Asymmetric synthesis of enantiopure pyrrolidines from N-allyl oxazolidines via hydrozirconation-cyclisation.

Jean-Luc Vasse, Antoine Joosten, Clément Denhez and Jan Szymoniak

All reactions were conducted under an atmosphere of argon using standard Schlenk techniques. Prior to use, tetrahydrofuran and Et_2O were distilled under argon from sodium benzophenone ketyl, NEt₃ and CH₂Cl₂ was distilled under argon from CaH₂, Cp₂Zr(H)Cl was prepared according to known procedure,¹ reagents (Aldrich) were used as received. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Brucker AC-250. Mass spectra were recorded on a Micromass Q-TOF micro MS spectrometer.

(*R*) 2-(allylamino)-2-phenylethanol.²

Allyl bromide (6.35 mL, 73 mmol) was added dropwise to a solution of phenylglycinol (10 g, 72.9 mmol) and triethylamine (10.4 mL, 75 mmol) in THF (35 mL) and stirred at rt overnight. The white solide was filtered off, the filtrate was concentrated under vaccum and purified by column chromatography on silica gel using EtOAc : Petroleum ether (7 : 3) as eluant to give the title compound as a colorless oil (9.4 g, 79 %). $[\alpha]_{23}^{D} = -74.5$ (*c* 1, CH₂Cl₂); ¹H NMR δ : 2.60 (br s, 2H), 2.98 (dd, *J* = 14.0, 7.6 Hz, 1H), 3.12 (dd, *J* = 14.0, 5.6 Hz, 1H), 3.50 (dd, *J* = 10.6, 8.7 Hz, 1H), 3.63 (dd, *J* = 10.7, 4.3 Hz, 1H), 3.73 (dd, *J* = 8.7, 4.3, 1H), 5.00 (dd, *J* = 10.2, 1.4 Hz, 1H), 5.06 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.79 (dddd, *J* = 17.2, 10.2, 7.6, 5.6 Hz; 1H), 7.16-7.30 (m, 5H); ¹³C NMR δ : 49.7, 63.7, 66.6, 116.1, 127.2, 127.6, 128.6, 136.5, 140.5.

(*R*)-2-Phenyl-2-[(*R*)-1-phenylallylamino]ethanol.³

To a solution of (*R*)-2-benzylideneamino-2-phenylethanol⁴ (2.25 g, 10 mmol) in Et₂O (30 mL) was added dropwise a solution of vinyl magnesium bromide in THF (1N, 30 mL) at 0°C. The mixture was stirred at r.t. for 6h. Water was slowly added at 0°C, the aqueous layer was extracted with Et₂O (3 x 25 mL), the organics phases were combined, concentrated to 50 mL and extracted with an aqueous solution of HCl (1N, 2 x 25 mL). The aqueous layer was neutralized with a saturated aqueous solution of Na₂CO₃ and extracted with Et₂O (3 x 25 mL). The organic layers were combined, dried over Na₂SO₄ filtered and concentrated to give the title compound as a pale yellow oil (2.02 g, 80%). [α]²⁵_D -16.0 (*c* 1, CH₂Cl₂); ¹H NMR δ : 2.23 (br s, 2H), 3.55 (dd, *J* = 10.7, 8.7 Hz, 1H), 3.41 (dd, *J* = 10.7, 4.5 Hz, 1H), 3.98 (dd, *J* = 8.7, 4.5 Hz, 1H), 4.07 (d, *J* = 8.0 Hz, 1H), 5.11-5.19 (m, 2H), 5.86 (ddd, *J* = 17.0, 10.2, 8.0 Hz, 1H), 7.19-7.28 (m, 10H); ¹³C NMR δ : 61.4, 62.6, 66.9, 116.5, 127.2, 127.4, 127.5, 127.7, 128.7, 128.8, 140.1, 140.7, 143.2; MS-ESI: *m*/*z* [M+H]⁺ 254.

(*R*)-2-Phenyl-2-[(*R*)-1-(4-chloro-phenyl)allylamino]ethanol.

obtained as a yellow oil (39%) according to the above procedure. $[\alpha]_{D}^{25}$ -12.0 (*c* 1, CH₂Cl₂); ¹H NMR δ : 2.53 (br s, 2H), 3.52 (dd, *J* = 10.7, 8.8 Hz, 1H), 3.66 (dd, *J* = 10.7, 4.3 Hz, 1H), 3.93 (dd, *J* = 8.6, 4.3 Hz, 1H), 4.00 (d, *J* = 8.0 Hz, 1H), 5.13 (m, 2H), 5.77 (ddd, *J* = 17.1, 10.1, 8.0 Hz, 1H), 7.19-7.28 (m, 9H); ¹³C NMR δ : 61.3, 61.6, 66.6, 116.7, 127.2, 127.5, 128.3, 128.45, 128.55, 132.7, 139.2, 140.2, 141.4; MS-ESI: *m*/*z* [M+H]⁺ 288.

¹ Buchwald, S. L.; La Maire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. Org. Synth., Coll. Vol.IX 1998, 162.

² Couty, F.; Prim, D. *Tetrahedron : Asymmetry* **2002**, *13*, 2619-2624.

³ Scialdone, M. A. ; Meyers, A. I. *Tetrahedron Lett.* **1994**, *35*, 7533-7536.

⁴ Higashiyama, K.; Inoue, H.; Takahashi, H. *Tetrahedron* **1994**, *50*, 1083-1092.

General procedure for the preparation of oxazolidines 1.

A solution of (*R*) 2-(allylamino)-2-phenylethanol (354 mg, 2 mmol) and the relevant aldehyde (2 mmol) in toluene (10 mL) was heated to reflux for 4h in a Dean-Stark apparatus. The solvent was removed under reduced pressure to give the oxazolidine which was used without purification in the next step.

(2R,4R) 3-allyl-2,4-diphenyloxazolidine 1a.

Yellow oil, $[\alpha]_{23}^{D}$ - 17.1 (*c* 1, CH₂Cl₂); ¹H NMR δ : 3.16 (dd, *J* = 6.7, 0.8 Hz, 2H), 3.88 (dd, *J* = 8.0, 7.6 Hz, 1H), 4.08 (dd, *J* = 8.0, 7.3 Hz, 1H), 4.27 (dd, *J* = 7.6, 7.3 Hz, 1H), 4.91 (dm, *J* = 8.4 Hz, 1H), 4.95 (dm, *J* = 10.0 Hz, 1H), 5.18 (s, 1H), 5.65 (m, 1H), 7.20-7.40 (m, 6H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H); ¹³C NMR δ : 52.4, 66.7, 74.5, 96.7, 118.3, 128.2, 128.4, 128.7, 128.8129.0, 129.4, 134.0, 134.4, 137.1; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₈H₂₀NO : 266.1545; found : 266.1553.

(2R,4R) 3-allyl-2-(2-bromophenyl)-4-phenyloxazolidine.

Orange oil, $[\alpha]_{23}^{D}$ - 28.1 (*c* 1, CH₂Cl₂); ¹H NMR δ : 3.13 (dd, *J* = 14.2, 7.5 Hz, 1H), 3.23 (dd, *J* = 14.2, 6.0 Hz, 1H), 3.84 (dd, *J* = 7.5, 7.2 Hz, 1H), 4.11 (dd, *J* = 8.2, 7.2 Hz, 1H), 4.28 (dd, *J* = 8.2, 7.5 Hz, 1H), 4.89 (dm, *J* = 10.0 Hz, 1H), 4.98 (dm, *J* = 17.0 Hz, 1H), 5.63 (m, 1H), 5.65 (s, 1H), 7.20 (m, 2H), 7.30-7.45 (m, 4H), 7.53 (t, *J* = 8.5 Hz, 2H), 7.95 (d, *J* = 7.8 Hz, 1H); ¹³C NMR δ : 52.4, 66.6, 73.9, 94.6, 118.0, 127.6, 127.6, 128.0 (2C), 128.7, 130.3, 132.9, 133.7, 138.9, 139.7, 1C is missing; HRMS-ESI: *m/z* [M+H]⁺ calcd for C₁₈H₁₉BrNO : 344.0662; found : 344.0650.

(2R,4R) 3-allyl-4-(2-methoxyphenyl)-4-phenyloxazolidine.

Yellow oil, $[\alpha]_{23}^{D} - 22.2$ (*c* 0.8, CH₂Cl₂); ¹H NMR δ : 3.07 (dd, J = 14.2, 7.0 Hz, 1H), 3.23 (dd, J = 14.2, 6.2 Hz, 1H), 3.76 (dd, J = 7.7, 7.2 Hz, 1H), 3.78 (s, 3H), 4.01 (dd, J = 8.0, 7.2 Hz, 1H), 4.18 (dd, J = 8.0, 7.7 Hz, 1H), 4.82 (dm, J = 9.0 Hz, 1H), 4.88 (dm, J = 15.2 Hz, 1H), 5.62 (m, 1H), 5.65 (s, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 7.12-7.32 (m, 3H), 7.44 (d, J = 7.0 Hz, 2H), 7.82 (dd, J = 7.5, 1.5 Hz, 1H), ¹³C NMR δ : 52.5, 55.7, 66.5, 73.9, 89.7, 110.7, 117.6, 120.7, 127.7, 128.1, 128.6, 128.8, 12.9.9, 134.1, 140.1, 158.5, 1C is missing; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₉H₂₂NO₂: 296.1651; found : 296.1651.

(2R,4R) 3-allyl-2-(2-furyl)-4-phenyloxazolidine.

Orange oil, Obtained after purification by column chromatography as a 4:1 mixture of diastereomers. Major isomer : ¹H NMR δ : 3.21 (dd, J = 14.2, 7.2 Hz, 1H), 3.33 (dd, J = 14.2, 4.7 Hz, 1H), 3.82 (dd, J = 8.7, 7.5 Hz, 1H), 4.04 (dd, J = 8.7, 6.7 Hz, 1H), 4.23 (dd, J = 7.5, 6.7 Hz, 1H), 4.97 (dm, J = 10.2 Hz, 1H), 5.03 (dm, J = 18.2 Hz, 1H), 5.35 (s, 1H), 5.71 (m, 1H), 6.37 (m, 1H), 6.54 (d, J = 3.2 Hz, 1H), 7.25-7.52 (m, 6H); ¹³C NMR δ : 53.7, 66.9, 73.5, 89.8, 109.2, 110.2, 117.8, 127.9, 128.2, 128.6, 134.0, 139.2, 143.1, 153.8 ; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₆H₁₈NO₂ : 256.1338; found : 256.1339.

(2R,4R) 3-allyl-2-(3-furyl)-4-phenyloxazolidine.

Yellow oil, $[\alpha]_{23}^{D}$ - 15.0 (*c* 1, CH₂Cl₂);¹H NMR δ : 3.21 (d, *J* = 7.0 Hz, 2H), 3.80 (dd, *J* = 8.0, 7.7 Hz, 1H), 4.02 (dd, *J* = 8.0, 7.2 Hz, 1H), 4.22 (dd, *J* = 7.7, 7.2 Hz, 1H), 4.95 (dm, *J* = 9.2 Hz, 1H), 4.99 (dm, *J* = 17.0 Hz, 1H), 5.26 (s, 1H), 5.69 (m, 1H), 6.60 (s, 1H), 7.24-7.38 (m, 6H), 7.57 (s, 1H); ¹³C NMR δ : 53.0, 66.6, 73.6, 89.5, 109.4, 117.8, 126.1, 127.8, 127.9, 128.6, 134.0, 140.0, 141.9, 143.6; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₆H₁₈NO₂ : 256.1338; found : 256.1333.

(2R,4R) 3-allyl-2-pentyl-4-phenyloxazolidine.

Yellow oil, $[\alpha]_{23}^{D}$ - 90.5 (*c* 0.4, CH₂Cl₂); ¹H NMR δ : 0.91 (t, *J* = 6.8 Hz, 3H), 1.20-1.80 (m, 8H), 3.13 (dd, *J* = 14.2, 7.0 Hz, 1H), 3.27 (dd, *J* = 14.2, 6.0 Hz, 1H), 3.67 (dd, *J* = 7.9, 7.8 Hz, 1H), 3.89 (dd, *J* = 7.8, 7.3 Hz, 1H), 4.12 (dd, *J* = 7.9, 7.3 Hz, 1H), 4.33 (dd, *J* = 6.2, 2.7 Hz, 1H), 5.00 (dm, *J* = 10.2 Hz, 1H), 5.07 (dm, *J* = 17.2 Hz, 1H), 5.78 (m, 1H), 7.2-7.42 (m, 5H); ¹³C NMR δ : 14.2, 22.8, 24.3, 32.1,

35.0, 54.1, 67.3, 73.2, 96.4, 117.2, 127.8, 128.5, 129.2, 135.3, 140.7; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₇H₂₆ON: 260.2014; found: 260.2019.

(2R,4R) 3-allyl-2-isopropyl-4-phenyloxazolidine.

Yellow oil, $[\alpha]_{23}^{D}$ - 10.5.1 (*c* 1, CH₂Cl₂);¹H NMR δ : 1.02 (d, *J* = 6.6 Hz, 6H), 1.89 (m, 1H), 3.14 (dd, *J* = 14.2, 7.2 Hz, 1H), 3.28 (dd, *J* = 14.2, 6.0 Hz, 1H), 3.61 (dd, *J* = 8.5, 7.0 Hz, 1H), 3.94 (dd, *J* = 8.5, 7.3 Hz, 1H), 4.14 (dd, *J* = 7.5, 7.0 Hz, 1H), 4.19 (d, *J* = 3.2 Hz, 1H), 4.99 (dm, *J* = 17.0 Hz, 1H), 5.04 (dm, *J* = 11.0 Hz, 1H), 5.79 (m, 1H), 7.15-7.45 (m, 5H); ¹³C NMR δ : 15.9, 19.3, 32.2, 54.9, 67.7, 74.1, 100.6, 117.5, 127.9, 128.1, 128.6, 135.6, 140.8; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₅H₂₂NO : 232.1701; found : 232.1698.

General procedure for the preparation of oxazolidines 4.

A solution of aminoalcohol (1 mmol) and the relevant aldehyde (1 mmol) in toluene (5 mL) in the presence of PTSA (10 mg, 0.05 mmol) was heated to reflux for 24h in a Dean-Stark apparatus. The solvent was removed under reduced pressure to give the oxazolidine which was used without purification in the next step.

(2R,4R)-2,4-diphenyl 3-[(R) 1-phenylallyl]oxazolidine 4a.

Orange oil, $[\alpha]_{23}^{D}$ - 22.6 (*c* 1, CH₂Cl₂); ¹H NMR δ : 3.80 (dd, *J* = 7.7, 7.0 Hz, 1H), 4.13 (dd, *J* = 7.2, 7.0 Hz, 1H), 4.23 (dd, *J* = 7.7, 7.2 Hz, 1H), 4.41 (d, *J* = 8.7 Hz, 1H), 5.02 (dm, *J* = 10.2 Hz, 1H), 5.13 (dm, *J* = 17.2 Hz, 1H), 5.64 (s, 1H), 6.00 (m, 1H), 7.05-7.35 (m, 13H), 7.60 (d, *J* = 7.7 Hz, 2H); ¹³C NMR δ : 66.7, 70.8, 73.5, 95.1, 117.1, 127.0, 127.2, 127.8, 127.9, 128.0, 128.10, 128.15, 128.20, 128.7, 138.7, 140.7, 141.6, 142.0; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₂₄H₂₄NO: 342.1858; found: 342.1857.

(2R,4R) 2,4-diphenyl-3-[(R) 1-(4-chlorophenyl)allyl]oxazolidine 4b.

Brown oil, $[\alpha]_{23}^{D_{23}}$ - 30.0 (*c* 0.12, CH₂Cl₂);¹H NMR δ : 3.82 (dd, *J* = 8.0, 7.5 Hz, 1H), 4.07 (dd, *J* = 7.5, 7.2 Hz, 1H), 4.24 (dd, *J* = 8.2, 7.2 Hz, 1H), 4.38 (d, *J* = 9.0 Hz, 1H), 5.06 (dm, *J* = 16.5 Hz, 1H), 5.14 (dm, *J* = 16.5 Hz, 1H), 5.61 (s, 1H), 5.95 (m, 1 H), 6.98-7.37 (m, 12 H), 7.57 (d, *J* = 7.7 Hz, 2H); ¹³C NMR δ : 66.9, 69.9, 73.3, 94.8, 117.6, 127.0, 127.7, 127.9, 128.1, 128.1, 128.2, 129.8, 132.7, 137.8, 139.2, 141.3, 141.4; HRMS-ESI: *m/z* [M+H]⁺ calcd for C₂₄H₂₃ClNO: 376.1468; found: 376.1467.

(2*R*,4*R*) 2-(4-chlorophenyl)-4-phenyl-3-[(*R*) 1-phenylallyl]oxazolidine 4c.

Orange oil, ¹H NMR δ : 3.71 (dd, J = 7.7, 7.1 Hz, 1H), 4.07 (dd, J = 7.1, 7.3 Hz, 1H), 4.16 (dd, J = 7.7, 7.3 Hz, 1H), 4.33 (d, J = 8.9 Hz, 1H), 5.00 (dm, J = 10.2 Hz 1H), 5.09 (dm, J = 17.1 Hz, 1H), 5.56 (s, 1H), 5.93 (m, 1H), 7.00-7.12 (m, 5H), 7.21 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), ¹³C NMR δ : 66.7 (2C), 70.6, 73.4, 94.4, 117.6, 127.1, 127.4, 127.8, 128.2 (2C), 128.3, 128.7, 129.3, 133.9, 138.2, 140.4, 140.6, 141.6; HRMS-ESI: m/z [M+H]⁺ calcd for C₂₄H₂₃ClNO: 376.1468; found: 376.1457.

General procedure for the preparation of pyrrolidines

Pyrrolidines 2.

To a solution of oxazolidine (0.5 mmol) in CH_2Cl_2 (2 mL) was added in one portion $Cp_2Zr(H)Cl$ (141 mg, 0.55 mmol) at r.t. The reaction was stirred until the suspension was completely soluble (c.a. 1-2h). The deep yellow solution was cooled to 0°C and the Lewis acid was added dropwise and the resulting mixture was stirred for two hours. Water (1 mL) was added the heterogenous mixture was stirred for one hour. The aqueous layer was extracted with CH_2Cl_2 (3x2 mL), the organic layers were combined, washed with water (2 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel using Petroleum ether : EtOAc : NEt₃ (80:20:1) as eluant to give the pyrrolidine as an oil.

(*R*) 2-phenyl-2-((*S*)-2-phenylpyrrolidin-1-yl]ethanol 2a.⁵

(yield 62%) $[\alpha]_{23}^{D}$ - 207 (*c* 1, CH₂Cl₂); ¹H NMR δ : 1.58-1.75 (m, 2H), 1.80-2.10 (m, 2H), 2.31 (q, *J* = 8.5 Hz, 1H), 3.13 (ddd, *J* = 8.7, 6.5, 2.2 Hz, 1H), 3.44 (t, *J* = 8.0 Hz, 1H), 3.50 (dd, *J* = 10.2, 5.0 Hz, 1H), 3.75 (dd, *J* = 10.5, 5.0 Hz, 1H), 3.97 (t, *J* = 10.2 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.28-7.42 (m, 8H); ¹³C NMR δ : 22.2, 34.5, 45.2, 61.3, 61.9, 64.5, 127.3, 127.7, 127.8, 128.2, 128.8, 129.4, 134.5, 143.4; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₈H₂₂ON: 268.1701; found: 268.1699.

(*R*) 2-phenyl-2-[(*S*)-2-(2-bromo-phenyl)pyrrolidin-1-yl]ethanol 2b.

(yield 53%) $[\alpha]_{23}^{D}$ -116 (*c* 1, CH₂Cl₂); ¹H NMR δ : 1.52 (m, 1H), 1.66 (m, 1H), 1.84 (m, 1H), 2.14 (m, 1H),), 2.35 (q, J = 8.4 Hz, 1H), 2.67 (br s, 1H), 3.12 (td, J = 8.1, 1.8 Hz, 1H), 3.57 (dd, J = 10.2, 5.5 Hz, 1H), 3.75 (dd, J = 9.2, 5.5 Hz, 1H), 3.93-4.02 (m, 2H), 7.12-7.16 (m, 3H), 7.30-7.40 (m, 4H), 7.56 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H); ¹³C NMR δ : 22.4, 32.9, 46.4, 62.2, 62.9, 63.7, 123.6, 127.8, 128.0, 128.2, 128.3, 129.5, 132.9, 133.8, 135.0, 142.9; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₈H₂₁BrNO: 346.0807; found: 346.0801.

(*R*) 2-phenyl-2-[(*S*)-2-(2-methoxyphenyl)pyrrolidin-1-yl)ethanol 2c.

(yield 55%), $[\alpha]_{23}^{D}$ -149 (*c* 1, CH₂Cl₂); ¹H NMR δ : 1.57 (m, 1H,), 1.66 (m, 1H,), 1.84 (m, 1H,), 2.14 (m, 1H), 2.35 (q, J = 8.4 Hz, 1H), 2.52 (br s, 1H), 3.12 (td, J = 8.4, 1.8 Hz, 1H), 3.57 (dd, J = 10.2, 5.5 Hz, 1H), 3.75 (dd, J = 9.2, 5.5 Hz, 1H), 3.93-4.02 (m, 2H), 7.12-7.16 (m, 3H), 7.30-7.40 (m, 4H), 7.56 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H); ¹³C NMR δ : 22.6, 32.6, 45.8, 55.7, 61.6, 62.8, 110.7, 121.0, 127.6, 127.9, 128.3, 129.4, 131.6, 135.4, 157.3; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₉H₂₄BrNO₂ : 298.1807; found: 298.1803.

(*R*) 2-phenyl-2[(*S*)-2-(2-furyl)pyrrolidin-1-yl]ethanol 2d.

(yield 41%), $[\alpha]_{23}^{D}$ -223 (*c* 0.15, CH₂Cl₂); ¹H NMR δ : 1.67 (m, 1H), 1.93 (m, 3H), 2.27 (q, *J* = 8.2 Hz, 1H), 2.48 (br s, 1H), 3.04 (td, *J* = 7.2, 2.2 Hz, 1H), 3.57 (dd, *J* = 10.0, 4.7 Hz, 1 H), 3.71 (t, *J* = 7.5 Hz, 1H), 3.80 (dd, *J*= 10.2, 4.7 Hz, 1H), 1H), 3.94 (t, *J*=10.0 Hz, 1H), 6.28 (d, *J* = 3.0 Hz, 1H), 6.36 (dd, *J* = 3.2, 3.0 Hz, 1H), 7.18 (d, *J* = 7.5 Hz, 2H), 7.30-7.40 (3H), 7.43 (m, 1H); ¹³C NMR δ : 22.4, 30.4, 45.4, 57.8, 61.6, 62.8, 107.6, 110.2, 127.9, 128.3, 129.5, 142.02, 2C are missing, HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₆H₂₀NO₂: 258.1494; found: 258.1502.

(*R*) 2-phenyl-2-[(*S*)-2-(3-furyl)pyrrolidin-1-yl]ethanol 2e.

(yield 43%), $[\alpha]_{23}^{D}$ -175 (*c* 1, CH₂Cl₂); ¹H NMR δ : 1.68 (m, 2H), 1.92 (m, 2H), 2.25 (q, *J* = 8.4 Hz, 1H), 3.05 (ddt, *J* = 8.7, 7.2, 1.5 Hz, 1H), 3.10 (br s, 1H), 3.48 (t, *J* = 7.6 Hz, 1H), 3.56 (dd, *J* = 9.2, 4.2 Hz, 1H), 3.89 (dd, *J* = 10.7, 6.7 Hz, 1H), 3.97 (t, *J* = 10.5 Hz, 1H), 6.43 (s, 1H), 7.13 (dd, *J* = 7.5, 1.7 Hz, 2H), 7.30-7.37 (m, 3H), 7.44 (s, 2H); ¹³C NMR δ : 22.0, 32.7, 44.8, 55.2, 61.2, 61.6, 108.9, 127.1, 127.7, 128.1, 129.4, 134.7, 140.2, 143.8; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₆H₂₀NO₂: 258.1494; found: 256.1490.

(*R*) 2-phenyl-2-[(*S*)-2-pentyl)pyrrolidin-1-yl]ethanol 2f.

(yield 52%), $[\alpha]_{23}^{D}$ -136 (*c* 0.35, CH₂Cl₂); ¹H NMR δ : 0.91 (t, *J* = 6.1 Hz, 3H), 1.20-1.88 (m, 12H), 2.16 (q, *J* = 8.5 Hz, 1H), 2.54 (m, 1H), 2.89 (ddd, *J* = 9.0, 6.5, 2.5, 1H), 3.20 (br s, 1H), 3.63 (dd, *J* = 9.5, 4.5 Hz, 1H), 3.96 (dd, *J* = 10.7, 9.5 Hz, 1H), 4.06 (dd, *J* = 10.7, 4.5 Hz, 1H), 7.15 (dd, *J* = 7.7, 2.0 Hz, 2H), 7.29-7.36 (m, 3H); ¹³C NMR δ : 14.0, 22.0, 22.7, 25.8, 29.7, 32.2, 34.0, 45.3, 59.0, 60.9, 62.0, 127.7, 128.0, 129.3, 135.2; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₇H₂₈NO: 262.2171; found: 262.2177.

(*R*) 2-phenyl-2-[(*S*)-2-isopropylpyrrolidin-1-yl]ethanol 2g.

⁵ L.E. Burgess, A. I. Meyers, J. Org. Chem, **1992**, 57, 1656-1662.

(major isomer obtained using TiCl₄ as Lewis acid), (yield 49%), $[\alpha]_{23}^{D}$ -112 (*c* 0.13, CH₂Cl₂); ¹H NMR δ : 0.89 (d, *J* = 6.9 Hz, 3H), 0.91 (d, *J* = 6.8 Hz, 3H), 1.50 (m, 4H), 2.11 (m, 1H), 2.22 (q, *J* = 6.5 Hz, 1H), 2.59 (m, 1H), 3.35 (br s, 1H), 2.92 (m, 1H), 3.63 (dd, *J* = 16.5, 11.2 Hz, 1H), 4.05 (dd, *J* = 16.5, 11.2, 1H), 4.06 (t, *J* = 11.2 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.28-7.38 (m, 3H); ¹³C NMR δ : 15.1, 20.5, 22.8, 23.8, 45.7, 61.2, 62.3, 63.5, 127.9, 128.2, 129.5, 135.1; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₅H₂₄NO: 234.1858; found: 234.1850.

(*R*) 2-phenyl-2-[(*R*)-2-isopropylpyrrolidin-1-yl]ethanol.

(major isomer obtained using BF₃[·]OEt₂ as Lewis acid), ¹H NMR δ : 0.73 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H), 1.35-1.65 (m, 4H), 2.77 (m, 2H), 3.06 (m, 1H), 3.79-3.95 (m, 3H), 7.25-7.40 (m, 5H).

Pyrrolidines 5 were prepared according to the previous procedure using 2 equivalents of $Cp_2Zr(H)Cl$ with respect to the oxazolidines and BF₃.OEt₂ (1 equivalent) as Lewis acid.

(*R*) 2-phenyl-2[(2*R*,5*R*)-2,5-diphenylpyrrolidin-1-yl]ethanol 5a.⁴

(yield 52%) $[\alpha]^{25}_{D}$ +41 (*c* 0.25, EtOH); ¹H NMR δ : 1.67 (m, 2H), 2.52 (m, 2H), 3.44 (m, 2H), 3.94 (t, J = 6.6 Hz, 1H), 4.40 (d, J = 7.0 Hz, 2H), 6.78 (d, J = 7.5 Hz, 2H), 6.90-7.50 (m, 13H); ¹³C NMR δ : 33.8, 63.7, 63.8, 66.2, 128.6, 127.2, 127.7, 128.4, 129.6, 138.3, 146.7; HRMS-ESI: m/z [M+H]⁺ calcd for C₂₄H₂₆NO: 344.2014; found: 344.2014.

(*R*) 2-phenyl-2[(2*R*,5*R*)-2-(4-chlorophenyl)-5-phenylpyrrolidin-1-yl]ethanol 5b.

(yield 48%) $[\alpha]_{D}^{25}$ +62 (*c* 0.15, EtOH); ¹H NMR δ : 1.68 (m, 1H), 1.75 (m, 1H), 2.05 (br s, 1H), 2.57 (m, 2H), 3.51 (dd, *J* = 10.7, 2.2 Hz, 1H), 3.59 (dd, *J* = 10.7, 6.2 Hz, 1H), 3.99 (t, *J* = 6.5 Hz, 1H), 4.42 (dd, *J* = 8.2, 2.2 Hz, 1H), 4.52 (dd, *J* = 7.7, 1.7 Hz, 1H), 6.78 (d, *J* = 7.5 Hz, 2 H), 7.02-7.35 (m, 13 H); ¹³C NMR δ : 33.2, 33.4, 63.5, 63.6, 65.2, 65.9, 127.0, 127.3, 127.5, 127.9, 128.5 (2C), 128.6, 132.3, 138.3, 145.9, 146.3; HRMS [M+H]⁺ calcd for C₂₄H₂₅CINO: 378.1628; found: 378.1625.

(2*R*) -2-pentyl-pyrrolidinium chloride.

A solution of pyrrolidine **2f** (125 mg, 0.48 mmol) in methanol (20 mL) with 10% Pd/C (25 mg) was charged with hydrogen at room temperature for 24 h. After filtration of the catalyst over a plug of celite, HCl (1N, 0.55 mL), was added to the filtrate. The solvent was removed under vaccum and the residue was heated at 60 °C at 0.1 mm Hg for 1h to give the title compound as a orange oil (65 mg, 76%). $[\alpha]^{25}_{D}$ –2.4 (*c* 1, MeOH); ¹H NMR δ : 0.82 (t, *J* = 6.7 Hz, 3H), 1.18-1.44 (m, 6H), 1.52-1.76 (m, 2H), 1.78-2.18 (m, 4H), 3.16-3.50 (m, 3H), 9.22 (br s, 1H), 9.88 (br s, 1H); ¹³C NMR δ :14.4, 22.9, 23.9, 27.0, 30.7, 31.8, 32.6, 44.8, 60.8; HRMS-ESI: *m*/*z* [M-Cl]⁺ calcd for C₉H₂₀N⁺: 142.1596; found:142.1593.

