Supporting Materials for

Activation of C-H Bonds of Arenes: Selectivity and Reactivity in Bis(pyridyl) Platinum(II) Complexes

Fenbao Zhang, Christopher W. Kirby, Douglas W. Hairsine, Michael C. Jennings and Richard J. Puddephatt*

Department of Chemistry, The University of Western Ontario, London, Canada N6A 5B7.

General methods

All reactions were carried under an N_2 atmosphere using standard Schlenk techniques or using a drybox. NMR spectra were recorded by using a Varian Mercury 400 or 600 MHz spectrometer. ¹H and ¹⁹F NMR chemical shifts are reported relative to TMS and CFCl₃ respectively.

Preparation of the complexes.

[PtMe₂(DPM)], 1c. To a solution of $[Pt_2Me_4(\mu-SMe_2)_2]$ (0.385 g, 0.670 mmol) in ether (15 mL) was added a solution containing DPM (0.228 g, 1.34 mmol) in ether (10mL). The solution immediately turned pale orange, and the product precipitated as pale orange solid over 30 min. The product was collected by filtration, washed with ether/pentane and dried under vacuum. Yield: 89%. NMR in CDCl₃: $\delta(^1H) = 0.90$ [s, 6H, ²J(PtH) = 83 Hz, 2PtMe]; 4.00 [br, 1H, CH₂]; 4.74 [br, 1H, CH₂]; 7.19 [m, 2H, Py H⁵]; 7.37 [d, 2H, Py H³]; 7.77 [td, 2H, Py H⁴]; 8.87 [m, 2H, ³J(PtH) = 22 Hz, Py H⁶]; ¹³C NMR(CDCl₃): -18.3 [s, ¹J(PtC) = 813 Hz, 2PtMe]; 47.5 [s, ³J(PtC) = 52 Hz, CH₂]; 124.3 [s, ²J(PtC) = 22 Hz, Py C²]; 124.7 [s, Py C³]; 136.9 [s, Py C⁴]; 150.5 [s, ²J(PtC) = 25 Hz, Py C⁶]; 155.1 [s, Py C⁵]. ESI-MS (m/z): 417 [PtMe₂(DPM)+Na]⁺. NaI was used as the ionizing reagent. The dimethylplatinum(II) complexes **1a** and **1b** were prepared similarly.¹

[PtMe{HOB(C₆F₅)₃**(DPK)], 2a.** To a solution of [PtMe₂(DPK)], **1a**, (0.41 g, 1 mmol) in CF₃CH₂OH (30 mL) was added a solution of B(C₆F₅)₃ (0.54 g, 1mmol) in CF₃CH₂OH (10 mL). The color changed from purple to yellow orange. The mixture was stirred for 6h, and the yellow precipitate of the product was separated by filtration and washed with ether (3×2 mL) and pentane (3×10 mL), and dried under vacuum. Yield: 86%. Anal. Calcd for C₃₀H₁₂BF₁₅N₂O₂Pt: C, 39.03; H, 1.31; N, 3.03. Found: C, 39.54; H, 1.34; N, 3.27%. NMR in CD₂Cl₂: δ (¹H) = 0.96 [s, 3H, ²J(PtH) = 73 Hz, Pt-Me]; 3.30 [m, 1H, OH]; 7.50 – 8.80 [8H, py]. δ (¹⁹F) = -134.3 [br m, 6F, *o*-F]; -160.2 [t, 3F, *p*-F]; -165.4 [dt, 6F, *m*-F]. δ (¹³C) = -13.9 [PtMe]; 125.4, 127.4, 129.1, 129.2, 137.8, 139.1, 149.5, 149.9, 153.5, 153.9 [py]; 135.6; 138.2; 146.5; 148.8 [C₆F₅]; 185.9 [CO].

[PtMe{HOB(C₆F₅)₃}(DPA)], 2b. This was prepared in a similar way from [PtMe₂(DPA)], and isolated as a pale brown solid. Yield 84%. Anal. Calcd for C₂₉H₁₃BF₁₅N₃OPt: C, 38.26; H, 1.44; N, 4.62. Found: C, 38.59; H, 1.33; N, 4.47%. NMR in CD₂Cl₂: δ (¹H) = 0.86 [s, 3H, ²J(PtH) = 72 Hz, Pt-Me]; 3.70 [m, 1H, OH]; 5.70 [1H, NH]; 6.38 – 8.51 [8H, py]. δ (¹⁹F) = -134.1 [br m, 6F, *o*-F]; -160.1 [t, 3F, *p*-F]; -165.2 [dt, 6F, *m*-F].

[PtMe{O(H)B(C₆F₅)₃}(DPM)], 2c. This was prepared in a similar way from [PtMe₂(DPM)], and isolated as a pale brown solid. Yield: 91 %. ¹H NMR (acetone-d₆): 0.86 [s, 3H, ²J(PtH) = 74 Hz, PtMe]; 3.64 [sept., 1H, OH]; 4.10 [d, 1H, ²J(HH) = 14 Hz, CH₂]; 4.48 [d, 1H, ²J(HH) = 14 Hz, CH₂]; 7.33 [t, 1H, Py H^{5'}]; 7.44 [t, 1H, Py H⁵]; 7.67 [d, 1H, PyH^{3'}]; 7.70 [d, 1H, PyH³]; 7.96 [t, 1H, Py H^{4'}]; 8.01 [t, 1H, Py H⁴]; 8.64 [d, 1H, ³J(PtH) = 68 Hz, PyH^{6'}]; 8.76 [d, 1H, Py H⁶]. ¹⁹F NMR (acetone-d₆): -134.1 [br, 6F, *o*-F]; -162.0 [t, 3F, *p*-F]; -166.9 [t, 6F, *m*-F]. ESI-MS (m/z): 922 [PtMe₂(DPM){O(H)B(C₆F₅)₃}+Na]⁺. NaI was used as the ionizing reagent.

[PtMe(DPK)(CO)]⁺[O(H)B(C₆F₅)₃]⁻, **3a**. Yield: 88 %. NMR in CD₂Cl₂: $\delta(^{1}H) = 1.09$ [s, 3H, ²J(PtH) = 70 Hz, PtMe]; 4.17 [m, 1H, O(H)B]; 7.42 [t, br, 2H, Py H⁵ & H^{5'}]; 7.92 [d, 2H, ³J((HH) = 8 Hz, Py H³, H^{3'}]; 8.03 [t, 2H, ³J(HH) = 7 Hz, Py H⁴, H^{4'}]; 8.60 [d, br, 2H, Py H⁶, H^{6'}]. $\delta(^{19}F) = -136.3$ [d, 6F, *o*-F]; -162.1 [t, br, 3F, *p*-F]; -166.6 [t, 6F, *m*-F]. IR: 2073 cm⁻¹ (CO). ESI-MS (m/z): 422 (M⁺).

[PtMe(DPA)(CO)]⁺[O(H)B(C₆F₅)₃]⁻ 3b. Yield: 91 %. NMR in CD₂Cl₂: $\delta(^{1}H) = 1.00$ [s, 3H, ²J(PtH) = 68 Hz, PtMe]; 7.10 [t, 1H, Py H⁵]; 7.12 [t, 1H, Py H^{5'}]; 7.46 [d, 1H, Py H⁴]; 7.52 [d, 1H, Py H^{4'}]; 7.82 [t, br, 2H, Py H³, H^{3'}]; 8.17 [d, 1H, ³J(PtH) = 34 Hz, Py H⁶]; 8.28 [d, 1H, Py H^{6'}]; 12.08 [s, 1H, NH]. NMR(CD₂Cl₂): $\delta(^{13}C) = -13.9$ [s, ¹J(PtC) = 520 Hz, PtMe]; 163.2 [s, ¹J(PtC) = 1821 Hz, PtCO]. $\delta(^{19}F) = -136.3$ [d, 6F, *o*-F]; -161.8 [t, 3F, *p*-F]; -166.3 [t, 6F, *m*-F]. IR: 2105 cm⁻¹ (CO). ESI-MS (m/z): 409 (M⁺).

[PtMe(DPM)(CO)]⁺[O(H)B(C₆F₅)₃]⁻, 3c. Yield: 91 %. NMR in CD₂Cl₂: $\delta(^{1}H) = 1.26$ [s, 3H, ²J(PtH) = 70 Hz, PtMe]; 4.42 [br, 1H, CH₂]; 4.64 [br, 1H, CH₂]; 7.52 [t, 1H, Py H⁵]; 7.61 [t, 1H, Py H^{5'}]; 7.76 [d, 1H, Py H⁴]; 7.8 [d, 1H, Py H^{4'}]; 8.03 [t, 1H, Py H³]; 8.09 [t, 1H, Py H^{3'}]; 8.52 [d, 1H, ³J(PtH) = 44 Hz, Py H⁶]; 8.72 [d, 1H, Py H^{6'}]. $\delta(^{13}C) = -14.2$ [PtMe]; 45.7 [CH₂]. $\delta(^{19}F) = -136.4$ [d, 6F, ³J(FF) = 23 Hz, *o*-F]; -163.8 [t, 3F, ³J(FF) = 20 Hz, *p*-F]; -167.3 [t, 6F, ³J(FF) = 19 Hz, *m*-F]. IR: 2109 cm⁻¹ (CO). ESI-MS (m/z): 408 (M⁺).

[PtPh{HOB(C₆F₅)₃**(DPK)], 4a.** To a solution of complex **1a** (0.41 g, 1 mmol) in CF₃CH₂OH (30 mL) was added a solution of B(C₆F₅)₃ (0.54 g, 1 mmol) in CF₃CH₂OH (10 mL), followed by addition of C₆H₆ (30 mmol), to give a yellow-orange solution. After 4 days, the yellow precipitate of the product was separated by filtration, washed with ether (3×2 mL) and pentane (3×10 mL), and dried under vacuum. Yield: 88%. Anal. Calcd for C₃₅H₁₄BF₁₅N₂O₂Pt: C, 42.66; H, 1.43; N, 2.84. Found: C, 42.31; H, 1.41; N, 2.77%. NMR in C₆D₆: δ (¹H) = 3.93 [br, 1H, PtOH]; 5.58 – 8.68 [8H, py]; 7.05 [t, 1H, ⁵J(PtH) = 31 Hz, Ph, *p*-H]; 7.08 [t, 2H, ⁴J(PtH) = 47 Hz, Ph, *m*-H]; 7.16 [br, m, 2H, Ph, *o*-H]. δ (¹⁹F) = -132.6 [br m, 6F, *o*-F]; -158.9 [t, 3F, *p*-F]; -164.4 [dt, 6F, *m*-F].

[PtPh{O(H)B(C₆F₅)₃}(DPA)], 4b. This was prepared similarly but using [PtMe₂(DPA)] (0.40 g, 1 mmol). Yield: 78%. Anal. Calcd for $C_{34}H_{15}BF_{15}N_3O_2Pt$: C, 41.32; H, 1.53; N, 4.25. Found: C, 41.68; H, 1.49; N, 4.64. NMR in C_6D_6 : $\delta(^{1}H) = 3.91$ [br, 1H, PtOH]; 5.62 [td, 1H]; 6.42 [td, 1H]; 6.63 [td, 1H]; 6.92 [td, 1H]; 6.96 [dd, 1H]; 7.13 [t, br, 1H, Ph, *p*-H]; 7.17 [t, br, 2H, Ph, *m*-H]; 7.22 [br, 2H, Ph, *o*-H]; 7.31 [d, 2H]; 7.82 [dd, 1H, ³J(PtH) = 74 Hz, PtNCH *trans* to O]; 8.75 [dd, 1H, NCH *trans* to Ph]. $\delta(^{19}F) = -132.6$ [b, 6F, *o*-F]; -158.9 [t, 3F, *p*-F]; -164.4 [td, 6F, *m*-F].

[PtPh{O(H)B(C₆F₅)₃}(DPM)], 4c. This was prepared similarly but using [PtMe₂(DPM)] (0.40 g, 1 mmol). Yield: 78%. NMR in CD₂Cl₂: $\delta(^{1}\text{H}) = 3.51$ [septet, 1H, O(H)B(C₆F₅)₃]; 4.10 [d, 1H, ²J(HH) = 14 Hz, CH₂]; 4.42 [d, 1H, ²J(HH) = 14 Hz, CH₂]; 6.88 [t, br, 2H, Ph, *m*-H]; 6.90 [t, br, 1H, Ph, *p*-H]; 6.93 [t, 1H, Py H⁵]; 7.04 [d, br, 2H, Ph, o-H]; 7.33 [t, Py H^{5'}]; 7.40 [d, 1H, Py H³]; 7.42 [d, 1H, Py H^{3'}]; 7.77 [td, 1H, Py H⁴]; 7.81 [td, 1H, Py H^{4'}]; 8.34 [d, 1H, Py H⁶]; 8.71 [d, 1H, Py H^{6'}]. $\delta(^{13}\text{C}) = 46.2$ [CH₂]; 123.9, 124.2, 124.3, 124.6; 125.5, 127.0, 135.1, 135.8, 138.9, 139.3, 150.4, 152.9, 154.8, 156.1; 136.0, 137.5, 138.3, 140.0, 146.9, 148.5. $\delta(^{19}\text{F}) = -133.5$ [br, 6F, *o*-F]; -161.1 [t, 3F, *p*-F]; -165.9 [t, 6F, *m*-F]. ESI-MS (m/z): 994 [PtPhX(DPM)+Na]⁺. NaI was used as the ionizing reagent.

[Pt(C₆H₄Me){HOB(C₆F₅)₃}(DPK)], 5a. This was prepared in a similar way to 4a but using toluene (30 mmol). Yield: 86%. Anal. Calcd for C₃₆H₁₆BF₁₅N₂O₂Pt: C, 43.27; H, 1.61; N, 2.80. Found: C, 42.83; H, 1.31; N, 3.27%. NMR in CD₂Cl₂: *meta*-8: $\delta(^{1}H) = 2.15$ [s, 3H, Me]; 3.53 [1H, OH]; 6.73 [d, 1H, tolyl H⁴]; 6.77 [t, 1H, tolyl H⁵]; 6.78 [s, 1H, tolyl H²]; 6.84 [d, 1H, tolyl H⁶]; 7.21 – 8.89 [8H, py]; $\delta(^{19}F) = -133.2$ [br m, 6F, *o*-F]; -160.5 [t, 3F, *p*-F]; -165.7 [m, 6F, *m*-F]. *para*-8: $\delta(^{1}H) = 2.24$ [s, 3H, Me]; 3.48 [1H, OH]; 6.68, 6.70 [m, 4H, tolyl]; 7.21 – 8.89 [8H, py]; $\delta(^{19}F) = -133.0$ [br m, 6F, *o*-F]; -160.7 [t, 3F, *p*-F]; -165.6 [m, 6F, *m*-F]. *ortho*-8: 2.34 [3H, Me]; 3.32 [1H, OH]; 7.14, 6.96 [m, tolyl]; other tolyl protons obscured. Isomer ratio obtained by integration of methyl resonances of the *o*-, *m*-, and *p*-tolyl groups.

[Pt(C₆H₄Me){HOB(C₆F₅)₃}(DPA)], 5b. This was prepared in a similar way using [PtMe₂(DPA)] and toluene. The product formed as an off-white precipitate. Yield: 84%. Anal. Calcd for C₃₅H₁₇BF₁₅N₃OPt: C, 43.22; H, 1.91; N, 4.28. Found: C, 42.93; H, 1.99; N, 4.37%. NMR in CD₂Cl₂: *meta*-9: δ (¹H) = 2.15 [s, 3H, Me]; 3.53 [1H, OH]; 6.74 [d, 1H, tolyl H⁴]; 6.86 [d, 1H, tolyl H⁶]; 7.03 [t, 1H, tolyl H⁵]; 7.13 [s, 1H, tolyl H²]; 6.60 – 8.52 [8H, py]; δ (¹⁹F) = -133.2 [br m, 6F, *o*-F]; -160.5 [t, 3F, *p*-F]; -165.7 [m, 6F, *m*-F]. *para*-9: δ (¹H) = 2.24 [s, 3H, Me]; 3.40 [1H, OH]; 6.62, 6.68 [m, 4H, tolyl]; 6.77 – 8.52 [8H, py]; *ortho*-8: Tol-Me: 2.34 [3H, Me]; 3.32 [1H, OH]; 6.96, 7.14, [m, tolyl]; other tolyl protons obscured. Isomer ratio obtained by integration of methyl resonances of the *o*-, *m*-, and *p*-tolyl groups.

[Pt(3,4-C₆H₃Me₂){HOB(C₆F₅)₃(DPK)], 6a. This was prepared in the same way as complex 4a, but using *o*-xylene (30 mmol). Reaction was complete in 4 h. Yield: 87%. Anal. Calcd for C₃₇H₁₈BF₁₅N₂O₂Pt: C, 43.85; H, 1.79; N, 2.76. Found: C, 43.66; H, 1.98; N, 2.51%. NMR in CD₂Cl₂: δ (¹H) = 2.06 [s, 3H, Me]; 2.17 [s, 3H, Me]; 3.49 [m, 1H, OH]; 6.63 [d, 1H, Xy H⁶]; 6.67 [d, 1H, Xy H⁵]; 6.74 [s, 1H, Xy H²]; 7.22-8.90 [8H, py]. δ (¹⁹F) = -133.1 [br m, 6F, *o*-F]; -160.7 [t, 3F, *p*-F]; -165.8 [m, 6F, *m*-F]. δ (¹³C) = 18.7,

19.2; 125.3, 127.6, 128.4, 128.8, 128.8, 132.8, 132.9, 135.1, 136.3, 139.6, 139.7, 150.0, 150.1, 154.9; 186.0.

[Pt(3,4-C₆H₃Me₂){O(H)B(C₆F₅)₃}(DPM)], 6c. This was prepared similarly but using [PtMe₂(DPM)] (0.40 g, 1 mmol). Yield: 78%. NMR in CD₂Cl₂: δ (¹H) = 2.06 [s, 3H, *o*-xylene Me]; 2.18 [s, 3H, *o*-xylene Me]; 3.48 [sept., 1H, O(H)B(C₆F₅)₃]; 4.08 [d, 1H, ²J(HH) = 14 Hz, CH₂]; 4.42 [d, 1H, ²J(HH) = 14 Hz, CH₂]; 6.69 [d, 1H, ³J(HH) = 7 Hz, *o*-xylene H⁶]; 6.76 [d, 1H, ³J(HH) = 7 Hz, *o*-xylene H⁵]; 6.79 [s, ³J(PtH) = 37 Hz, *o*-xylene H²]; 6.94 [t, 1H, Py H⁵]; 7.32 [t, 1H, Py H^{5'}]; 7.40 [d, 2H, Py H³ & H^{3'}]; 7.70 [td, 1H, Py H⁴]; 7.80 [td, 1H, ⁴J(HH) = 1 Hz, Py H^{4'}]; 8.45 [d, 1H, ³J(PtH) = 72 Hz, Py H⁶]; 8.69 [d, 1H, Py H^{6'}]. δ (¹³C) = 17.5, 20.0 [Me]; 47.0 [CH₂]. δ (¹⁹F) = -132.6 [br, 6F, *o*-F]; -160.6 [t, 3F, *p*-F]; -165.4 [t, 6F, *m*-F]. EI-MS (m/z): 999 [M].

Attempted synthesis of $[Pt(3,4-C_6H_3Me_2){O(H)B(C_6F_5)_3}(bu_2bpy)]$, 6d. The reaction of $[PtMe_2(bu_2bpy)]$, 1d, (0.40 g, 1 mmol) with *o*-xylene was carried out as above and monitored by ¹H NMR. After one day at room temperature, the known complex $[PtMe{O(H)B(C_6F_5)_3}(bu_2bpy)]$ was still present. At 60°C, a complex reaction occurred and eventually led to formation of crystals of $[Pt_2(\mu-OH)_2(bu_2bpy)_2][B(OH)(C_6F_5)_3]_2$, which was identified crystallographically. There was no evidence for formation of xylylplatinum complexes.

[Pt(3,5-C₆H₃Me₂){HOB(C₆F₅)₃}(DPK)], 7a. This was prepared similarly to 4a but using *m*-xylene (30 mmol). Yield: 86%. Anal. Calcd for C₃₇H₁₈BF₁₅N₂O₂Pt: C, 43.85; H, 1.79; N, 2.76. Found: C, 43.51; H, 2.08; N, 2.59%. NMR in CD₂Cl₂: δ (¹H) = 2.08 [s, 6H, Me]; 3.49 [m, 1H, OH]; 6.51 [s, 2H, Xy H², H⁶]; 6.48 [s, 1H, Xy H⁴]; 7.20-8.89 [8H, py]. δ (¹⁹F) = -133.2 [br, m, 6F, *o*-F]; -160.7 [t, 3F, *p*-F]; -165.8 [m, 6F, *m*-F]. δ (¹³C) = 20.9; 125.3, 126.6, 127.5, 128.8, 128.8, 132.9, 134.4, 136.2, 139.6, 139.7, 150.1, 153.2, 155.0; 186.0.

[Pt(3,5-C₆H₃Me₂){O(H)B(C₆F₅)₃}(DPA)], 7b. This was prepared similarly using [PtMe₂(DPA)] (0.117 g, 0.3 mmol). Yield: 88%. Anal. Calcd for C₃₆H₁₉BF₁₅N₃OPt: C, 43.22; H, 1.91; N, 4.20. Found: C, 42.51; H, 2.06; N, 4.52. NMR in C₆D₆: δ (¹H) = 2.33 [s, 6H, 2Me of *m*-xy]; 3.83 [m, 1H, O(H)B(C₆F₅)₃]; 5.23 [d, 1H]; 5.42 [t, 1H]; 5.50 [s, NH]; 5.57 [d, 1H]; 6.34 [t, 1H]; 6.40 [t, 1H]; 6.73 [s, 1H, *m*-xy H⁴]; 6.79 [t, 1H]; 7.05 [s, 2H, *m*xy H^{2,6}]; 8.05 [d, 1H, ³J(PtH) = 80Hz, PtNCH, *trans* to O]; 8.53 [d, 1H, PtNCH, trans to *m*xy]. δ (¹⁹F) = 132.7 [br, 6F, *o*-F]; -161.2 [t, 3F, *p*-F]; -165.8 [td, 6F, *m*-F].

[Pt(C₆H₄OMe){HOB(C₆F₅)₃}(DPK)], 8a. This was prepared similarly, but using anisole (30 mmol). Yield: 48%. Anal. Calcd for C₃₆H₁₆BF₁₅N₂O₃Pt: C, 42.58; H, 1.61; N, 2.80. Found: C, 42.64; H, 1.81; N, 2.72%. NMR in CD₂Cl₂: *ortho*-**12**: δ (¹H) = 4.01 [s, 3H, OMe]; 4.81 [m, br, 1H, OH]; 6.29 [d, 1H, An H⁶]; 6.39 [t, 1H, An H⁵]; 6.68 [d, 1H, An H³]; 6.90 [dt, 1H, An H⁴]; 7.21-9.01 [8H, py]. δ (¹⁹F) = -134.5 [br m, 6F, *o*-F]; -161.7 [t, 3F, *p*-F]; -166.9 [m, 6F, *m*-F]. *meta*-**12**: δ (¹H) = 3.75 [s, 3H, OMe]; 3.70 [m, br, 1H, OH]; 6.51 [s, 1H, An H²]; 6.56 [d, 1H, An H⁶]; 6.83 [t, 1H, An H⁵]; 6.90 [d, 1H, An H⁴]; 7.25-8.97 [8H, py]. *para*-**12**: δ (¹H) = 3.72 [s, 3H, OMe]; 3.69 [m, br, 1H, OH]; 6.44 [d, 2H, An H^{2,6}]; 6.54 [d, 2H, An H^{3,5}]; 7.3-8.9 [8H, py]. [Pt{2,4-C₆H₃(OMe)₂}{HOB(C₆F₅)₃}(DPK)], 9a. This was prepared similarly, but using 1,3-dimethoxybenzene (30 mmol). Yield: 40%. Anal. Calcd for C₃₇H₁₈BF₁₅N₂O₄Pt: C, 42.51; H, 1.74; N, 2.68. Found: C, 42.67; H, 1.86; N, 2.59%. NMR in CD₂Cl₂: δ (¹H) = 3.71 [s, 3H, 4-OMe]; 3.90 [s, 3H, 2-OMe]; 4.71 [m, br, 1H, OH]; 6.02 [d, 1H, Ar H5]; 6.21 [d, 1H, Ar H6]; 6.33 [s, 1H, Ar H3]; 7.24 – 9.23 [8H, py]. δ (¹⁹F) = -133.5 [br m, 6F, *o*-F]; -160.7 [t, 3F, *p*-F]; -165.9 [m, 6F, *m*-F].

[Pt(2-MeO-4-Me-C₆H₃){HOB(C₆F₅)₃}(DPK)], 10a. This was prepared similarly, but using 3-methylanisole (30 mmol). Yield: 49%. NMR in CD₂Cl₂: $\delta(^{1}\text{H}) = 2.28$ [s, 3H, Me]; 3.99 [s, 3H, OMe]; 4.75 [m, br, 1H, OH]; 6.14 [d, 1H, Ar H⁶]; 6.25 [d, 1H, Ar H⁵]; 6.50 [s, 1H, Ar H³]; 7.2 – 8.99 [8H, py]. $\delta(^{19}\text{F}) = -133.2$ [br m, 6F, *o*-F]; -160.8 [t, 3F, *p*-F]; -165.8 [m, 6F, *m*-F]. ESI-MS in the presence of NaI to aid ionization: m/z = 1052 [14+Na]⁺.

H/D Exchange Experiments.

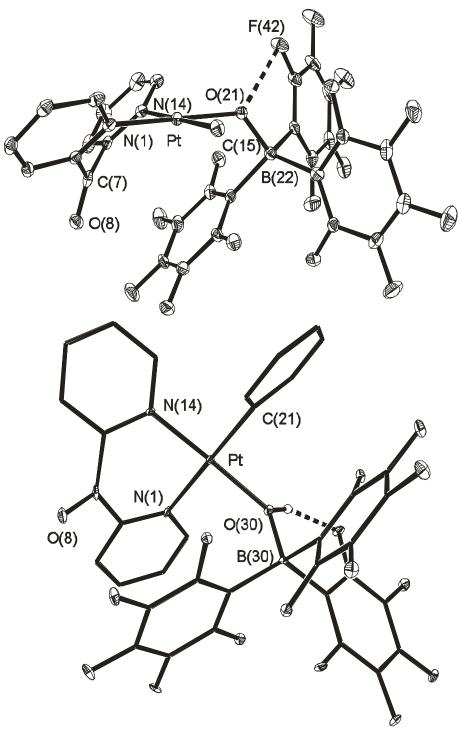
The reaction of **1** with *o*-xylene- d_{10} or anisole- d_8 was carried out in a similar way to synthesis of complex **6a** and **8a**, but using the perdeuterated arene. The extent of H/D exchange at each position of the aryl group of the product complex was determined by integration of the corresponding resonance in the ¹H NMR spectrum, using an adjacent pyridyl resonance for calibration.

In a separate experiment, the complexes **6a** and **8a** were dissolved in deuterated alcohol in an NMR tube, but negligible H/D exchange was observed over several days at room temperature under these conditions.

Competition Reactions

The syntheses were carried out in a similar way as above, but using equimolar amounts of the two arenes. Thus, the relative reactivities of *m*-xylene and *m*-dimethoxybenzene, of *o*-xylene and *o*-xylene- d_{10} , and of anisole and anisole- d_8 were determined by isolation of the products followed by analysis by using ¹H NMR. Aliquots were taken during reaction, evaporated, and analysed as a cross-check.

X-ray Structure Determinations. A suitable crystal was mounted on a glass fiber, and data were collected by using a Nonius Kappa-CCD diffractometer. Details of the data collections and structure refinements are given in the CIF files, and the individual structures are illustrated below.


Reference:

1. Zhang, F.; Jennings, M. C.; Puddephatt, R. J. Organometallics, 2004, 23, 1396. Scott, J.D.; Puddephatt, R.J. Organometallics, 1983, 2, 1643.

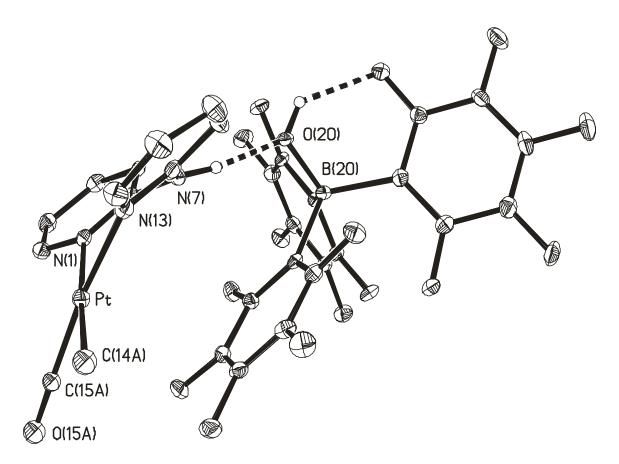
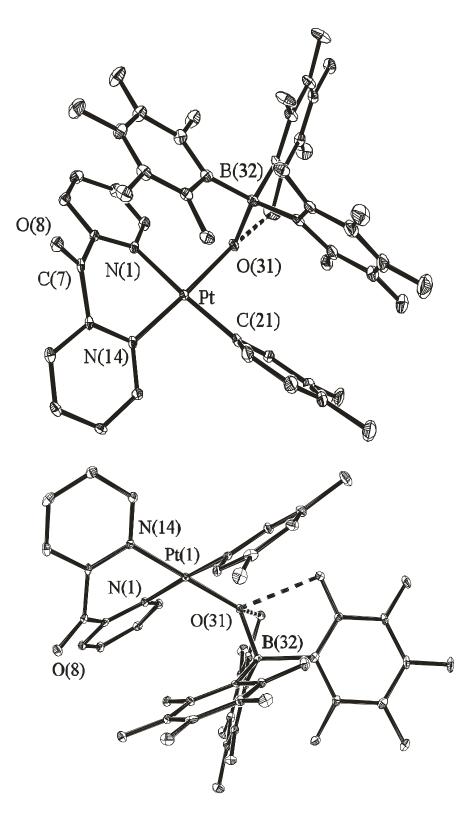
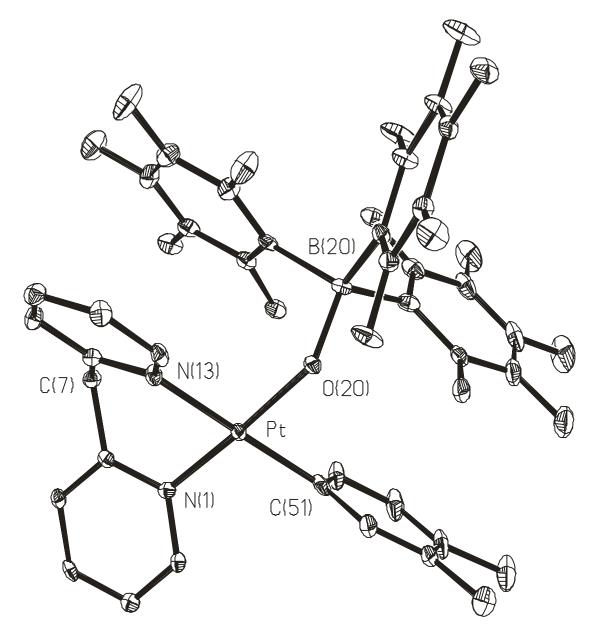
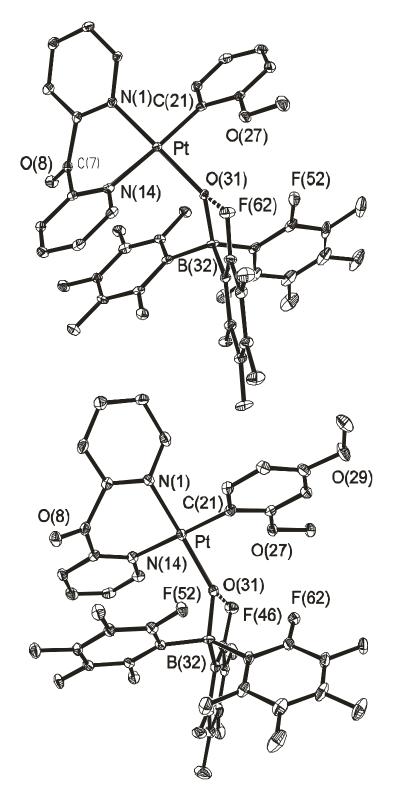
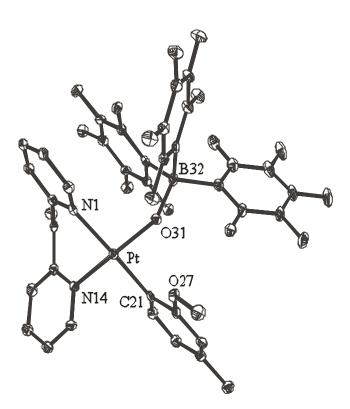

	2a 0.4CH ₂ Cl ₂ . 0.6C ₆ H ₁₄	4a	6a 1.5CH ₂ Cl ₂	бс	7a	8a 0.5CH ₂ Cl ₂
formula	$\begin{array}{c} C_{34}H_{21.}2B\\ Cl_{0.8}F_{15}N_2\\ O_2Pt \end{array}$	$\begin{array}{c} C_{35}H_{14}BF_{15} \\ N_2O_2Pt \end{array}$	$\begin{array}{c} C_{38.5}H_{21}BF_{15} \\ N_2O_2Pt \end{array}$	$\begin{array}{c} C_{37}H_{20}BF_{15} \\ N_2OPt \end{array}$	$\begin{array}{c} C_{37}H_{18}BF_{15}N_2\\ O_2Pt \end{array}$	$\begin{array}{c} C_{36.5}H_{17}BF_{15} \\ N_2O_3Pt \end{array}$
fw	1008.99	985.38	1140.82	999.45	1013.43	1057.87
temp/K	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
λ (Mo K α)/Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
cryst syst	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
space group	P2(1)/n	P2(1)/c	P2(1)/c	P2(1)/c	P2(1)/c	P2(1)/c
cell dimens <i>a</i> /Å	7.7332(2)	11.3484(4)	14.6798(5)	8.5660(2)	8.58600(10)	10.4214(3)
b/Å	19.3491(5)	20.7294(6)	20.7799(6)	17.8544(4)	17.7719(4)	15.1698(4)
c/Å	23.5497(6)	27.3470(9)	25.5737(8)	22.6002(6)	22.8225(6)	22.6241(4)
α/deg	90	90	90	90	90	90
β/deg	93.034(2)	95.8700	91.802(2)	90.040(2)	91.9220(10)	96.695(2)
γ/deg	90	90	90	90	90	90
volume/Å ³	3518.81(16)	6399.5(4)	7797.3(4)	3456.49(14)	3480.52(13)	3552.27(15)
Ζ	4	8	8	4	4	4
d(calc)/Mg m ⁻³	1.905	2.045	1.944	1.921	1.934	1.978
abs coeff/ mm ⁻¹	4.164	4.512	3.917	4.176	4.151	4.147
F(000)	1947	3776	4408	1928	1952	2036
no. of reflns/ind reflns	45149/7197	55253/1765 0	58886/17756	38148/6096	35132/7972	39646/6279
abs corr	Integration	Integration	Integration	Integration	Integration	Integration
no. of data/restr/para ms	7197/11/46 0	17650/18/8 94	17756/8/1043	6096/1/469	7972/0/532	6279/0/515
R1, wR2 [<i>I</i> > 2 c (<i>I</i>)]	0.0457, 0.1175	0.0599, 0.1309	0.0605, 0.1380	0.0356, 0.0813	0.0354, 0.0780	0.0353, 0.0845

Table S1. Crystal Data and Structure Refinement for the Complexes


	9a 0.5CH ₂ Cl ₂	10a 0.5CH ₂ Cl ₂	3b	
formula	$\begin{array}{c} C_{37.5}H_{19}BCl \\ F_{15}N_2O_4Pt \end{array}$	C _{37.5} H ₁₉ BClF ₁₅ N ₂ O ₃ Pt	$C_{30}H_{13}BF_{15}N_3O_2Pt$	
fw	1087.90	1071.90	938.33	
temp/K	150(2)	150(2)	150(2)	
λ (Mo Kα)/Å	0.71073	0.71073	0.71073	
cryst syst	Triclinic	Monoclinic	Monoclinic	
space group	P2(1)/c	P2(1)/c	C2/c	
cell dimens <i>a</i> /Å	10.6163(4)	10.4892(3)	37.1201(15)	
b/Å	15.4527(6)	15.4986(5)	7.3349(3)	
c/Å	22.3982(2)	22.3102(6)	23.0216(9)	
α/deg	90	90	90	
β/deg	92.257(2)	95.735(2)	106.850 (2)	
γ/deg	90	90	90	
volume/Å ³	3671.6(3)	3608.77(18)	5999.0(4)	
Ζ	4	4	8	
$d(\text{calc})/\text{Mg m}^{-3}$	1.968	1.973	2.078	
abs coeff/mm ⁻¹	4.017	4.083	4.808	
F(000)	2100	2068	3584	
no. of reflns/ind reflns	31649/6386	34948/6347	26807/5275	
abs corr	Integration	Integration	Integration	
no. of data/restr/params	6386/0/532	6347/2/523	5275/0/431	
R1, wR2 $[I > 2a(I)]$	0.0416, 0.0844	0.0680, 0.1690	0.0402, 0.0943	


Structures of complexes $\mathbf{2a}$ and $\mathbf{4a}$


Structure of complex **3b**


Structures of complexes $\mathbf{6a}$ and $\mathbf{7a}$

Structure of complex 6c

Stuctures of complexes 8a and 9a

Structure of complex 10a