Supporting Information:

Confronting Workplace Exposure to Chemicals with LCA: The Examples of Trichloroethylene and Perchloroethylene in Metal Degreasing and Dry Cleaning

Stefanie Hellweg¹*, Evangelia Demou¹, Martin Scheringer¹, Thomas E. McKone², and Konrad Hungerbuehler¹

¹Swiss Federal Institute of Technology, Safety and Environmental Technology Group, ETH Hönggerberg, CH-8093 Zürich, Switzerland.

²University of California Lawrence Berkeley National Laboratory, One Cyclotron Road, 90R3058, Berkeley CA, 94720, USA.

* Corresponding author phone: +41-1-6334337; fax: +41-1-6321189, e-mail: stefanie.hellweg@chem.ethz.ch

Machine technology description

Types I and II are open top, cold-cleaners, with solvent baths and a vapor bath. To prevent vapors escaping to the workplace they have a capturing device at the rim of the baths. In Type II machines the rim also has an electro-cooling apparatus that further enhances vapor capture. Type III machines operate on the same principle, but in this case the baths are all enclosed to prevent solvent evaporation and loss. The Type IV apparatus is a closed system with a refrigerated recirculation system, which recycles the solvent. Type V machines release no exhaust air to the environment. The entire cleaning process takes place in a closed, looped drying and recycling system, including an activated carbon filter to ensure solvent capture. The cleaning chamber opens only after concentrations have reached less than 1 g/m^3 .

In the dry-cleaning industry there are five different machine generations. First generation "transfer machines" have a separate washer and dryer. In some countries, such as

Germany, transfer machines are no longer used (1), but in many countries they are still in use, e.g. in the U.S. (2,3). The next four generations are all "dry-to-dry" machines, which eliminate the need for manual transfer of solvent-covered clothing. Second generation machines have a water-cooling system for solvent-laden air. Exhaust air is then vented directly to the atmosphere. Third generation machines have a water-cooling or refrigeration unit incorporated to facilitate vapor recovery. Fourth generation machines are non-vented and have a closed system. The solvent-concentrated air is recovered by passing through a condenser and an activated carbon filter. Even though the same nomenclature is used for the various machines types, in the U.S. and Germany for instance, there are small differences in the technology for the machines between 2nd to 4th generation. However, the differences are minor and are not considered to affect the outcome. Fifth generation machines are broadly used in Germany but not in the U.S. (2,3). In addition to the refrigerated cooling device and the carbon adsorber, the fifth generation also includes an interlocking system, allowing the chamber door to open only after the concentration has reached a specified level.

Data tables

THEE ST. Muchine Sizes and batch times					
Machine	Capacity (kg)	Machine	Batch-time		
size		generation	(min)		
	Dry- cl	eaning			
1	12	First	20-30		
2	16	Second	40-55		
3	22	Third	40-55		
4	28	Fourth	45-65		
5	32	Fifth	50-70		
	Metal-de	greasing			
1	40-	50	4.8-7.2		
2	50-0	60	6-10.2		
3	120-	150	8.4-12		
4	Approx	Approx. 600			
5	Approx	. 1000	30-60		

TABLE S1: Machine sizes and batch-times

TCE emission factors for metal-					
degreasing	Туре І	Type II	Type III	Type IV	Type V
E _{diff} min ^a	0.30	0.17	0.05	0.01	0.00
E _{diff} avg ^a	0.91	0.52	0.13	0.04	0.01
E _{diff} max ^a	7.4	4.2	0.84	0.20	0.12
E _{rc} min ^a	0.98	0.98	0.12	0.03	0.02
E _{rc} avg ^a	5.9	5.9	1.9	0.03	0.02
E _{rc} max ^a	11	11	3.6	0.03	0.02
E _{rep} min ^a	0.39	0.23	0.19	0.02	0.00
E _{rep} avg ^{b,c}	1.4	0.83	0.68	0.11	0.00
E _{rep} max ^c	11	7,0	5.8	1.3	0.02
PCE emission factors for metal-					
degreasing	Type I	Type II	Type III	Type IV	Type V
E _{diff} min ^a	0.10	0.06	0.02	0.01	0.00
E _{diff} avg ^a	0.31	0.17	0.04	0.04	0.01
E _{diff} max ^a	2.5	1.4	0.28	0.20	0.12
E _{rc} min ^a	3.3	3.3	0.41	0.10	0.05
E _{rc} avg ^a	19	19	6.2	0.11	0.05
E _{rc} max ^a	36	36	12	0.11	0.06
E _{rep} min ^a	0.15	0.08	0.06	0.01	0.00
E _{rep} avg ^a	0.57	0.33	0.25	0.05	0.00
E _{rep} max ^a	4.9	2.9	2.2	0.77	0.02
PCE emission factors for dry-	First	Second	Third	Fourth	Fifth
cleaning	generation	generation	generation	generation	generation
E _{diff} min		3.4	3.4	1.7	0.20
E _{diff} a∨g [▷]		4.6	4.6	1.9	0.30
E _{diff} max		5.7	5.7	2.1	0.40
E _{rc} min		0.46	0.38	0.26	0.12
E _{rc} avg ^b		1.7	1.40	0.96	0.35
E _{rc} max		6.6	5.5	3.8	1.3
E _{rep} min ^c	<10 [°]	1.9	0.32	0.33	0.03
E _{rep} avg ^{b,c}		2.5	0.42	0.48	0.04
E _{rep} max ^c	<15 ^ª	3.0	0.53	0.63	0.05

TABLE S2: Emissions of dry-cleaning emission (g per kg garment) and metal-degreasing (g per m^2 surface area) for various machine generations and types (data taken or calculated from (1)).

^b Minimum and maximum emissions of machines with and without vapor degreasing and of plate and sphere shaped metal parts. The average was calculated as the average between minimum and maximum value of size 3 machines (Table S1), as this is the machine size used most (1). ^b Minimum and maximum values are empiric values. Average values are calculated as the

average between min and max, except for E_{rc} , for which empiric information was available. [°] Emissions were calculated by multiplying the concentrations measured in the cylinder (1) to the cylinder volume and division by the load (79% of the capacity (1)). With respect to second and third generation machines, 50% of this emission amount is emitted to the workplace and the other 50% directly to the environment due to ventilation devices.

^d In EPA 1995 (4), the total for 'miscellaneous emissions' including losses from opening and closing dryers is given as 10-15 g/kg.

	average						
Machine	load size (ka)		Type I		Type III		Type V
	ions from m	otal day	rype i	İypen İ	туретт	турети	Type v
			122 Jieasing (g/n),	102	20.2	4.60	0.024
Size 1	45	IVIII Mov	132	102	20.3	4.00	0.034
SIZE I	40	Min	203	210	20.1 20.6	12.3	3.07
Sizo2	55	Mox	107	124	30.0	0.00	0.090
SIZEZ	55	Min	307	240	70.7	17.2	4.30
Si-02	105	IVIII Mov	204	107	100	10.2	1.10 E 01
Sizes	135	Min	450	348	122	29.0	5.81
Size 4	600	IVIII Mov	472	317	147	17.Z	1.34
51264	600	Min	040	021	200	30.0 40.0	1.92
SizeE	1000	IVIIN	1100	000	398	42.9	1.43
Sizes	1000	max	2340	1520	873	192	15.5
PCE emiss	ions from m	etal-de	greasing (g/h),	, E _{A,PCE}			
_		Min	204.6	190.7	29.1	7.3	2.7
Size 1	45	Max	566.0	550.7	67.7	19.8	8.5
		Min	228.8	208.7	33.7	8.5	2.9
Size2	55	Max	583.7	559.5	75.1	23.1	9.0
		Min	307.5	273.4	51.1	11.5	3.7
Size 3	135	Max	760.2	718.3	106.8	26.2	11.6
		Min	451.9	383.7	83.9	15.7	4.8
Size4	600	Max	1215.3	1125.8	188.7	58.3	17.3
		Min	637.0	455.8	161.7	24.3	3.8
Size5	1000	max	1934.6	1614.5	439.9	147.9	26.1
Machine	Load		First	Second	Third	Fourth	Fifth
generation	size (kg)		generation	generation	generation	generation	generation
PCE emiss	ions from dr	y-clean	ing (g/h), $\dot{\mathrm{E}}_{\mathrm{A},\mathrm{P}}$	CE			
		Min	263	72.3	55.1	23.1	3.17
Size 1	12	Max	776	195	144	76.2	17.7
		Min	350	96.4	73.5	30.8	4.23
Size2	16	Max	1040	261	192	102	22.7
		Min	482	133	101	42.4	5.82
Size3	22	Max	1420	357	264	140	32.5
		Min	613	169	129	53.8	7.40
Size4	28	Max	1810	456	337	178	41.4
		Min	701	193	147	61.6	8.46
Size5	32	max	2070	520	384	203	47.3

TABLE S3: Emission flows $\dot{E}_{A,x}$ (g/h) of TCE and PCE to workplace air for different machine generations (Type I-V) and sizes. The three components of $\dot{E}_{A,x}$ (Equation 6) were calculated from (1,5). For machine sizes and batch times see Table S1.

,		6	1 () /
Parameter	Unit	Metal-degreasing	Dry-cleaning
Volume of inner box	m³	100 ^a	100 ^a
(near-field), V _A			
Volume of outer box	m³	300–500 ^a	300–500 ^a
(far-field), V _B			
Air exchange rate	h⁻¹	6–6.5 for type I and II machines	6–10
with the environment,		5.5–6 for type III–V	
k _L	4		
Air exchange rate	h ⁻ '	7–7.5 for type I and II machines	8–12
between box A and B,		6–6.5 for type III–V	
k _A ^b			
Number of workers	-	Near-field: 1.5-3 (average 2.25)	Near-field: 1-1.5 (average
exposed ('n _{pop} ' in		for type I and II machines, and	1.25)
Equation 4)		1–1.6 (average 1.3) for type III to	Far-field: 4-5 (average 4.5)
		V	
		Far-field: 3-10 (average 6.5) for	
		type I and II machines, and 2-8	
		(average 5) for type III to V	

TABLE S4: Volume, air exchange rates and number of workers exposed (1,5).

 $^{\rm a}$ The total room volume is the sum of $V_{\rm A}$ and $V_{\rm B}.$

^b $k_B = k_A \cdot V_A / V_B$

TABLE S5: PCE and TCE concentrations^a, (g/m^3) , for various machine types, in both near- and far-field. Bold values surpass the MAK value.

Concentration /						
machine Type		Type I	Type II	Type III	Type IV	Type V
TCE Concentrations from	metal-degre	easing				
Near-Field	Min	0.24	0.19	0.06	0.01	0.002
Concentration. C_{A}	Average	1.21	0.84	0.45	0.08	0.009
(g/m ³)	Max	4.63	3.02	1.98	0.43	0.04
Far-field						
Concentration, C_B	Min	0.07	0.05	0.02	0.03	0.0005
(g/m ³)	Average	0.34	0.23	0.12	0.02	0.003
	Max	1.30	0.85	0.52	0.11	0.01
PCE Concentrations from	metal-degre	easing				
Near-Field	Min	0.38	0.85	0.06	0.02	0.006
Concentration, C_{Λ}	Average	1.23	1.08	0.27	0.07	0.02
(g/m ³)	Max	3.84	3.20	1.00	0.34	0.06
Far-field	Min	0.11	0.10	0.02	0.004	0.002
Concentration. C_{B}	Average	0.34	0.30	0.07	0.02	0.006
(g/m ³)	Max	1.07	0.90	0.26	0.09	0.04
Concentration /		First	Second	Third	Fourth	Fifth
machine generation		generation	generation	generation	generation	generation
PCE emissions from drv-c	leaning					
Near-Field	Min	0.33	0.09	0.07	0.03	0.004
Concentration, C_{A}	Average	1.46	0.38	0.28	0.14	0.03
(g/m ³)	Max	3.74	0.94	0.69	0.37	0.09
Far-field	Min	0.11	0.03	0.02	0.01	0.001
Concentration, C_B	Average	0.46	0.12	0.09	0.04	0.009
(g/m ³)	Max	1.15	0.29	0.21	0.11	0.03

^a Calculated according to Equation 2.

Figure S1: Near- and far-field concentrations for PCE in dry-cleaning (various machine generations and sizes).

Industrial Sector	Germany (1999)		United Kingdom (2002-2004)
			Majority are open-topped
Motol	100)% Type V	vapor degreasers (i.e. Types
	301 T	ype V (TCE) ^a	I and II) ^c
Degreasing	1351 T	ype V (PCE) ^b	~6,000 hot-vapor degreasers
			in the UK ^d
	Generatio	Germany (2001)	U.S. (1995) ^f
	n	Cermany (2001)	0.0. (1999)
	1 st	-	34%
	2 nd	-	32%
Dry Cleaning	3 rd	-	
	4 th	-	34%
	5 th	100% (4700) ^e	Less than 1% (2002)
a. Ref. (6) b. Ref. (7) c. Ref. (8) d. Ref. <i>(9)</i>			

TABLE S6: Machine Distribution

e. Ref. (10) f. Ref. (4)

(mm/max).					
TCE	Type I	Type II	Type III	Type IV	Type V
Net consumption of fresh TCE ^a Mass of waste solvent mixture per m ²	70	70	50	39	39
(solvent and pollutants)	702	702	702	702	702
Waste solvent mass in distillation ^a	700	700	700	700	700
Pollutants ^b Solvent losses from distillation ^a (this	2	2	2	2	2
amount of waste solvent is incinerated)	38	38	39	39 [°]	39 ^c
Recovered solvent	662	662	661	661	661
Recovery rate	94%	94%	94%	94%	94%
PCE	Type I	Type II	Type III	Type IV	Type V
Net consumption of fresh PCE ^a Mass of waste solvent mixture per m ² going into distillation	90	90	57	44	44
(solvent and pollutants) Waste solvent mass in distillation ^a (this	776	776	776	776	776
amount of waste solvent is incinerated)	774	774	774	774	774
Pollutants ^b	2	2	2	2	2
Solvent losses from distillation ^a	42	42	44	44 ^c	44 ^c
Recovered solvent	732	732	730	730	730
Recovery rate	94%	94%	94%	94%	94%
Amounts (g per kg garment) /	First	Second	Third	Fourth	Fifth
Machine generation	generation	generation	generation	generation	generation
Total consumption of fresh PCE	e e ed	0	0	0	
Min	300 ^d	100°	40°	20°	0
Max	500°	150°	80°	40°	10°
PCE into distillation	aaaf	2009	ana	aaaf	
	320	200°	200°	230	170 ^e
Avg Max	320 ^f	280 ^g	280 ^g	240 ^f	170
Waste PCE into incineration					
Min	10 ^h	14	14	12 ^e	
Avg	h				8.3 ^e
Max	160''	14	14	12 ^e	

TABLE S7: Net solvent consumption and amounts of waste solvents generated in g per m² metal surface and kg garment for various machine types/generations (two significant figures). The indicated data sources either provided average values (avg) or data ranges (min/max)

^a Ref. (11)

^b 4.8 g/l according to Mannheim et al. (11). The densities of TCE and PCE are 1,465 g/cm3 and 1,62 g/cm³, respectively. ^c Assumption: Same as Type III machines.

^d Ref. *(12)*. ^e Ref. *(13)*.

^f From these amounts, 94-95% are recovered in case of fourth and fifth generation machines (13). Values for first generation machines calculated as the difference of total consumption and total emissions to air.

⁹ Assumption: Average between first and fourth generation machines (only distillation residues). ^h Ref. (4). From this amount, approximately 16 g/kg account for distillation residues (and the remaining

fraction for filter residues).

TABLE S8: In	ventory data for the distillation of 1	kg PCE or T	CE containing waste-
solvent mixture	e (calculated with (14)).		
Inventory flow	Name of corresponding data set in (15)	Unit	Amount

Inventory flow	Name of corresponding data set in (15)	Unit		Amount
Electricity	electricity, medium voltage, production	kWh	Min	0.004
	UCTE, at grid		Average	0.033
			Max	0.110
Cooling water		m ³	Min	0.004
			Average	0.027
			Max	0.070
Steam	heat, heavy fuel oil, at industrial furnace	MJ	Min	1.2
			Average	3.4
			Max	7.5
Nitrogen	Nitrogen, liquid, at plant	kg	Min	0.0000012
			Average	0.0003
			Max	0.0011
Outlet air ^a		Nm ³	Min	0.024
			Average	0.062
			Max	0.151
a The early and	content is between 10s and 20 s contains	A Mine 3		according of

^a The carbon content is between 10g and 20 g carbon per Nm³. Assumption: consisting of emissions of PCE or TCE, depending on the solvent distilled.

(16), two significant figures).				
Inventory flow	Name of corresponding data set in <i>(15)</i>	unit	TCE	PCE
Use of heating oil	Heavy fuel oil, at regional	kg		0.42
	storage	-	0.38	
Use of heating gas	Natural gas, at long-distance	Nm ³		0.0017
	pipeline		0.0017	
Use of drinking water	tap water, at user	kg	8.7	8.7
Use of NaOH	sodium hydroxide, 50% in H2O,	kg		2.5
	production mix, at plant		2.3	
Use of HCI	hydrochloric acid, 30% in H2O,	kg		0.0078
	at plant		0.0078	
Use of NH₄OH	chemicals inorganic, at plant	kg	0.0030	0.0030
Steam production	heat, heavy fuel oil, at industrial	MJ		17
	furnace 1MW		17	
Electricity (net production)	electricity, medium voltage,	kWh		0.060
	production UCTE, at grid		0.060	
CO ₂		kg	1.9	1.9
NO_x as NO_2		kg	0.00026	0.00026
NMVOC		kg	0.0000030	0.000003
particles		kg	0.000038	0.000038
NH ₃		kg	0.000011	0.000011
CO		kg	0.000022	0.000022
CI as HCI (air)		kg	0.00025	0.00026
Cl ⁻ to water		kg	0.81	0.85

TABLE S9: Inventory data for the incineration of 1 kg of PCE and TCE (calculated with (16), two significant figures).

TABLE S10: Number of workers and population number per scale, used as weighting factors $n_{pop,x}$ (Equation 4).

Scale	Number of persons exposed
Near-field workplace	Dry-cleaning: 1-1.5 (average 1.25)
(1)	Metal degreasing: 1.5-3 (average 2.25) for type I and II machines, and 1-
	1.6 (average 1.3) for type III to V
Far-field workplace	Dry-cleaning: 4-5 (average 4.5)
(1)	Metal degreasing: 3-10 (average 6.5) for type I and II machines, and 2-8 (average 5) for type III to V
Continental scale (17)	367,000,000
Global scale (17)	Moderate zone: 2,120,000,000
	Tropical zone: 2,290,000,000
	Arctic zone: 99,100,000

Later transfer to outdoor air is not considered here.					
	Min	Average	Max		
weightedRCR (A) MAK based	1.2E+05	1.9E+05	3.2E+05		
weightedRCR (B) MAK based	9.4E+04	1.7E+05	3.3E+05		
weightedRCR (total) MAK based	2.2E+05	3.6E+05	6.5E+05		
weightedRCR (A) TLV based	2.5E+05	4.0E+05	6.6E+05		
weightedRCR (B) TLV based	2.0E+05	3.4E+05	6.8E+05		
weightedRCR (total) TLV based	4.5E+05	7.5E+05	1.3E+06		
weightedRCR (A) HLV Uses based (8h)	4.1E+07	6.5E+07	1.1E+08		
weightedRCR (B) HLV Uses based (8h)	3.2E+07	5.6E+07	1.1E+08		
weightedRCR (total) HLV Uses based (8h)	7.3E+07	1.2E+08	2.2E+08		

TABLE S11: Weighted Risk Characterization Ratios (*weightedRCR*) for dry-cleaning. The numbers refer to a fictitious emission flow of 1000 tonnes/day to workplace air. Later transfer to outdoor air is not considered here.

TABLE S12: Characterization factors (CF, Equation 5) for workplace emissions and outdoor emissions.

		Workplace	Environment					
		(emission to indo	(emission to					
		considering also	ambient air) (17)					
		Metal	Metal	Dry				
		degreasing type	degreasing	cleaning				
		I and II	type III to V					
MAK based								
	Min	35	35	-				
TCE	Max	35	35	-	34			
	Min	6	6	5.7				
PCE	Max	6	6	5.9	5.5			
TLV based								
	Min	35	35	-				
TCE	Max	36	36	-	34			
	Min	6	6	5.77				
PCE	Max	7	7	6.24	5.5			
Environmental HLV based (adjusted to 40h exposure/week)								
	Min	3400	2600	-				
TCE	Max	12000	8600	-	34			
	Min	79	61	46				
PCE	Max	260	190	130	5.5			

Figure S2: Human Toxicity Potential on the basis of characterization factors (in 1,4dichlorobenzene-equivalents, $HTP_{workplace,CF}$ in Equation 6) from the use of PCE (left) and TCE (right) in the degreasing of 1 m² metal surface (top) as well as from the use of PCE in the dry-cleaning of 1 kg of garments (bottom). The uncertainty ranges show the range of minimum and maximum emissions (see Tables 2-4 and S8). In contrast to Figure 3, the bars for workplace include the direct effects of workplace emissions as well as the potential subsequent outdoor effects (emissions released at the workplace will eventually reach the environment through ventilation).

TABLE S13: Contribution of solvent emissions to the total human health potential considering the complete life cycle of TCE and PCE use in metal-degreasing and dry-cleaning. Emissions were weighted with the *weightedRCR* (two significant figures).

<u> </u>		0	0	<u> </u>					
TCE in metal-degreasing – MAK based	Type I	Type II	Type III	Type IV	Type V				
Fraction of impact from TCE outdoor emissions of total impact	83%	83%	68%	37%	37%				
Fraction of impact from TCE emissions at the workplace of total impact	0.31%	0.27%	0.15%	0.021%	0.0036%				
Remaining emissions from production and disposal	17%	17%	32%	63%	63%				
TCE in metal-degreasing - environmental H	ILV based								
Fraction of impact from TCE outdoor emissions of total impact	2.2%	2.5%	3.5%	11%	26%				
Fraction of impact from TCE emissions at the workplace of total impact	97%	97%	95%	72%	30%				
Remaining emissions from production and disposal	0.44%	0.49%	1.7%	18%	44%				
PCE in metal-degreasing – MAK based									
Fraction of impact from PCE outdoor emissions of total impact	54%	54%	30%	11%	11%				
Fraction of impact from PCE emissions at the workplace of total impact	1.6%	1.6%	0.60%	0.025%	0.0087%				
Remaining emissions from production and disposal	45%	45%	69%	89%	89%				
PCE in metal-degreasing – environmental HLV based									
Fraction of impact from PCE outdoor emissions of total impact	8.5%	8.6%	10%	10%	11%				
Fraction of impact from PCE emissions at the workplace of total impact	85%	84%	67%	7.7%	2.8%				
Remaining emissions from production and disposal	7.0%	7.1%	23%	82%	87%				
	First	Second	Third	Fourth	Fifth				
PCE in dry-cleaning – MAK based	generation	generation	generation	generation	generation				
Fraction of impact from PCE outdoor emissions of total impact	52%	71%	58%	61%	18%				
Fraction of impact from PCE emissions at the workplace of total impact	0.58%	0.43%	0.61%	0.41%	0.30%				
Remaining emissions from production and disposal	47%	28%	42%	39%	81%				
PCE in metal-degreasing – e	nvironmental	HLV based							
Fraction of impact from PCE outdoor emissions of total impact	18%	29%	19%	26%	9%				
Fraction of impact from PCE emissions at the workplace of total impact	66%	59%	68%	58%	50%				
Remaining emissions from production and disposal	16%	12%	14%	16%	41%				

Literature Cited

- von Grote, J.; Hürlimann, C.; Scheringer, M.; Hungerbühler, K. Reduction of the Occupational Exposure to Perchloroethylene and Trichloroethylene in Metal Degreasing over the Last 30 Years - Influences of Technology Innovation and Legislation, *Journal of Exposure Analysis and Environmental Epidemiology* 2003, 13, 325-340.
- (2) Earnest, G. S. A Control Technology Evaluation of State-of-the-Art, Perchloroethylene Dry-Cleaning machines, *Applied Occupational and Environmental Hygiene* **2002**, *17*, 352-359.
- (3) NIOSH, N. I. f. O. S. a. H. N. Control of Exposure to Perchloroethylene in Commercial Drycleaning (Machine Design), *Applied Occupational and Environmental Hygiene* **2000**, *15*, 11-12.
- (4) EPA, "Compilation of Air Pollutant Emission Factors. Volume I: Stationary Point and Area Sources," US Environmental Protection Agency, 5th edition, AP-42, 1995.
- (5) von Grote, J. Occupational exposure assessment in metal degreasing and dry cleaning influences of technology innovation and legislation, *Chemical Engineering Department*; ETH Dissertation No. 15067: Zurich, 2003.
- (6) Nader, F. W. Verwendung von Trichlorethylen (TRIC) in Deutschland, *VCI* 2001, 1-2.
- (7) Nader, F. W. Stellungnahme des VCI-AK "CKW-Lösemittel" zum Referenten-Entwurf des BMU zu einer Umsetzungsverordnung zur EG-VOC-Richtlinie 1999/13/EU, *VCI* 2001, 1-6.
- (8) Health & Safety Executive, HSE Press Release E052:02-18 March, 2002; pp 1-2.
- (9) European Chemicals Buro; Institute for Health and Consumer Protection; European Commission Joint Research Center, "European Union Risk Assessment Report: Trichloroethylene," EINECS No 201-167-4, 2004.
- (10) DTV, D. T.-V. Statistik der Textilreinigungsbetriebe, 2002.
- (11) Mannheim, R.; Budelmann, C.; Winkel, P., "Möglichkeiten der Substitution von Trichlorethylen, Chloroform und Tetrachlorkohlenstoff," Siemens and Umweltbundesamt (German EPA) Forschungsbericht 79-10403921, Berlin, 1979.
- (12) Wilson, M.; Hammond, S.; Hubbard, A.; Nicas, M. Worker exposure to volatile organic compounds in the vehicle repair industry, *submitted to Journal of Occupational and Environmental Hygiene*.
- (13) Werner, D. Tetrachlorethen in der Textilreinigung, *Chemical Engineering Department*; ETH: Zurich, 1996.
- (14) Capello, C.; Hellweg, S.; Badertscher, B.; Hungerbühler, K. Life-cycle Inventory of Waste Solvent Distillation: Statistical Analysis of Empirical Data, *Environmental Science & Technology* **2004**, *in press*.
- (15) ecoinvent Centre, "ecoinvent data v1.1, Final reports ecoinvent 2000 No. 1-15," Swiss Centre for Life Cycle Inventories, CD-ROM, ISBN 3-905594-38-2, Dübendorf, CH, 2004.

- (16) Seyler, C.; Hofstetter, T.; Hungerbühler, K. A Multi-Input Allocation Model for Waste Solvent Incineration, *Journal of Cleaner Production* **2005**, accepted.
- (17) Huijbregts, M. A. J., "Priority Assessment of Toxic Substances in the Frame of LCA - The Multi-Media Fate, Exposure and Effect Model USES-LCA.," University of Amsterdam (NL) Amsterdam, 1999.