Ruthenium-mediated Insertion of an Unsaturated C4 Unit into the P-N Bond of an Aminophosphine Ligand

Sonja Pavlik, Florian Jantscher, Kurt Mereiter, and Karl Kirchner*

Supporting Information

General Techniques. All manipulations were performed under an inert atmosphere of argon by using Schlenk techniques. All chemicals were standard reagent grade and used without further purification. The solvents were purified according to standard procedures.¹ The deuterated solvents were purchased from Aldrich and dried over 4 Å molecular sieves. [RuCp(MeCN)₃]PF₆ was prepared according to the literature.² ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded on a Bruker AVANCE-250 spectrometer operating at 250.13, 62.86, and 101.26 MHz, respectively, and were referenced to SiMe₄ and H₃PO₄ (85%). ¹H and ¹³C{¹H} NMR signal assignments were confirmed by ¹H-COSY, 135-DEPT, and HSQC(¹H-¹³C) experiments.

[RuCp(PPh₂NEt₂)(CH₃CN)₂]PF₆ (1). To a solution of [RuCp(CH₃CN)₃]PF₆ (300 mg, 0.69 mmol) in CH₂Cl₂ (5 mL) PPh₂NEt₂ (179 mg, 0.69 mmol) was added and the mixture was stirred for 2 h at room temperature. After removal of the solvent, a yellow powder was obtained which was collected on a glass frit, washed with Et₂O (3 x 10 mL), and dried under vacuum. Yield: 416 mg (93 %). Anal. Calcd. for C₂₅H₃₁F₆N₃P₂Ru: C, 46.16; H, 4.80; N, 6.46. Found: C, 46.10; H, 4.72; N, 6.55. ¹H NMR (δ, CD₂Cl₂, 20°C): 7.61 - 7.30 (m, 10H, Ph), 4.26 (s, 5H, Cp), 3.42 – 3.20 (m, 4H, Et), 2.22 (6H, CH₃CN), 0.96 (t, J_{HH} = 7.1 Hz, 3H, Et). ¹³C{¹H} NMR (δ, CD₂Cl₂, 20°C): 137.4 (d, ¹*J*_{CP} = 46.0 Hz, Ph¹), 131.4 (d, ²*J*_{CP} = 11.5 Hz, Ph^{2.6}), 129.7 (d, ⁴*J*_{CP} = 1.9 Hz, Ph⁴), 128.0 (d, ³*J*_{CP} = 9.6 Hz, Ph^{3.5}), 127.3 (CH₃CN), 77.4 (d, *J*_{CP} = 2.3 Hz, Cp), 42.4 (d, *J*_{CP} = 6.5 Hz, CH₂), 13.6 (d, *J*_{CP} = 2.3 Hz, CH₃), 3.7 (CH₃CN). ³¹P{¹H} NMR (δ, CD₂Cl₂, 20°C): 102.1 (PPh₂), -143.0 (¹*J*_{FP} = 711.8 Hz, PF₆).

[RuCp(η^3 -(P,C,C)-PPh₂CHC-(CH₂)₃- η^2 -(C,C)-CCHNEt₂)]PF₆ (2a). To a solution of 1 (100 mg, 0.15 mmol) in CH₂Cl₂ (10 mL) 1.1 equiv of 1,6-heptadiyne (19.5 µL, 0.17 mmol) was added and the mixture was stirred for 2 h at room temperature. After removal of the solvent under reduced pressure, an orange solid was obtained which was washed with Et₂O (5mL), and dried under vacuum. Yield: 75 mg (52 %). Anal. Calcd. for C₂₈H₃₃F₆NP₂Ru: C, 50.91; H, 5.09; N, 2.12. Found: C, 50.83; H, 5.11; N,

2.19. ¹H NMR (δ , CD₂Cl₂, 20°C): 7.68 – 7.41 (m, 10 H, Ph), 5.09 (s, 5H, Cp), 4.01 (d, ²J_{HP} = 4.7 Hz, 1H, H¹), 3.58 (d, J_{HP} = 5.7 Hz, 1H, H⁴), 3.01 – 2.86 (m, 2H), 2.82 – 2.51 (m, 6H), 2.39 – 2.27 (m, 2H), 0.96 (t, J_{HH} = 7.1 Hz, 3H). ¹³C{¹H} NMR (δ , CD₂Cl₂, 20°C): 133.2 (d, ²J_{CP} = 11.9 Hz, Ph^{2.6}), 132.4 (d, ²J_{CP} = 12.3 Hz, Ph^{2'.6'}), 132.1 (d, ⁴J_{CP} = 3.5 Hz, Ph⁴), 131.6 (d, ⁴J_{CP} = 2.3 Hz, Ph^{4'}), 129.8 (d, ³J_{CP} = 11.5 Hz, Ph^{3.5}), 129.0 (d, ³J_{CP} = 11.9 Hz, Ph^{3'.5'}), 125.9 (d, ¹J_{CP} = 47.9 Hz, Ph¹), 117.8 (d, J_{CP} = 6.9 Hz, C⁴), 117.4 (d, J_{CP} = 4.6 Hz, C³), 79.1 (d, J_{CP} = 1.5 Hz, Cp), 75.8 (C²), 46.8 (CH₂), 40.8 (d, J_{CP} = 24.2 Hz, C¹), 36.0 (d, J_{CP} = 7.3 Hz, CH₂), 33.2 (CH₂), 23.1 (CH₂), 12.1 (CH₃). ³¹P{¹H} NMR (δ , CD₂Cl₂, 20°C): 4.2 (PPh₂), -143.0 (¹J_{FP} = 710.8 Hz, PF₆).

Reaction of 1 with 1,7-octadiyne in CD₂Cl₂. Formation of [RuCp(η^3 -(P,C,C-PPh₂-CH-C(CH₂)₄- η^3 -(C,C,)-CCHNEt₂]PF₆ (2b) and [RuCp(η^1 -(P)-PPh₂-CH=C(CH₂)₄- η^3 -(C,C,N)-CCHNEt₂]PF₆ (3b). A 5 mm NMR tube was charged with 1 (30 mg, 0.05 mmol) in CD₂Cl₂ (0.5 mL) and 1,7-octadiyne (6,1 µL, 0.05 mmol) was added via syringe. The reaction was then monitored by ¹H and ³¹P{¹H} NMR spectroscopy. After 20 min both 2b and 3b are formed in an approximately 3:1 ratio. After 5 h this ratio already changed to ca. 1:6. Due to spectral overlap with 3b only the most characteristic signals of 2b could be unequivocally assigned. ¹H NMR (δ , CD₂Cl₂, 20°C): 5.10 (s, 5H, Cp), 3.53 (d, ²J_{HP} = 4.7 Hz, 1H, H¹), 2.90 (d, J_{HP} = 7.6 Hz, 1H, H⁴), 0.83 (t, J_{HH} = 7.1 Hz, 6H, Et). ³¹P{¹H} NMR (δ , CD₂Cl₂, 20°C): 3.3 (PPh₂), -143.0 (¹J_{FP} = 710.8 Hz, PF₆). After heating at 40°C for 8 h, 2b is completely converted to 3b.

[RuCp(η¹-(P)-PPh₂CH=C-(CH₂)₃-η³-(C,C,N)-CCHNEt₂)]PF₆ (3a). A stirred solution of 2a (50 mg, 0,08 mmol) in CH₃NO₂ (5 mL) was kept overnight at 80°C. After removal of the solvent under reduced pressure, an orange solid was obtained which was washed with Et₂O (5 mL), and dried under vacuum. Yield: 45 mg (85 %). Anal. Calcd. for C₂₈H₃₃F₆NP₂Ru: C, 50.91; H, 5.04; N, 2.12. Found: C, 50.87; H, 5.11; N, 2.08. ¹H NMR (δ , CD₃NO₂, 20°C): 8.08 – 7.88 (m, 2H, Ph), 7.73 – 7.34 (m, 6H, Ph), 7.33 – 7.16 (m, 2H, Ph), 6.35 (d, *J*_{HP} = 9.8 Hz, 1H, H¹), 6.03 (s, 1H, H⁴), 4.76 (s, 5H, Cp), 3.72 – 3.51 (m, 1H), 3.03 – 2.44 (m, 4H), 2.27 – 1.84 (m, 5H), 1.21 (t, *J*_{HH} = 7.1 Hz, 3H), 0.81 (t, *J*_{HH} = 7.1 Hz, 3H). ¹³C{¹H} NMR (δ , CD₃NO₂, 20°C): 172.0 (d, *J*_{CP} = 27.2 Hz, C³), 137.5 (d, ¹*J*_{CP} = 54.4 Hz, Ph¹), 134.0 (d, ²*J*_{CP} = 12.3 Hz, Ph^{2.6}), 131.6 (d, ¹*J*_{CP} = 47.2 Hz, Ph^{1'}), 131.3 (d, ⁴*J*_{CP} = 2.3 Hz, Ph⁴), 130.4 (d, ²*J*_{CP} = 10.7 Hz, Ph^{2.6'}), 129.9 (d, ⁴*J*_{CP} = 2.3 Hz, Ph^{4'}), 128.7 (d, ³*J*_{CP} = 10.0 Hz, Ph^{3.5}), 128.6 (d, ³*J*_{CP} = 10.7 Hz, Ph^{3.5'}), 117.4 (d, *J*_{CP} = 47.9 Hz, C¹), 91.3 (d, *J*_{CP} = 3.1 Hz, C²), 82.2 (d, *J*_{CP} = 1.9 Hz, Cp), 79.1 (d, *J*_{CP} = 1.5 Hz, C⁴), 58.3 (CH₂), 44.1 (d, *J*_{CP} = 8.8 Hz, CH₂), 38.4 (CH₂), 28.8 (d, *J*_{CP} = 19.6 Hz, CH₂),

25.1 (CH₂), 13.8 (CH₃), 12.1 (CH₃). ³¹P{¹H} NMR (δ , CD₂Cl₂, 20°C): 74.1 (PPh₂), -143.3 (¹J_{FP} = 707.1 Hz, PF₆).

[RuCp(η¹-(P)-PPh₂-CH=C(CH₂)₄-η³-(C,C,N)-CH-NEt₂]PF₆ (3b). To a solution of 1 (100 mg, 0.15 mmol) in CH₂Cl₂ (10 mL) 1.1 equiv of 1,7-octadiyne (20.8 μL, 0.15 mmol) was added and the mixture was heated for 8 h at 40°C. After removal of the solvent under reduced pressure, an orange solid was obtained which was washed with Et₂O (5mL), and dried under vacuum. Yield: 56 mg (55 %). Anal. Calcd. for C₂₉H₃₅F₆NP₂Ru: C, 51.63; H, 5.23; N, 2.08. Found: C, 51.55; H, 5.27; N, 2.17.¹H NMR (δ, CD₂Cl₂, 20°C): 7.96 – 7.79 (m, 2H, Ph), 7.66 – 7.39 (m, 6H, Ph), 7.34 – 7.18 (m, 2H, Ph), 6.21 (d, J_{HP} = 9.8 Hz, 1H, H¹), 6.06 (s, 1H, H⁴), 4.69 (s, 5H, Cp), 3.78 – 3.57 (m, 1H), 3.28 – 3.12 (m, 1H), 2.72 – 2.40 (m, 2H), 2.34 – 1.68 (m, 8H), 1.22 (t, J_{HH} = 7.0 Hz, 3H), 0.89 (t, J_{HH} = 7.1 Hz, 3H). ¹³C(¹H) NMR (δ, CD₂Cl₂, 20°C): 169.5 (d, J_{CP} = 25.3 Hz, C³), 137.8 (d, ¹ J_{CP} = 45.6 Hz, Ph¹), 130.3 (d, ⁴ J_{CP} = 2.3 Hz, Ph⁴), 131.1 (d, ¹ J_{CP} = 45.6 Hz, Ph¹), 130.3 (d, ⁴ J_{CP} = 2.3 Hz, Ph⁴), 131.1 (d, ¹ J_{CP} = 45.6 Hz, Ph¹), 130.3 (d, ⁴ J_{CP} = 6.5 Hz, CH₂), 36.2 (d, J_{CP} = 21.5 Hz, CH₂), 29.9 (CH₂), 28.3 (CH₂), 14.2 (CH₃), 12.9 (CH₃). ³¹P(¹H) NMR (δ, CD₂Cl₂, 20°C): 76.3 (PPh₂), -142.9 (¹ J_{FP} = 710.8 Hz, PF₆).

¹ Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: New York, **1988**.

² Gill; T. P.; Mann, K. R. Organometallics **1982**, *1*, 485.