Design, Total Synthesis and Evaluation of C13-C14 Cyclopropane Analogues of Discodermolide

Amos B. Smith, III,*1 Ming Xian, ${ }^{1}$ and Fenghua Liu ${ }^{2}$
${ }^{1}$ Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
${ }^{2}$ Kosan Bioscience, Inc., 3832 Bay Center Place, Hayward, CA 94545, USA

Materials and Methods: Reactions were carried out in oven or flame-dried glassware under an argon atmosphere, unless otherwise noted. All solvents were reagent grade. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and tetrahydrofuran (THF) were freshly distilled from sodium / benzophenone under argon. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) with 0.25 mm E. Merck precoated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040 0.062 mm) supplied by Silicycle and Sorbent Technologies. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. All melting points were obtained on a Thomas-Hoover apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer Model 283B spectrophotometer or a Jasco Model FT/IR-480 Plus spectrometer. Proton and carbon-13 NMR spectra were recorded on a Bruker AMX-500 spectrometer. Chemical shifts are reported relative to chloroform ($\delta 7.26$), acetonitrile ($\delta 1.94$), or benzene ($\delta 7.15$) for 1H NMR and chloroform ($\delta 77.0$), acetonitrile ($\delta 1.32,118.26$), or benzene ($\delta 128.0$) for 13C NMR. Optical rotations were measured on a Perkin-Elmer model 241 polarimeter. High resolution mass spectra were measured at the University of Pennsylvania Mass Spectrometry Service Center on either a VG Micromass 70/70 H or VG ZAB-E spectrometer.

Experimental Procedures

$(+)-6$ and $(+)-7:$ A solution of $(+)-5(100 \mathrm{mg}, 0.125 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was treated with TBAF (1.0 M in THF, 1 mmol). The mixture was stirred at r.t. for 8 h and then diluted with ether (70 mL), washed [aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, water, brine], dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Flash chromatography (20% to 30% ethyl acetate/hexanes) afford (+)-6 ($55 \mathrm{mg}, 64 \%$ yield) and (+)-7 (25 $\mathrm{mg}, 35 \%)$. (+)-6: $[\alpha]_{\mathrm{D}}{ }^{23}+56.5$ (c 1.0, CHCl_{3}); IR 3498, 2930, 1515, 1248, $1034 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.42-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=11.9,20.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{dd}$, $J=4.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{dd}, J=1.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=4.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-$ $3.47(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=6.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.02$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7,159.2$, 134.1, 131.4, 129.8, 129.2, 127.9, 127.2, 113.8, 113.4, 100.8, 82.9, 79.9, 77.2, 74.6, 73.3, 73.2, 55.2 (2C), 38.1, 36.3, $35.7,35.4,33.3,30.7,26.2,18.4,14.7,14.5,12.9,12.1,10.9,-3.4$, -3.6 ; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 707.4301\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{O}_{7} \mathrm{SiNa}$: 707.4319]. (+)-7: $[\alpha]_{\mathrm{D}}{ }^{23}+44.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR 3487, 2930, 1515, 1249, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}$, $1 \mathrm{H}), 5.40(\mathrm{app} \mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=11.0,20.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=4.5$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{app} \mathrm{t}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=6.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.30(\mathrm{app} \mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (br $\mathrm{s}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9,159.2$, 134.4, 130.7, 129.7, 129.3, 127.2, 126.7, 113.8, 113.6, 101.1, 87.8, 80.1, 76.7, 74.3, 73.2, 73.1, 55.2 (2C), $35.8,35.5,35.4,34.9,31.2,30.4,15.2,15.1,14.8,11.8,6.8$; high resolution mass spectrum (ES ${ }^{+}$) $\mathrm{m} / \mathrm{z} 593.3436\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{Na}: 593.3454\right]$.

(+)-S1
$(+)-S 1$: A solution of $(+)-\mathbf{1 1}(3.0 \mathrm{~g}, 5.95 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL}) / \mathrm{THF}(15 \mathrm{~mL})$ was treated with 6 N $\mathrm{HCl}(10 \mathrm{~mL})$. The mixture was stirred at r.t. for 4 h and then diluted with ethyl acetate (500 mL), washed [aqueous NaHCO_{3}, water, brine], dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Flash chromatography (10% ethyl acetate/hexanes) afford (+)-S1 ($2.2 \mathrm{~g}, 95 \%$ yield) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{23}$ +73.5 (c 1.1, CHCl_{3}); IR 3479, 2963, 2868, 2361, 1513, $1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.17-6.12(\mathrm{~m}, 2 \mathrm{H}), 4.44$ (apparent $\mathrm{s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.66 (dd, $J=3.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.44(\operatorname{app~t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=6.9,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,145.1,130.1,129.8,114.4,81.2,79.2,75.5,73.8,55.7,43.3,36.2,14.7$, 13.3; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 413.0608\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{IO}_{3} \mathrm{Na}: 413.0590\right]$.

(+)-12
$(+)-12:$ A stirred solution of $\mathrm{Et}_{2} \mathrm{Zn}(3 \mathrm{mmol})$ in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(6 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{ClCH}_{2} \mathrm{I}(6 \mathrm{mmol})$ was added by use of a gas-tight syringe. After the mixture had been stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , a solution of (+)-S1 ($390 \mathrm{mg}, 1 \mathrm{mmol}$) in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(2 \mathrm{~mL})$ was added (cannulation) and stirred at r.t. for 3 h . The reaction was quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was then diluted with ether $(30 \mathrm{~mL})$. The phases were separated and the aq. layer was extracted with ether. The combined organic extracts were washed $\left(\mathrm{H}_{2} \mathrm{O}\right.$, brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (10% ethyl acetate/hexanes) afforded (+)-12 ($287 \mathrm{mg}, 71 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{23}+21.4(c$ $0.6, \mathrm{CHCl}_{3}$); IR 3482, 2963, 2929, 1612, 1513, $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=11.4,15.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.57$ (dd, $J=3.9$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=2.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{app} \mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dt}, J=4.8,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.67(\mathrm{~m}, 1 \mathrm{H}), 0.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,130.1,129.8,114.3,79.9,76.8$, $73.7,55.7,42.5,36.3,20.4,15.9,13.8,11.5,-5.4$; high resolution mass spectrum (ES ${ }^{+}$) m/z 427.0739 [($\mathrm{M}+\mathrm{Na})^{+}$; calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{IO}_{3} \mathrm{Na}: 427.0746$].

$(-)-$ S2: To a solution of $(+) \mathbf{- 1 2}(1.0 \mathrm{~g}, 2.47 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(4.3 \mathrm{~mL}, 24.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) was added $\mathrm{MOMCl}(1.13 \mathrm{~mL}, 14.8 \mathrm{mmol})$ at room temperature. After stirring for 24 h , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The combined organic layers were
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography (8% ethyl acetate/hexanes) afforded (-)-S2 (1.05, 95\% yield). $[\alpha]_{\mathrm{D}}{ }^{23}-11.0\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR 2932, 1612, 1512, 1246, $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=6.5,9.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=11.6,15.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=3.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.35(\mathrm{~m}$, $2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=7.5,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.56-0.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,131.2$, 129.7, 114.2, $98.8,84.7,73.2,72.7,56.5,55.7,42.0,37.1,20.9,16.3,15.3,12.9,-5.4$; high resolution mass spectrum (ES^{+}) m/z $471.0999\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{IO}_{4} \mathrm{Na}$: 471.1008].

$(-)-13$: To a solution of (-)-S2 $(0.56 \mathrm{~g}, 1.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and DDQ $(0.37 \mathrm{~g}, 1.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h and room temperature for 20 min , the reaction was quenched with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography (25% ethyl acetate/hexanes) afforded (-)-13 ($370 \mathrm{mg}, 90 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{23}-78.1\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR 3458,2964 , $1458,1238,1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{dd}, J=3.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.74-2.70(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.55-$ $0.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 98.7,85.5,65.1,56.3,41.8,37.5,20.2,15.7,14.6,12.0$, 6.0; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 351.0436\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{IO}_{3} \mathrm{Na}: 351.0433\right]$.

$(-)-14$
$(-)-14$: To a solution of (-)-13 ($0.6 \mathrm{~g}, 1.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 2,6-lutidine (0.38 mL , $3.3 \mathrm{mmol})$ and TBSOTf $(0.46 \mathrm{~mL}, 2.0 \mathrm{mmol})$ at $-30^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with ether (60 mL). The organic layer was washed (1 M NaHSO_{4}, brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Flash chromatography (3\% ethyl acetate/hexanes) afforded (-) $\mathbf{- 1 4}\left(800 \mathrm{mg}, 99 \%\right.$ yield). $[\alpha]_{\mathrm{D}}{ }^{23}-7.7\left(c 0.63, \mathrm{CHCl}_{3}\right)$; IR 2959, 1466, 1251, 1090, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.68(\mathrm{dd}, J=6.4,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.60(\mathrm{~m}$, $2 \mathrm{H}), 3.45(\mathrm{dd}, J=2.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.30(\mathrm{~m}$, $2 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.59-0.52(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13}$ CNMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 98.4, ~ 83.9,64.9,55.9,41.5,38.4,25.9,20.5,18.3,15.7,14.3,12.3$, -$5.46,-5.47,-5.5$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 465.1309\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{IO}_{3} \mathrm{SiNa}: 465.1298\right]$.

$(-)-15$
$(-)-\mathbf{1 5}$: To a solution of (-)-13 ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added DMAP ($44 \mathrm{mg}, 0.36$ mmol) and (-)-camphanic acid chloride ($53 \mathrm{mg}, 0.24 \mathrm{mmol}$) at room temperature. After stirring at room temperature for 3 h , the reaction was diluted with ether (20 mL) and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography (15% ethyl acetate/hexanes) afforded (-)-15 (59 mg, 96% yield). $[\alpha]_{\mathrm{D}}{ }^{23}-38.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$; m.p. 71$72{ }^{\circ} \mathrm{C}$; IR 2967, 1789, 1750, 1271, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=3.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=6.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=$ $2.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{ddd}, J=$ $4.6,10.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=4.2,9.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.56-0.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.2,167.5,98.4,91.2,84.1,68.1,56.3,54.8,54.0,41.8,35.3,30.7,28.9,20.1$, $16.74,16.68,15.7,14.6,12.2,9.7,-6.2$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 531.1216\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{IO}_{6} \mathrm{Na}$: 531.1219].

$(+)-16:$ A solution of (-)-14 (240 mg, 0.54 mmol$)$ in THF (5 mL) was cooled to $-78{ }^{\circ} \mathrm{C} . t$-BuLi $(1.7 \mathrm{M}$ in pentane, $0.65 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added, and the resultant yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . To this mixture was added $2-\mathrm{ThCuCNLi}(0.48 \mathrm{M}$ in THF, $1.3 \mathrm{~mL}, 0.64 \mathrm{mmol})$. The resultant brown solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min and then warmed to $-20^{\circ} \mathrm{C}$ and allowed to stir for 20 min . The brown solution was then cooled to $-40^{\circ} \mathrm{C}$. To this solution was transferred slowly via cannula a solution of (+)-9 (880 mg, 1.6 mmol$)$ in THF (5 mL). The mixture was then warmed to $0^{\circ} \mathrm{C}$ over 3 h and allowed to stir at $0{ }^{\circ} \mathrm{C}$ for another 20 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20$ $\mathrm{mL})$ and diluted with ether $(100 \mathrm{~mL})$. The organic layer was washed $\left(\mathrm{H}_{2} \mathrm{O}\right.$, brine $)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Flash chromatography (3% ethyl acetate/hexanes) afforded (+)-16 (240 mg, 61% yield $) .[\alpha]_{\mathrm{D}}{ }^{23}+8.1\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR 2957, 1616, 1518, 1463, 1387, 1251, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=4.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.76$ (dd, $J=3.4,9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\operatorname{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$, $3.38(\mathrm{dd}, J=1.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.14(\mathrm{~m}$, $1 \mathrm{H}), 1.08-1.03(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{~s}, 18 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.62-0.59(\mathrm{~m}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}),-0.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.7,131.5,127.3,113.4,100.9,98.6,84.6,83.2,77.4,73.3,65.2,56.1,55.2,38.5,37.9,36.7,35.1$,
$33.4,30.7,26.2,25.9,21.2,18.5,18.3,15.3,14.4,13.84,13.77,12.1,10.9,10.7,-3.5,-3.7,-5.42,-$ 5.46; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 759.5009\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 759.5027].

(+)-S3
$(+)-\mathbf{S 3}$: To a solution of (+)-20 (5.0 g, 0.024 mol$)$ in benzene $(250 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ $(16 \mathrm{~g}, 0.048 \mathrm{~mol})$ at room temperature. After stirring at room temperature for 20 h , the mixture was concentrated. Flash chromatography (5% ethyl acetate/hexanes) afforded (+)-S3 (6.0, 95\% yield). $[\alpha]_{\mathrm{D}}{ }^{23}+14.8\left(c 1.3, \mathrm{CHCl}_{3}\right) ;$ IR 2954, 2854, 1720, 1512, $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=7.1,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{dd}, J=1.2,15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,159.2,151.5,130.2,129.1,120.4,113.7,73.5,72.7$, $55.2,51.4,36.7,16.0$, high resolution mass spectrum (CI) m/z 264.1364 [M^{+}; calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$: 264.1362].

(+)-S4
(+)-S4: To a solution of (+)-S3 ($2.0 \mathrm{~g}, 7.57 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added DIBAL (1.5 M in toluene, $15 \mathrm{~mL}, 22.7 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred 2 h at $-78^{\circ} \mathrm{C}$ and quenched via dropwise addition of $\mathrm{MeOH}(4 \mathrm{~mL})$. Saturated aqueous sodium potassium tartrate (100 mL) was added, and the resultant solution was vigorously stirred at ambient temperature. After 1 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with water, brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography (40% ethyl acetate/hexanes) afforded (+)-S4 (1.7 g, 95% yield $) .[\alpha]_{\mathrm{D}}{ }^{23}+7.0\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR 3394, 2862, 1612, 1512, 1458, $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.68-5.65(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, 4.09 (app d, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=6.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=6.3,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1$, 135.3, 130.5, 129.1, 128.7, 113.7, 74.7, 72.6, 63.7, 55.2, 36.4, 16.9; high resolution mass spectrum $(\mathrm{ES}+) \mathrm{m} / \mathrm{z} 259.1305\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}: 259.1310\right]$.

$(-)-21$
$(-)-21: ~ \mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}(1.68 \mathrm{~mL}, 6.1 \mathrm{mmol})$ was added to a stirred suspension of $3 \mathrm{~A} \mathrm{MS}(4.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$, containing diethyl $(+)$-tartrate $(1.4 \mathrm{~g}, 6.78 \mathrm{mmol})$ at $-30^{\circ} \mathrm{C}$ under argon. After 30 min , a solution of (+)-S4 (4.2 g, 17.8 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise, and the stirring was continued for 30 min , then a $5.5 \mathrm{M} t$ - BuOOH solution in decane ($4.6 \mathrm{~mL}, 25.4 \mathrm{mmol}$) was added. The mixture was stirred for 20 h at $-30{ }^{\circ} \mathrm{C}$, and then poured into a cold solution of $\mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~g})$ and tartaric acid (1.5 g) in water $(10 \mathrm{~mL})$. Stirring was continued at r.t. for 30 min , and then 100 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added followed by $30 \% \mathrm{NaOH}(6 \mathrm{~mL})$. The mixture was stirred for 30 min , then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash chromatography (40% ethyl acetate/hexanes) afforded (-)-21 (4.0 g, 90\% yield). $[\alpha]_{\mathrm{D}}{ }^{23}-20.0$ (c 0.4, CHCl_{3}); IR 3429, 2866, 1612, 1512, 1246, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=8.3$
$\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=11.5,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=2.5,12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=4.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=2.2$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.1,130.4,129.1,113.7,72.7,72.1,61.8,57.7,56.8,55.2,35.7,13.3$; high resolution mass spectrum (ES+) m/z $275.1255\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}: 275.1259\right]$.

(-)-S5 was prepared from (-)-21 employing the same procedure as reported in the literature. ${ }^{1}[\alpha]_{D}{ }^{23}-$ 9.8 (c 0.5, CHCl_{3}); IR 2930, 1513, 1469, 1251, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{ddd}, J=8.9,10.8,19.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.01(\mathrm{dd}, J=1.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{dd}, J=3.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $4.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=6.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=5.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\operatorname{app} \mathrm{t}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05$ $(\mathrm{s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,138.5,130.9,129.1,116.2,113.6,74.3$, $72.4,72.0,63.7,55.2,50.8,37.6,26.0,25.9,18.22,18.21,15.0,-4.1,-4.3,-5.3,-5.4$; high resolution mass spectrum (ES+) m/z $531.3296\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$: 531.3302].

(+)-S6
$(+)$-S6 was prepared from (-)-S5 employing the same procedure as reported in the literature. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}$ +3.9 (c 1.0, CHCl_{3}); IR 2929, 1725, 1613, 1513, 1471, 1251, $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.24(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{app} \mathrm{t}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=7.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=5.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}$, $J=6.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=6.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $204.1,159.0,130.4,129.1,113.7,72.5,71.3,71.1,59.8,57.4,55.2,38.2,25.8,25.7,18.1,18.0,14.0$, -$4.4,-4.6,-5.5,-5.6$; high resolution mass spectrum (ES+) m/z $533.3092\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$: 533.3095].

(-)-22
$(-)-\mathbf{2 2}$ was prepared from (-)-S6 employing the same procedure as reported in the literature. ${ }^{3}[\alpha]_{\mathrm{D}}{ }^{23}-$ 18.5 (c 0.9, CHCl_{3}); IR 2930, 1513, 1469, 1250, $1099 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=7.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}$, $J=11.9,16.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=3.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}$, $J=5.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{appt}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(125 \mathrm{MHz}$,

[^0]$\left.\mathrm{CDCl}_{3}\right) \delta 159.0,141.9,129.1,128.4,113.7,82.7,73.1,72.5,72.0,62.4,55.2,50.8,38.6,26.0,25.9$, $18.3,18.2,14.5,-4.2,-4.3,-5.3,-5.5$; high resolution mass spectrum (ES+) m/z $657.2271\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{IO}_{4} \mathrm{Si}_{2} \mathrm{Na}$: 657.2268].

(+)-23
(+)-23: Vinyl iodide (-)-22 (200 mg, 0.31 mmol) was dissolved in a 1.0% conc. $\mathrm{HCl} / \mathrm{EtOH}$ solution (8 mL) and stirred for 30 min at r.t. The mixture was then neutralized with sat. NaHCO_{3}, extracted with CHCl_{3}, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography (15% ethyl acetate/hexanes) afforded 23 ($148 \mathrm{mg}, 90 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{23}+36.8$ (c 1.0, CHCl_{3}); IR 3436, 2929, 1513, 1249, $1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=7.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=$ $11.9,22.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{appt}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $7.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=6.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,140.9$, 130.6, 129.1, 113.7, 83.6, 75.5, 72.6, 71.8, 63.3, 55.2, 48.7, 39.5, 25.9, 18.1, 13.1, -4.3, -4.4; high resolution mass spectrum $(\mathrm{ES}+) \mathrm{m} / \mathrm{z} 543.1414\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{IO}_{4} \mathrm{SiNa}$: 543.1404].

(+)-24
$(+)-24:$ Employing the same procedure for converting (+)-S1 to (+)-12, (+)-24 can be obtained from $(+)-23$ in 15% yield: $[\alpha]_{\mathrm{D}}{ }^{23}+10.0\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR $3501,2929,1512,1248,1056 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=11.9,18.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.20(\mathrm{dd}, J=3.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{dd}, J=4.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=7.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}$, $1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.61(\mathrm{~m}, 1 \mathrm{H})$, $0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,130.6,129.0,113.7,76.8,72.7,72.4,63.7,55.2$, $47.3,38.8,26.0,18.1,16.4,16.0,14.6,-4.1,-4.2,-6.9$; high resolution mass spectrum (ES+) m/z $557.1565\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{IO}_{4} \mathrm{SiNa}$: 557.1560].

(-)-S7
(-)-S7: At $0{ }^{\circ} \mathrm{C}$, a solution of (-)-22 ($1.0 \mathrm{~g}, 1.58 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was treated with water $(0.8$ mL) and DDQ ($465 \mathrm{mg}, 2.05 \mathrm{mmol}$) and stirred for 2 h . The reaction was quenched with sat. NaHCO_{3} and the layers separated. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. The resultant residue was dissolved in $\mathrm{MeOH}(22 \mathrm{~mL})$ and treated with $\mathrm{NaBH}_{4}(5 \mathrm{eq})$. After stirring at r.t. for 15 min , the reaction was diluted with ether (300 mL), washed (sat. $\mathrm{NH}_{4} \mathrm{Cl}$, water, brine), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. Flash chromatography (4% ethyl acetate/hexanes) afforded (-)-S7 ($0.80 \mathrm{~g}, 99 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{23}-42.2$ (c $0.2, \mathrm{CHCl}_{3}$); IR 3402, 2928, 1472, 1255, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.19(\mathrm{dd}, J=7.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=3.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.60(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H})$, 2.33 (app t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}$, 6 H), 0.04 , (s, 3H), 0.03 (s, 3H); ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.8,83.8,75.7,63.3,61.9,52.2,38.2$, $26.0,25.9,18.2,18.1,15.8,-4.2,-4.3,-5.3$; high resolution mass spectrum (ES+) m/z 537.1693 $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{20} \mathrm{H}_{43} \mathrm{IO}_{3} \mathrm{Si}_{2} \mathrm{Na}$: 537.1693].

(+)-25
(+)-25: (-)-S7 (800 mg, 1.56 mmol$)$ was dissolved in dry DMF $(20 \mathrm{~mL})$. To this solution was then added imidazole ($215 \mathrm{mg}, 3.16 \mathrm{mmol}$) and TBDPSCl ($0.43 \mathrm{~mL}, 1.66 \mathrm{mmol}$), and the mixture was stirred at r.t. for 20 h . The reaction was then diluted with ether (300 mL), washed (1 M NaHSO , water, brine), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resultant residue was then dissolved in a 1.0% conc. $\mathrm{HCl} / \mathrm{EtOH}$ solution $(15 \mathrm{~mL})$ and stirred for 30 min at r.t. The mixture was then neutralized with sat. NaHCO_{3}, extracted with CHCl_{3}, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography (5% ethyl acetate/hexanes) afforded (+)-25 ($0.91 \mathrm{~g}, \mathbf{9 0 \%}$ yield): $[\alpha]_{\mathrm{D}}{ }^{23}+31.5\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR 3430, 2929, 1463, 1258, $1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 6.24-6.18(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{app} \mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=7.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=7.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.9,135.5,133.6,129.6,127.6,83.6,75.1,65.8,63.4,48.5,42.1,26.9,25.9$, 19.2, 18.0, 12.2, -4.36, -4.37; high resolution mass spectrum (ES+) m/z $661.2203\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{IO}_{3} \mathrm{Si}_{2} \mathrm{Na}$: 661.2187].

$(+)-26:$ Employing the same procedure for converting (+)-S1 to (+)-12, (+)-26 can be obtained from $(+)-25$ in 70% yield: $[\alpha]_{\mathrm{D}}{ }^{23}+16.0\left(c 1.7, \mathrm{CHCl}_{3}\right)$; IR $3448,2935,2862,1465,1253,1103 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 4.22(\mathrm{dd}, J=2.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=3.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{app} \mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=7.8,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.58(\mathrm{~m}, 1 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,133.7,129.5,127.6,76.7,66.3,63.9,46.9,40.9,26.9,25.9,19.2,18.0,16.2$, 16.0, 14.0, -4.0, -4.2, -6.8; high resolution mass spectrum (ES+) m/z $653.2375\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{IO}_{3} \mathrm{Si}_{2}$: 653.2343].

(+)-S8
(+)-S8: A solution of (+)-26 ($300 \mathrm{mg}, 0.46 \mathrm{mmol}$), $\mathrm{PPh}_{3}(217 \mathrm{mg}, 0.83 \mathrm{mmol})$ and imidazole (56 mg , $0.83 \mathrm{mmol})$ in benzene/ether ($1: 2,13 \mathrm{~mL}$) was treated with iodine $(175 \mathrm{mg}, 0.69 \mathrm{mmol})$ at r.t. The reaction mixture was stirred for 1 h and then quenched with sat. NaHCO_{3}. The mixture was extracted
with ether and the combined organics were washed (sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, 5 \% \mathrm{H}_{2} \mathrm{O}_{2}$, water, brine), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash chromatography (1% ethyl acetate/hexanes) afforded (+)$\mathbf{S 8}\left(333 \mathrm{mg}, 95 \%\right.$ yield): $[\alpha]_{\mathrm{D}}{ }^{23}+11.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR 2935, 2858, 1466, 1253, $1076 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 6 \mathrm{H}), 3.91(\mathrm{dd}, J=2.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=4.2,9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=7.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=3.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=8.5,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~m}, 1 \mathrm{H})$, $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.60(\mathrm{~m}, 1 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7,129.53$, $129.45,127.5,75.4,66.3,48.2,40.9,27.0,26.0,19.4,19.0,18.1,17.9,14.6,6.4,-3.91,-3.95,-9.6$; high resolution mass spectrum (ES+) m/z $785.1199\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{I}_{2} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}$: 785.1180].

(+)-27
(+)-27: A solution of (+)-S8 (730 mg, 0.96 mmol$)$ and $\mathrm{NaCNBH}_{3}(0.95 \mathrm{~g}, 14.4 \mathrm{mmol})$ in DMPU (7.5 mL) was warmed to $70^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 40 h and then diluted with water (20 mL) and extracted with ethyl acetate. The combined organics were then dried over MgSO_{4}, filtered through a short silica pad, and concentrated. Flash chromatography (2% ethyl acetate/hexanes) afforded (+)-27 (580 mg, 95% yield): $[\alpha]_{\mathrm{D}}{ }^{23}+15.9\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR 2935, 1466, 1250, 1107, $833 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 3.87(\mathrm{dd}, J=3.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, J $=1.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=8.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.09$ $(\mathrm{s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.60(\mathrm{~m}, 1 \mathrm{H}), 0.48(\mathrm{~m}, 1 \mathrm{H}),-$ $0.03(\mathrm{~s}, 3 \mathrm{H}),-0.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7,134.1,129.4,127.5,74.1,66.9,41.8$, $40.6,27.0,26.1,19.9,19.3,18.3,15.9,14.3,12.1,-3.7,-3.9,-6.3$; high resolution mass spectrum (ES+) $\mathrm{m} / \mathrm{z} 659.2240\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{IO}_{2} \mathrm{Si}_{2} \mathrm{Na}: 659.2214\right]$.

S9: A solution of (+)-27 (300 mg, 0.47 mmol$)$ and acetic acid $(0.11 \mathrm{~mL}, 1.89 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was treated with TBAF (1.0 M in THF, $5.64 \mathrm{~mL}, 5.64 \mathrm{mmol}$). The mixture was stirred at r.t. for 18 h and then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organics were then washed (brine), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Flash chromatography (50% ethyl acetate/hexanes) afforded $\mathbf{S 9}$ (121 mg, 90% yield): IR 3321, 2923, 1454, 1234, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.81(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=3.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=8.6,10.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.66-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H})$, $1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~m}, 1 \mathrm{H}), 0.54-0.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 78.0,69.3,40.9,37.7,18.5,15.3,13.4,11.2,-6.6$; high resolution mass spectrum $(\mathrm{ES}+) \mathrm{m} / \mathrm{z} 285.0342\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{IO}_{2}$: 285.0352].

(+)-18
(+)-18: A solution of $\mathbf{S 9}(610 \mathrm{mg}, 2.15 \mathrm{mmol})$ and imidazole ($219 \mathrm{mg}, 3.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was treated with $\mathrm{TBSCl}(347 \mathrm{mg}, 2.30 \mathrm{mmol})$ and stirred for 2 h at room temperature. The reaction was then diluted with ether (150 mL), washed (1 M NaHSO 4 , brine), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The resultant residue was then diluted with ether (300 mL), washed ($\mathrm{sat} . \mathrm{NH}_{4} \mathrm{Cl}$, water, brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The resultant residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$,
and treated with $i-\mathrm{Pr}_{2} \mathrm{NEt}(3.75 \mathrm{~mL}, 21.5 \mathrm{mmol})$ and $\mathrm{MOMCl}(0.98 \mathrm{~mL}, 12.9 \mathrm{mmol})$ at room temperature. After stirring for 24 h , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography (2% ethyl acetate/hexanes) afforded (+)-18 ($855 \mathrm{mg}, 90 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{23}+53.5$ (c 1.0, CHCl_{3}); IR 2930, 1463, 1251, 1088, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77(\mathrm{~s}, 2 \mathrm{H}), 3.73-3.70$ $(\mathrm{m}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.65(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~m}, 1 \mathrm{H}), 0.55(\mathrm{~m}, 1 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 99.1,82.1,64.9,56.0,40.6,38.6,25.9,19.4,18.3,15.8,14.5,12.2,-5.4,-5.5,-6.8$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 465.1306\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{IO}_{3} \mathrm{SiNa}: 465.1298\right]$.

$(+)-17$: Employing the same procedure for converting (-)-14 to (+)-16, (+)-17 can be obtained from $(+)-18$ in 63% yield: $[\alpha]_{\mathrm{D}}{ }^{23}+33.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR 2930, 1616, 1463, 1389, 1251, $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=4.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=3.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=5.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (app $\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~m}$, $1 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~m}, 1 \mathrm{H})$, $0.62(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}),-0.01(\mathrm{~s}, 6 \mathrm{H}),-0.25(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6,131.5$, $127.2,113.3,100.8,98.8,83.7,82.9,76.0,73.3,65.1,56.0,55.2,38.5,38.2,37.1,35.4,33.7,30.7$, $26.2,25.9,20.2,18.4,18.2,15.8,14.3,13.9,13.2,12.2,11.5,10.8,-3.4,-3.8,-5.4,-5.5$; high resolution mass spectrum (ES^{+}) m/z $759.5016\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}: 759.5027\right]$.

(-)-S10: Employing the same procedure in the literature starting from (+) $-17 .{ }^{4}[\alpha]_{\mathrm{D}}{ }^{23}-14.6$ (c 1.0, CHCl_{3}); IR 3472, 2956, 1513, 1465, 1251, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=10.5$, $21.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.70$ (br s, 1 H$), 1.95-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.63-0.59(\mathrm{~m}, 1 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}),-0.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,130.3,129.2,113.9,98.6,86.2,84.5$, $76.9,75.1,65.7,65.1,56.0,55.2,39.8,38.4,38.2,37.6,35.1,32.8,26.2,25.9,21.3,18.5,18.3,15.6$, $15.1,14.4,14.3,13.8,11.4,10.8,-3.3,-3.6,-5.45,-5.46$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ $761.5209\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{41} \mathrm{H}_{78} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}: 761.5184\right]$.

[^1]
(-)-S11: Employing the same procedure in the literature starting from (-)-S10. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}-58.5(c 0.1$, CHCl_{3}); IR 2958, 1724, 1515, 1251, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=2.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{app} \mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=6.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H})$, $1.94-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.03(\mathrm{~m}, 1 \mathrm{H})$, $1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.87-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.63-0.59(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, $-0.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.6,159.2,130.3,128.9,113.7,98.6,84.5,82.4,76.7$, $74.3,65.2,56.0,55.2,49.5,40.0,38.4,38.0,35.1,32.8,26.2,25.9,21.3,18.5,18.3,15.1,14.4,14.2$, $13.8,12.1,11.3,10.7,-3.3,-3.6,-5.40,-5.44$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 759.4996$ [(M+Na) ${ }^{+}$; calcd for $\left.\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}: 759.5027\right]$.

(+)-28: Employing the same procedure in the literature starting from (-)-S11. ${ }^{5}[\alpha]_{\mathrm{D}}{ }^{23}+9.7$ (c 1.0, CHCl_{3}); IR 2957, 1464, 1251, 1037, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.85 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\operatorname{app} \mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (app t, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.68(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J$ $=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=6.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\operatorname{app} \mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}$, $J=1.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=4.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.40$ $(\mathrm{m}, 1 \mathrm{H}), 1.12-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84-$ $0.76(\mathrm{~m}, 2 \mathrm{H}), 0.59-0.54(\mathrm{~m}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.30(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,134.7,132.3,131.2,129.0,128.9,117.3,113.6,98.6,84.6,84.5$, $76.6,74.9,65.2,56.0,55.2,39.9,38.4,35.5,35.1,32.2,30.3,26.3,25.9,21.3,18.7,18.5,18.3,15.1$, $14.9,14.4,13.8,10.8,10.7,-3.3,-3.4,-5.40,-5.43$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 783.5359$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}: 783.5391\right]$.

[^2]$(-)-S 12:$ Employing the same procedure in the literature starting from (+)-28. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}-13.0(c 0.5$, CHCl_{3}); IR 3496, 2960, 1613, 1462, 1250, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\operatorname{app} \mathrm{t}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{app} \mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=$ $3.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=4.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-$ $2.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.66(\mathrm{~m}, 1 \mathrm{H}), 0.56-0.53(\mathrm{~m}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.28(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,134.7,132.3,131.1,129.0,128.9,117.3,113.6,99.2,86.3$, $84.5,76.6,74.9,65.3,56.3,55.2,39.9,38.4,37.3,35.4,35.3,32.0,26.2,21.1,18.7,18.5,15.1,15.0$, 14.8, 13.6, 10.8, 10.7, -3.3, -3.5; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 669.4522\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{SiNa}$: 669.4526].

(+)-29: Employing the same procedure in the literature starting from (-)-S12. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}+6.7(c 0.2$, CHCl_{3}); IR 2932, 2358, 1513, 1439, 1249, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.43(\mathrm{~m}$, $15 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{ddd}, J=16.8,10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (app t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.52 (app t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{dd}, J=5.9,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{app} \mathrm{t}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{app} \mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{app} \mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.71-0.65(\mathrm{~m}, 1 \mathrm{H}), 0.55-0.51(\mathrm{~m}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 158.9,135.1,133.7,132.3,132.0,130.6,130.5,129.0,128.4,119.1,118.4,117.3,113.6$, $99.7,88.5,88.4,84.5,74.9,56.3,55.3,54.5,39.9,38.3,35.4,34.7,31.9,31.2,26.2,20.5,18.7,18.6$, $17.8,17.4,15.2,14.9,13.0,10.6,-3.3,-3.4$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 891.5514[(\mathrm{M}-$ I^{+}; calcd for $\mathrm{C}_{56} \mathrm{H}_{80} \mathrm{O}_{5} \mathrm{PSi}$: 891.5513].

$(+)-31$
$(+)-31$: Employing the same procedure in the literature starting from (+)-29 and (-)-30. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}+6.5(c$ $0.2, \mathrm{CHCl}_{3}$); IR 2957, 1738, 1464, 1251, $1039 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{ddd}, J=16.8,10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\operatorname{app} \mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.56 (app t, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=7.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{app} \mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{app} \mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\operatorname{app} \mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{app} \mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{appt}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 2 \mathrm{H})$, 3.01-2.94 (m, 1H), 2.77-2.60 (m, 2H), 1.87-1.67 (m, 5H), 1.43-1.39 (m, 1H), 1.26-1.23 (m, 1H), 1.25 $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.85-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.54-0.51(\mathrm{~m}, 1 \mathrm{H}), 0.1-0.06(\mathrm{~m}, 18 \mathrm{H}),-0.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 173.4,158.9,134.7,133.7,132.7,132.3,131.2,129.0,128.9,117.3,113.6,97.9,86.3,84.5,77.2$, $76.5,74.8,74.564 .8,55.9,55.2,43.8,42.3,39.9,38.5,35.5,35.4,35.0,34.4,32.2,30.3,26.2,25.8$, $25.7,21.5,18.7,18.5,18.0,17.9,17.6,16.2,15.1,15.0,14.0,13.9,10.8,-3.3,-3.5,-4.4,-4.6,-4.90$, 4.91; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 1079.7214\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{60} \mathrm{H}_{108} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}$: 1079.7199].

(-)-S13
(-)-S13: Employing the same procedure in the literature starting from (+)-31. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}-3.9(c 0.7$, CHCl_{3}); IR 3508, 2958, 1735, 1464, 1253, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.63$ (ddd, $J=$ $16.8,10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (app t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.38-5.20(\mathrm{~m}, 4 \mathrm{H}), 5.14(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.84 (app t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{app} \mathrm{t}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{app} \mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=2.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=2.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 3.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.59(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.54-1.47(\mathrm{~m}$, $1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.76(\mathrm{~m}, 2 \mathrm{H}), 0.57-0.53(\mathrm{~m}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$, $0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,134.9,133.7,132.8$, $132.1,131.0,118.3,97.9,86.3,78.4,77.2,76.1,74.5,64.9,56.0,43.8,42.3,37.7,37.6,36.3,35.5$, $34.9,34.4,32.4,26.2,25.8,25.6,21.5,18.4,18.0,17.9,17.6,17.1,16.2,15.1,14.1,13.9,13.8,10.6$, $9.4,-3.3,-3.7,-4.4,-4.6,-4.91,-4.92$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 959.6638\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{52} \mathrm{H}_{100} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}$: 959.6624].

(+)-S14
$(+)-\mathbf{S 1 4}:$ Employing the same procedure in the literature starting from $(-)-\mathbf{S 1 3} .^{2}[\alpha]_{\mathrm{D}}{ }^{23}+10.8(c \quad 0.9$, CHCl_{3}); IR 3359, 2957, 1730, 1381, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{ddd}, J=16.7,10.7$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\operatorname{app} \mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\operatorname{app} \mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\operatorname{app} \mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\operatorname{app~t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\operatorname{app} \mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.66(\operatorname{app} \mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\operatorname{app} \mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-$ $2.95(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.84-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.56-0.52(\mathrm{~m}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04$ $(\mathrm{s}, 3 \mathrm{H}),-0.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,156.8,133.8,133.7,132.8,132.1,129.7$, $117.7,97.9,86.3,78.7,77.2,76.4,74.5,64.9,56.0,43.8,42.3,38.3,37.6,35.5,35.0,34.5,34.4,31.8$, $30.2,26.2,25.8,25.6,21.5,18.5,18.0,17.9,17.6,17.5,16.2,14.9,14.3,13.9,10.5,10.2,-3.4,-3.8$, 4.4, -4.6, -4.90, -4.91; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 1002.6672\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{53} \mathrm{H}_{101} \mathrm{NO}_{9} \mathrm{Si}_{3} \mathrm{Na:} \mathrm{1002.6682]}$.

(+)-1
$(+)-\mathbf{1}$: Employing the same procedure in the literature starting from (+)-S14. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{23}+3.7(c 0.3$, $\mathrm{CH}_{3} \mathrm{CN}$); IR 3422, 2969, 1712, 1386, $1040 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 6.66$ (ddd, $J=16.7$, $10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\operatorname{app} \mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.36(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.70(\mathrm{app} \mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{app} \mathrm{t}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=4.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.79-$ $1.63(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$,
$0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.83-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.76-0.67(\mathrm{~m}, 2 \mathrm{H}), 0.57-0.53(\mathrm{~m}, 1 \mathrm{H}),-0.25(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7,157.2,134.0,133.7,132.9,132.3,129.3,117.8,78.1,77.9,77.1$, $74.2,72.1,63.1,43.0,41.3,37.3,36.2,35.7,35.5,35.2,34.0,31.4,20.3,17.6,17.2,14.7,14.4,13.3$, 13.2, 12.0, 10.4, 8.4; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 616.3844\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{NO}_{8} \mathrm{Na}: 616.3826\right]$.

(+)-S15: Employing the same procedure for converting (+)-16 to (-)-S10, (+)-S15 can be obtained from $(+)-17:[\alpha]_{\mathrm{D}}{ }^{23}+11.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR 3457, 2957, 1514, 1464, 1251, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}), 0.71-0.68(\mathrm{~m}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}),-0.18$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,130.4,129.2,113.8,98.8,86.2,83.8,75.8,74.9,65.8$, $65.1,56.0,55.2,40.1,38.8,38.5,37.8,35.4,32.9,26.2,25.9,20.1,18.5,18.3,16.0,15.6,14.7,14.4$, $13.2,11.8,11.6,-3.2,-3.6,-5.45,-5.5$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 761.5148\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{41} \mathrm{H}_{78} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}: 761.5184\right]$.

(+)-S16: Employing the same procedure for converting (+)-S10 to (+)-28, (+)-S16 can be obtained from (+)-S15: $[\alpha]_{\mathrm{D}}{ }^{23}+33.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; IR 2954, 1608, 1462, 1250, $1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\operatorname{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\operatorname{app} \mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=2.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.83-0.76(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.60(\mathrm{~m}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$, $-0.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,134.8,132.4,131.3,129.0,128.9,117.1,113.5$, $98.8,84.5,83.9,75.7,74.6,65.2,56.0,55.2,40.1,39.6,38.5,35.6,35.4,32.7,26.2,25.9,19.8,18.7$, $18.5,18.3,16.2,15.3,14.4,13.2,11.9,11.0,-3.3,-3.6,-5.44,-5.46$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 783.5413\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}: 783.5391\right]$.

(+)-S17: Employing the same procedure for converting (+)-28 to (-)-S12, (+)-S17 can be obtained from (+)-S16: $[\alpha]_{\mathrm{D}}{ }^{23}+17.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $3495,2958,1462,1250,1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{app} \mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=1.6,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J$ $=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J$ $=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{app} \mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$, $3.22(\mathrm{dd}, J=4.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}), 0.75-0.60(\mathrm{~m}, 4 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.19(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,134.8,132.4,131.2,129.0,128.9,117.2,113.8,99.3,85.8,84.6$, $75.6,74.7,65.3,56.2,55.2,40.0,39.8,37.6,35.7,35.5,32.7,26.1,19.6,18.7,18.5,16.3,15.3,14.7$, 13.2, 12.2, 11.0, -3.4, -3.6; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 669.4533\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{SiNa}: 669.4526\right]$.

(+)-S18: Employing the same procedure for converting (-)-S12 to (+)-31, (+)-S18 can be obtained from $(-)-30:[\alpha]_{\mathrm{D}}{ }^{23}+23.5\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR 3479, 2954, 1732, 1462, 1253, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, CDCl_{3}) $\delta 6.66$ (ddd, $\left.J=16.8,10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.12(\mathrm{app} \mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.17(\mathrm{~m}, 4 \mathrm{H}), 5.13$ $(\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\operatorname{appt}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.49 (app t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~m}$, $2 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 1.86-1.60(\mathrm{~m}, 7 \mathrm{H}), 1.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}), 0.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.79-0.65(\mathrm{~m}, 3 \mathrm{H}), 0.07-0.02(\mathrm{~m}, 18 \mathrm{H}),-0.23(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.4,135.5,133.5,133.1,132.4,130.6,117.8,97.9,85.4,78.9,77.2,75.7,74.5,64.9,56.0,44.8$, $42.3,37.8,37.7,36.5,35.5,35.4,34.4,33.7,26.2,25.8,25.6,20.4,18.5,18.3,18.2,17.7,16.9,16.2$, $16.1,13.9,13.6,13.1,11.7,9.5,-3.1,-3.7,-4.4,-4.6,-4.90,-4.94$; high resolution mass spectrum (ES ${ }^{+}$) $\mathrm{m} / \mathrm{z} 959.6592$ [(M+Na) ${ }^{+}$; calcd for $\left.\mathrm{C}_{52} \mathrm{H}_{100} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}: 959.6624\right]$.

(+)-S19: Employing the same procedure for converting (-)-S13 to (+)-S14, (+)-S19 can be obtained from (+)-S18: $[\alpha]_{\mathrm{D}}{ }^{23}+34.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR 3359, 2958, 1728, 1377, 1253, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.60(\mathrm{ddd}, J=16.8,10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\operatorname{app~t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.35(\mathrm{~m}$, $2 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\operatorname{app} \mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\operatorname{app} \mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{appt}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 1H), $3.49(\operatorname{app} \mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~m}$, $2 \mathrm{H}), 1.89-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.97(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.77-0.70(\mathrm{~m}, 2 \mathrm{H}), 0.60(\mathrm{~m}, 2 \mathrm{H}), 0.08-0.05(\mathrm{~m}, 18 \mathrm{H}),-0.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.4,156.9,133.8,133.7,132.8,132.2,129.7$, 117.6, 98.0, 85.9, 78.7, 77.2, 76.0, 74.5, 64.9, 56.0, $43.8,42.2,39.3,37.9,35.8,35.4,34.5,34.3,32.8,26.1,25.8,25.6,19.9,18.5,18.0,17.8,17.6,17.5$, $16.2,15.9,14.7,13.9,13.4,12.1,10.4,-3.5,-3.8,-4.4,-4.6,-4.91,-4.93$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 1002.6634\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{53} \mathrm{H}_{101} \mathrm{NO}_{9} \mathrm{Si}_{3} \mathrm{Na}: 1002.6682\right]$.

(+)-2
$(+)-\mathbf{2}$: Employing the same procedure for converting (+)-S14 to (+)-1, (+)-2 can be obtained from (+)S19: $[\alpha]_{\mathrm{D}}{ }^{23}+50.3$ (c 0.5, $\mathrm{CH}_{3} \mathrm{CN}$); IR 3422, 2969, 1712, 1386, $1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.66(\mathrm{ddd}, J=16.7,10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ (app t, $\left.J=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.46(\mathrm{dd}, J=8.2,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.40(\mathrm{app} \mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\operatorname{app} \mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 4.69(\operatorname{app} \mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{app} \mathrm{t}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.47(\mathrm{~m}, 3 \mathrm{H}), 2.16$ (app t, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~m}, 3 \mathrm{H}),-0.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 173.7,157.2,134.6,133.9,133.3,132.4,129.3,117.2,77.9,77.2$ (2C), 74.6, 72.1, 63.4, 43.0, 41.3,
$37.3,36.6,36.4,35.2,34.6,34.1,32.0,19.7,17.1,17.0,14.7,14.6,14.3,12.0,11.8,11.0,8.5$; high resolution mass spectrum $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z} 616.3831\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{NO}_{8} \mathrm{Na}$: 616.3826].

[^0]: ${ }^{1}$ Horita, K.; Tanaka, K.; Yonemitsu, O. Chem. Pharm. Bull. 1993, 41, 2044-2046.
 ${ }^{2}$ Smith, A. B., III.; Freeze, B. S.; Xian, M.; Hirose, T. Org. Lett. 2005, 7, 1825-1828.
 ${ }^{3}$ Chen, J.; Wang, T.; Zhao, K. Tetrahedron Lett. 1994, 35, 2827.

[^1]: ${ }^{4}$ Smith, A. B., III; Freeze, B. S.; Brouard, I.; Hirose, T. Org. Lett. 2003, 5, 4405-4408.

[^2]: ${ }^{5}$ Paterson, I.; Schlapbach, A. Synlett 1995, 498.

