2.11 (6H, m). ¹³C NMR (100MHz,CDCl₃): δ = 28.7, 34.9, 38.8, 45.1, 57.4, 59.7, 115.7, 131.8, 132.3, 165.5, 199.6, 205.6. CI-HRMS calcd for C15H18O3 [MH+] *m/z* 247.1326, found 247.1334.

cis-2-(2-Acetyl-cyclopentyl)-1-phenyl-ethanone (6a)

Ketone **6** (240 mg, 1.05 mmol, 1 eq) was dissolved in DMF (1mL) and piperidine (44 mg, 0.52 mmol, 0.5 eq) was added. The reaction was heated to 60°C, stirred for overnight and was monitored by TLC (EtOAc:Hex 1:2). After completion, DMF was removed under reduced pressure and the crude product was purified by FC (EtOAc:Hex 1:2) to yield the intramolecular Michael addition product **6a** in 40% yield (98 mg, 0.42 mmol). ¹H NMR (200MHz,CDCl₃): δ = 7.94 (2H, d, *J* = 6.9 Hz), 7.42-7.56 (3H, m), 3.15-3.27 (1H, m), 3.06 (2H, m), 2.65-2.93 (1H, m), 2.15 (3H, s), 1.57-1.93 (6H, m). ¹³C NMR (50MHz,CDCl₃): δ = 24.6, 28.8, 29.6, 32.5, 38.1, 43.9, 58.2, 128.1, 128.5, 133.0, 136.8, 199.6, 210.8. CI-HRMS calcd for C1sH18O2 [MH+] *m/z* 231.1377, found 231.1394. The anti isomer was yielded as well in 45% (115 mg, 0.48 mmol). ¹H NMR (200MHz,CDCl₃): δ = 7.97 (2H, d, *J* = 6.9 Hz), 7.43-7.57 (3H, m), 3.14 (1H, dd, *J* = 15.8, 6.0 Hz), 2.93 (1H, dd, <u>J</u> = 15.8, 7.3 Hz), 2.58-2.80 (2H, m), 2.20 (3H, s), 1.66-2.07 (6H, m). ¹³C NMR (50MHz,CDCl₃): δ = 24.8, 25.3, 30.1, 34.1, 40.1, 41.4, 55.8, 129.8, 130.5, 135.0, 139.0, 201.9, 214.1. CI-HRMS calcd for C1sH18O2 [MH+] *m/z* 231.1377, found 231.1392.

cis-2-(2-Oxo-2-phenyl-ethyl)-cyclopentanecarbaldehyde (3a)

Aldehyde **3a** was prepared in the same manner as **4a**, starting from aldehyde **3** (145 mg, 0.67 mmol, 1 eq), to yield 24 mg, 0.11 mmol (9%) of **3a**. ¹H NMR (200MHz,CDCl₃): $\delta = 9.77$ (1H, d, J = 2.5 Hz), 7.93 (2H, d, J = 6.8 Hz), 7.40-1.60 (3H, m), 3.01-3.30 (2H, m), 2.81 (1H, sext, J = 7.1 Hz), 1.39-2.01 (6H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 25.4$, 32.1, 38.2, 39.5, 53.4, 127.9, 128.5, 133.2, 136.7, 199.2, 204.9. CI-HRMS calcd for C1₄H1₆O₂ [MH+] m/z 217.1220, found 217.1222. The trans isomer was obtained as well in 17% (13 mg, 0.06 mmol) yield. ¹H NMR (200MHz,CDCl₃): $\delta = 9.68$ (1H, d, J = 3.3 Hz), 7.94 (2H, d, J = 6.9 Hz), 7.40-7.60 (3H, m), 3.10 (1H, dd, J = 6.8, 4.0 Hz), 2.73 (1H, sext, J = 7.6 Hz), 2.43 (1H, dd, J = 8.0, 3.2 Hz), 1.97-2.09 (1H, m), 1.83-1.92 (2H, m), 1.65-1.79 (2H, m), 1.37-1.45 (2H, m). ¹³C NMR (100MHz,CDCl₃): $\delta = 26.7$, 28.7, 34.9, 38.6, 45.5, 59.7, 190.0, 130.6, 135.1, 138.7, 201.0, 205.5. CI-HRMS calcd for C1₄H1₆O₂ [MH+] m/z 217.1220, found 23.12, 120, 120, 205.5. CI-HRMS calcd for C1₄H1₆O₂ [MH+] m/z 217.1220, found 217

cis-2-[2-(4-nitro-phenyl)-2-oxo-ethyl]-cyclopentanecarbaldehyde (5a)

Aldehyde **5a** was prepared in the same manner as **4a**, starting from aldehyde **5** (70 mg, 0.26 mmol, 1 eq), to yield 5 mg, 0.07 mmol (10%) of **5a**. ¹H NMR (200MHz,CDCl₃): $\delta = 9.75$ (1H, d, ³J=2.26Hz), 8.27-8.33 (2H, m), 8.06-8.12 (2H, m), 3.28-3.40 (1H, dd, J = 18.0, 7.5 Hz), 3.04-3.17 (2H, m), 2.72-2.88 (1H, m), 1.4-2.0 (6H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 23.5, 25.7, 32.0, 37.8, 40.2, 53.1, 123.8, 128.9, 141.3, 150.3, 197.8, 204.7. CI-HRMS calcd for C14H15ONO4 [MH+] <math>m/z$ 262.1071, found 262.1077. The trans isomer was obtained as well in 43% (30 mg, 0.29 mmol) yield. ¹H NMR (200MHz,CDCl₃): $\delta = 8.29$ (2H, d, J = 7.0 Hz), 8.09 (2H, d, J = 7.0 Hz), 3.13 (2H, t, J = 6.6 Hz), 2.63-2.82 (1H, m), 2.36-2.50 (1H, m), 1.27-

2.12 (6H, m). ¹³C NMR (100MHz,CDCl₃): $\delta = 28.8$, 31.6, 32.9, 34.9, 46.0, 59.6, 125.7, 125.8, 131.0, 143.0, 152.3, 199.5, 208.9. CI-HRMS calcd for C14H15ONO4 [MH+] m/z 262.1071, found 262.1078.

cis-2-(2-Acetyl-cyclopentyl)-1-(4-methoxy-phenyl)-ethanone (7a)

Ketone **7a** was prepared in the same manner as **6a**, starting from ketone **7** (265 mg, 1.02 mmol, 1 eq), to yield 46 mg, 0.17 mmol (17%) of **7a**. ¹H NMR (400MHz,CDCl₃): $\delta = 7.91$ (2H,d, J = 8.9 Hz), 6.91 (2H, d, J = 8.9 Hz), 3.86 (3H, s), 3.22 (1H, q, J = 7.4 Hz), 3.01 (1H, dd, J = 17.2, 7.2 Hz), 2.93 (1H, dd, J = 17.2, 7.0 Hz), 2.75-2.83 (1H, m), 2.13 (3H, s), 1.54-1.63 (6H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 23.3$, 28.0, 31.3, 32.1, 38.4, 39.0, 53.9, 55.4, 113.6, 130.2, 130.3, 163.4, 198.5, 212.2. CI-HRMS calcd for C₁₆H₂₀O₃ [MH+] *m*/*z* 261.1482, found 261.1495. The trans isomer was obtained as well in 22% (59 mg, 0.23 mmol) yield. ¹H NMR (400MHz,CDCl₃): $\delta = 7.94$ (2H, d, J = 8.9 Hz), 6.93 (2H, d, J = 8.9 Hz), 3.86 (3H, s), 3.06 (1H, dd, J = 15.5, 6.1 Hz), 2.85 (1H, dd, J = 15.5, 7.6 Hz), 2.66-2.75 (1H, m), 2.59-2.65 (1H, m), 2.19 (3H, s), 1.97-2.00 (2H, m), 1.67-1.71 (4H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 26.5$, 30.8, 31.6, 34.5, 40.4, 45.6, 57.4, 60.3, 115.6, 131.9, 132.4, 165.4, 200.1, 212.9. CI-HRMS calcd for C₁₆H₂₀O₃ [MH+] *m*/*z* 261.1482, found 261.1482, found 261.1495.

cis-2-(2-Acetyl-cyclopentyl)-1-p-tolyl-ethanone (8a)

Ketone **8a** was prepared in the same manner as **6a**, starting from ketone **8** (167 mg, 0.68 mmol, 1.00eq), to yield 41 mg, 0.17 mmol (25%) of **8a**. ¹H NMR (400MHz,CDCl₃): $\delta = 7.82$ (2H, d, J = 8.2 Hz), 7.23 (2H, d, J = 8.0), 3.22 (1H, q, J = 7.4 Hz), 3.04 (1H, dd, J = 17.4, 7.2 Hz), 2.95 (1H, dd, J = 17.4, 7.0 Hz), 2.80 (1H,

sept, J = 7.1 Hz), 2.39 (3H, s), 2.13 (3H, s), 1.57-1.89 (6H, m). ¹³C NMR (100MHz,CDCl₃): $\delta = 21.5$, 23.3, 29.6, 31.2, 32.1, 38.2, 39.2, 53.8, 128.2, 129.1, 134.6, 143.7, 199.5, 212.1. CI-HRMS calcd for C₁₆H₂₀O₂ [MH+] m/z 245.1533, found 245.1550. The trans isomer was obtained as well in 26% (44 mg, 0.18 mmol). ¹H NMR (400MHz,CDCl₃): $\delta = 7.86$ (2H, d, J = 6.6 Hz), 7.25 (2H, d, J = 6.6 Hz), 3.08 (1H, dd, J = 15.6, 6.0 Hz), 2.88 (1H, dd, J = 15.6, 7.3 Hz), 2.56-2.80 (2H, m), 2.40 (3H, s), 2.18 (3H, s), 1.90- 2.01 (2H, m), 1.64-1.72 (4H, m). ¹³C NMR (50MHz,CDCl₃): $\delta = 21.5$, 24.5, 28.8, 29.6, 32.5, 38.2, 43.8, 58.2, 128.2, 129.2, 134.3, 143.7, 199.2, 204.5. CI-HRMS calcd for C₁₆H₂₀O₂ [MH+] m/z 245.1533, found 245.1537.

cis-2-(2-Acetyl-cyclopentyl)-1-(4-bromo-phenyl)-ethanone (9a)

Ketone **9a** was prepared in the same manner as **6a**, starting from ketone **9** (320 mg, 1.03 mmol, 1 eq), to yield 126 mg, 0.41 mmol (39%) of **9a**. ¹H NMR (200MHz,CDCl₃): $\delta = 7.79$ (2H, d, J = 8.6 Hz), 7.58 (2H, d, J = 8.6 Hz), 3.11 (1H, dd, J = 17.4, 7.3 Hz), 2.92 (1H, dd, J = 17.4, 6.7 Hz), 2.70-2.85 (1H, m), 2.57-2.66 (1H, m), 2.13 (3H, s), 1.40-2.17 (6H, m). ¹³C NMR (100MHz,CDCl₃): $\delta = 25.3$, 30.2, 31.6, 34.1, 39.9, 41.4, 55.7, 129.6, 131.5, 133.8, 137.7, 200.9, 214.1. CI-HRMS calcd for C15H17O2Br [MH+] m/z 309.0482, found 309.0493.

The trans isomer was obtained as well in 56% (174 mg, 0.58 mmol) yield. ¹H NMR (400MHz,CDCl₃): δ = 7.82 (2H, d, *J* = 6.82 Hz), 7.60 (2H, d, *J* = 8.5 Hz), 3.07 (1H, dd, *J* = 15.8, 6.0 Hz), 2.85 (1H, dd, *J* = 15.8, 7.7 Hz), 2.69 (1H, sext, *J* = 7.9 Hz), 2.60 (1H, q, *J* = 7.9 Hz), 2.19 (3H, s), 1.97-2.03 (3H, m) 1.68-1.71 (3H, m). ¹³C NMR (100MHz,CDCl₃): δ = 26.4, 30.8, 31.6, 34.4, 39.9, 45.9, 60.2, 130.1, 131.6, 133.8,

137.4, 200.6, 212.7. CI-HRMS calcd for C₁₅H₁₇O₂Br [MH+] *m/z* 309.0482, found 309.0483.

Enantiomers separation

All the *cis*- and *trans*- Michael addition products enantiomers, were separated by RP-HPLC (Hitachi LaChromeELITE equipped with an L-2000 series organizer box, L-

2300 column-oven, L-2450 diode array detector, L-2200 autosampler and L-2130

) at various 5µm pump) using CHIRALPAK® AD-RH column (150mm x 4.6mm,

proportions of Acetonitrile : Water at 0.5 ml/min flow-rate.

				enantiomers.
Enone	Solvents ratio Acetonitrile : Water	Retention time <i>cis</i> enantiomers (min)	Retention time	[nm] λ Wavelength
			trans	for monitoring
			enantiomers	enantiomeric
			(min)	separation
3a	55% : 45%	16.57, 28.79	17.06, 17.66	244
4a	55% : 45%	20.76, 32.71	21.35, 24.75	274
5a	70% : 30%	15.14 , 22.62	16.12, 17.14	266
ба	60% : 40%	9.36 , 10.90	No separation.	243
			One pick 9.55	
7a	55% : 45%	13.68, 15.56	13.06, 14.80	274
8a	55% : 45%	15.26, 16.41	15.62, 17.34	254
9a	60% : 40%	21.25, 24.15	19.66 , 24.48	256

 Table 1. Conditions for separation of intra molecular Michael products 3a-9a

 anaptiomers

The enantiomeric excess of all *cis*- products of the reaction of the corresponding ketone or aldehyde with Ab38C2, was determined under the same conditions as mentioned in the appropriate entry in table 1. One example, the *cis*- product of ketone **7** with Ab38C2 (similar to **7a**) was further purified under the same conditions , Acetonitrile $5\mu m$ (LiChroCART 250-4 Purospher® RP-18e column 250mm x 4mm, : Water 55% : 45%) used to separate the *cis-/trans-* stereoisomers. The enantiomeric excess of the purified *cis-* product was then determined.

Figure 1. Separation of racemic 7a enantiomers.

Figure 2. Separation of Ab38C2 reaction product 7a enantiomres.

1: 274 nm, 4 nm Results		
Retention Time	Area	Area Percent
13.767	920136	2.3
15.687	38997299	97.7

Totals		
	39917435	100.0

In all other cis-enone products, a sample of the crude reaction solution was examined

without further purification.

Michaelis-Menten kinetic measurements

Lineweaver-Burk plots of Ab38C2-catalyzed intramolecular Michael addition of Aldehydes and Ketones

. 25°C All reactions were carried out in phosphate buffered saline (PBS), pH 7.4 at . µM Reactions were typically carried out in concentrations ranging between 20-1250 Antibody 38C2 was typically used in concentrations ranging between 0.05-1mg/ml. **RP-HPLC** Antibody catalyzed reactions monitored by (Hitachi were LaChromeELITE equipped with an L-2000 series organizer box, L-2300 columnoven, L-2450 diode array detector, L-2200 autosampler and L-2130 pump) using) at various 5µm LiChroCART 250-4 Purospher® RP-18e column (250mm x 4mm, proportions of Acetonitrile : Water (0.1% trifluoroacetic acid) at 1 ml/min flow-rate. Conditions for monitoring the reaction of formyl-enone and methylketone-enone substrates with Ab38C2 were: Acetonitrile : Water (55% : 45%), except for ketone 9: Acetonitrile : Water (60% : 40%).

 $.3 \rightarrow 3a$ Graph 1. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

 $.4 \rightarrow 4a$ Graph 2. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

 $.5 \rightarrow 5a$ Graph 3. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

. $6 \rightarrow 6a$ Graph 4. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

 $.\, 7 \rightarrow 7a\, Graph$ 5. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

 $.8 \rightarrow 8a$ Graph 6. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

. 9 \rightarrow 9a Graph 7. Lineweaver-Burk plot of Ab38C2 catalysis for the reaction

 Table 2. K_{uncat} measurements for 3-9 in PBS:

Reaction	$K_{uncat} [min^{-1}]$
$3 \rightarrow 3a$	$3.5 \cdot 10^{-5}$
$4 \rightarrow 4a$	$5.4 \cdot 10^{-5}$
$5 \rightarrow 5a$	$5.7 \cdot 10^{-5}$
$6 \rightarrow 6a$	$4.0 \cdot 10^{-7}$
$7 \rightarrow 7a$	$3.0 \cdot 10^{-6}$
$8 \rightarrow 8a$	$7.0 \cdot 10^{-7}$
$9 \rightarrow 9a$	$1.0 \cdot 10^{-6}$

 K_{uncat} measurements were made
with the appropriate aldehyde or
concentration in 500 μM ketone at
PBS solution at pH 7.4.