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This supporting information contains two sections. The first is a description of methods used, and relevant 
data to the validation of our NPLS-DA models. The second is the description and relevant data to our 
method of detecting outliers in our PARAFAC model.
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NPLS-DA model validation 
 

During the calculation of an NPLS model, the number of Latent Variables (LVs) must be selected. 

This is accomplished through cross validation. Multiway cross validation (CV) is performed on the model 

to determine the residual errors in both predictive ability (F) and the model’s fit to the data (E).  The 

multiway CV method performs iterative calculations to provide the Root-Mean-Squared Error of Cross 

Validation (RMSECV) and Root-Mean-Squared Error of Calibration (RMSEC).  The appropriate number 

of LVs is chosen to provide maximum predictive power before the model begins to overfit the data.  The 

number of LVs is determined by a balance between a minimal RMSECV value and a significant decrease 

from the previous LV in the RMSEC for the independent variables.  The success of a model is also 

indicated in the percent variance captured in X and Y blocks.  A significant improvement in the variance 

captured in either variable block should occur with each consecutive LV.  The NPLS-DA regression 

models utilize the multivariate nature of EEM fluorescence response of very similar but unique sets of 

samples to discriminate and classify them most efficiently for calibration and prediction of new data.   

A single value is given for the error in the predictive ability of the entire model, which is 

determined by class separation and misclassification probability of test data.  The RMSECV value 

increases as sites of interest are added to the model.  For models of the selected number of LVs, a separate 

RMSEC value is provided as a measure of the error in the model’s fit to the data from each sample site 

(Table S1).  The spectral differences between sites L and R are small and the model has some difficulty 

fitting the data.  In Model LRHC, the differences between H and C are comparably smaller than between 

any other sites and the RMSEC value increases slightly for these sites.     
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-- = not calculated. 

The success of the calibration model is determined by these statistics resulting from multiway 

cross-validation using the leave-one-out method.  The number of latent variables (LVs) for each model was 

chosen to minimize the cumulative Predictive Residual Sum of Squares (PRESS) result (Table S2). In each 

case, PRESS values reach a minimum corresponding to the number of latent variables that minimize the 

RMSECV and provide a significant decrease in the RMSEC as described above. Model LC was most 

successful based on five latent variables, while Model LRHC was based on six.  The error increases with 

additional sites in the calibration model, as expected with limited geographic separation and small 

variations between sample sites. 

Table S2.  Cumulative PRESS Results for Each Model 

Model LV 1 LV 2 LV 3 LV 4 LV 5 LV 6 LV 7 LV 8 LV 9 

LRHC 19.2 19.0 18.6 17.9 16.9 16.0 17.2 18.0 20.0 

LC 1.03 1.53 1.25 1.39 1.27 1.92 3.36 -- -- 

 

The amount of co-variance captured by the calibration models can be calculated as a final check of 

validity. Values of over 90% variance explained in both X and Y blocks defines a well-fitted calibration 

model (Table S3).  Model LC, with greater than 91% variation captured in both X and Y blocks, shows that 

the calibration step for sites L and C, separated by only six miles, was successful and provides support for 

this sample identification technique using NPLS-DA.  As indicated by the dramatic decrease in percent 

variation captured in the Y block of Model LRHC, the calibration of site variation was not as rigorous and 

the predictive ability for a model containing all four sites, including sites H and C, which are within one 

mile of each other, becomes limited. The waters from L, C and R all mix into the Boston Harbor, which 

produces more predicted Y values in the false negative range and increases the difficulty of correctly 

classifying samples from H.  The percent variation captured in the X block remains high for both models.  

Table S1. Error of Predictive Power (RMSECV) and Error of Fit to Data (RMSEC) for Each Model 

Model RMSECV RMSEC (L) RMSEC (R) RMSEC (H) RMSEC (C) 

LRHC (6 LV) 0.708 0.162 0.190 0.224 0.232 

LC       (5 LV) 0.281 0.0904 -- -- 0.0904 
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This result signifies that the model is able to identify latent structures in the fluorescence data to define 

most of the variance between the sites of interest using the calibration samples provided.  

Table S3.  Percent Variation Captured in Each Model 

Sites of Interest Number of LVs Percent Variation Captured 

X-Block 

Percent Variation Captured 

Y-Block 

L,C 5 96.50 91.08 

L,R,H,C 6 96.38 65.76 

 

PARAFAC  

Factor number selection 

The number of factors to include in a PARAFAC model can be determined in several ways.  In 

some instances additional factors are nearly identical to others and are unnecessary. Recently Bro et al. 

have devised a method where the core consistency of the PARAFAC model is used as a measure of factors 

to utilize.(1) In this method the number of factors that comes closest to a 100% consistent core should be 

used in the final model.  All models in this work were fit for two, three or four components. The models 

with the highest number of components with a core consistency of over 97% were kept. All models found 

core consistencies of over 97% for 3 factors.  One location, C, had a 97% consistency for a four component 

model; however, two factors in that model were practically identical, so a three factor model was kept for 

interpretation. 

Outlier Removal 

 Outliers were identified by using RIP and IMP plots as described by Riu et al.(2), where each 

EEM represents the data on a particular date in a specific location. RIPs identify EEMs that differ greatly 

from the other EEMs in the data set.(2) They can be interpreted to have large differences in their loadings 

in the spectroscopic axes.  IMPs identify EEMs that have vastly different scores in the date axis and this 

analysis is done for each factor.(2) While there is not space to show every RIP and IMP plot, the case of 

Mystic River, having one outlier, is shown below (Figures S1-S2).  
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Figure S1 – Identity Match Plots (IMP) for Mystic River.  Sample 24 is a significant distance from 
the identity line in all three components (factors), and therefore can be considered an outlier.  
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Figure S2 – Resample Influence Plots for Mystic River.  Since sample 24 is a significant distance from 
the rest of the samples in both modes it can be considered as an outlier. 
 

As can been seen above, sample 24 is the only sample that is not close to the identity line of the 

IMP.  In addition, sample 24 is also far removed from the grouping of all other samples in the RIP.  

Therefore, sample 24 was removed from the data set. No outliers were found in the data from Mystic Lake 

or Chelsea River. One outlier was removed from the Mystic River and Boston Harbor sites. The outliers 

were from different dates. 
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