Supporting Information

A stereoselective Route Towards Polyhydroxylated Piperidines. A Total Synthesis ofDeoxymannojirimycin.Cécile Boglio, Sebastian Stahlke, Serge Thorimbert* and Max Malacria*Institut de chimie moléculaire (FR 2769). Laboratoire de Chimie Organique (UMR CNRS
7611). Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
Max.malacria@upmc.fr
Table of Contents
General Experimental Methods S-2
Experimental procedure and characterization data :
For compounds $\mathbf{7 b}, \mathbf{7 c}, \mathbf{8 b}, \mathbf{8 c}, \mathbf{6}, \mathbf{1 0}, 5,4,12,13,15,14,16$ and 17 S-2
Copy of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17 in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ at $95^{\circ} \mathrm{C}$ S-13
Comparison of NMR data of $\mathbf{1 7}$ with literature S-13
Experimental procedure and characterization data for $\mathbf{1 . H C l}$ S-14
Comparison of NMR data of $\mathbf{1 . H C l}$ with literature S-14
Copies of NMR spectra of compound $\mathbf{1 . H C l}$ S-15
Copies of ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{7 b}, \mathbf{6}, 10$ and 17 S-18

General Experimental Methods : Reagents and chemicals were purchased from commercial sources and used as received. All reactions requiring anhydrous conditions were performed under a positive pressure of argon in oven-dried glassware. All solvents were purified and distilled by standard methods. Thin layer chromatography (TLC) was performed on 0.25 mm E. Merck silica gel (60F-254) plates using UV light, p-anisaldehyde or ninhydrine. Column chromatography was carried out on Merck silica gel $60(40-63 \mu \mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz , and ${ }^{13} \mathrm{C}$ NMR at 100 MHz with the sample solvent being CDCl_{3} unless otherwise noted (Bruker ARX 400). Chemical shifts are given in ppm, referenced to the residual proton resonances of the solvents. Coupling constants (J) are given in Hertz (Hz). The letters $\mathrm{m}, \mathrm{s}, \mathrm{d}, \mathrm{t}$, q mean respectively multiplet, singulet, doublet, triplet, quartet. The letters br mean the signal is broad. IR spectra were recorded on a Bruker Tensor 27 using ATR method. Elemental analysis were carried out by the "Service de microanalyse", ICSN CNRS, 91198 Gif sur Yvette, France or by the "Service de microanalyse", SIARE, 4 place Jussieu 75252 Paris cedex 05, France.

Compounds $7 \mathbf{a}^{1}$ and $\mathbf{8 a}{ }^{2}$ have been all ready described by us (${ }^{1}$ Commander, C.; Thorimbert, S.; Malacria, M. J. Org. Chem. 2003, 68, 5588-5595; ${ }^{2}$ Branchadell, V.; Moreno-Manas, M.; Pleixtats, R.; Thorimbert, S.; Commander, C.; Boglio, C.; Malacria, M. J. Organomet. Chem. 2003, 687, 337-345)

(E)-1,4-dimethyloxycarbonyloxy-2-(dimethylphenyl)silyl-but-2-ene (7b)

Triethylsilane ($1.6 \mathrm{~mL}, 9.89 \mathrm{mmol}, 1$ equiv.) was added to a solution of 1,4 -dimethyloxycarbonyloxybut-2-yne ($2.005 \mathrm{~g}, 9.89 \mathrm{mmol}$) in dry THF (25 mL) at room temperature. Then $\mathrm{H}_{2} \mathrm{PtCl}_{6} .6 \mathrm{H}_{2} 0(1.98 \mu \mathrm{~mol}, 0.2 \mathrm{~mL}$ of a 0.01 M solution in THF, 0.02 mol \%) was added dropwise and the resulting mixture was refluxing for 24 h . After evaporation of the solvent under vacuum, the crude was purified by flash chromatography ($\mathrm{PE} / \mathrm{EA}=95 / 5$) or by distillation ($\mathrm{bp}=140^{\circ} \mathrm{C}, 7.5 .10^{-3} \mathrm{mmHg}$) to afford the silane $7 \mathrm{~b}(2.82 \mathrm{~g}, 18.1 \mathrm{mmol}, 90 \%$ yield) as a colorless oil.
$\mathrm{R}_{\mathrm{f}}=0.25(\mathrm{PE} / \mathrm{EA}=9 / 1) ;$ IR : 2950, 2900, 1740, 1610, 1430, 1220, 1150, 1020, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.60(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=2.7\left(\mathrm{CH}_{2}\right), 7.2\left(\mathrm{CH}_{3}\right), 54.8\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{3}\right), 64.7\left(\mathrm{CH}_{2}\right), 66.1\left(\mathrm{CH}_{2}\right)$, $137.3\left(\mathrm{C}_{\mathrm{q}}\right), 138.3(\mathrm{CH}), 155.6\left(2 * \mathrm{C}_{\mathrm{q}}\right)$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Si}(318.44)$: C $52.81, \mathrm{H} 8.23$; Found: C 52.87, H 8.31.

(E)-1,4-dimethyloxycarbonyloxy-2-(dimethylphenyl)silyl-but-2-ene (7c)

Dimethylphenylsilane ($10 \mathrm{~mL}, 65 \mathrm{mmol}, 1.1$ equiv.) was added to a solution of $1,4-$ dimethyloxycarbonyloxybut-2-yne ($12 \mathrm{~g}, 59 \mathrm{mmol}$) in dry THF (30 mL) at room temperature. Then $\mathrm{H}_{2} \mathrm{PtCl}_{6} \cdot 6 \mathrm{H}_{2} 0(1.2 \square \mathrm{~mol}, 1.2 \mathrm{~mL}$ of a 0.001 M solution in THF, $0.001 \mathrm{~mol} \%$) was added dropwise and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 5 h . After evaporation of the solvent under vacuum, the crude was purified by flash chromatography ($\mathrm{PE} / \mathrm{EA}=9 / 1$) to afford the silane $7 \mathrm{c}(20.9 \mathrm{~g}, 61.8 \mathrm{mmol}, 95 \%$ yield) as a colorless oil.
$\mathrm{R}_{\mathrm{f}}=0.25(\mathrm{PE} / \mathrm{EA}=9 / 1) ; \mathrm{IR}: 2957,1746,1442,1244,1111,957,818,790,777,733,701 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=0.43(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.82$ (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=-3.00\left(2 * \mathrm{CH}_{3}\right), 54.5\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{3}\right), 64.6\left(\mathrm{CH}_{2}\right), 66.0\left(\mathrm{CH}_{2}\right), 127.8$ $(2 * \mathrm{CH}), 129.3(\mathrm{CH}), 134.0(2 * \mathrm{CH}), 136.7\left(\mathrm{C}_{\mathrm{q}}\right), 138.2(\mathrm{CH}), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 155.3\left(\mathrm{C}_{\mathrm{q}}\right), 155.5$ $\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Si}$ (338.12) : C 56.78 , H 6.55 ; Found: C 56.73, H 6.67.

(E)-[(4-Methoxycarbonyloxy-2-triethylsilanyl-but-2-enyl)-(toluene-4-sulfonyl)-amino]acetic acid methyl ester (8b)

Palladium acetate ($3.53 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.05$ equiv.) and diphenylphosphinoethane (12.4 $\mathrm{mg}, 0.032 \mathrm{mmol}, 0.10$ equiv.) were diluted in $i-\mathrm{PrOH}(1 \mathrm{~mL})$ and heated at $50^{\circ} \mathrm{C}$ for 30 min . The catalyst was then transfered with a cannula to a solution of N -tosylglycinemethylester ($150.7 \mathrm{mg}, 0.62 \mathrm{mmol}, 2$ equiv.), the dicarbonate $7 \mathbf{b}$ ($100 \mathrm{mg}, 0.314 \mathrm{mmol}$) and triethylamine ($0.09 \mathrm{~mL}, 0.62 \mathrm{mmol}, 2$ equiv.) in $i-\mathrm{PrOH}(1 \mathrm{~mL})$ at the same temperature. The resulting reaction mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$, then hydrolysed with a solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. After extraction with diethyl ether the organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. After purification by
flash chromatography ($\mathrm{PE} / \mathrm{EA}=8 / 2$) $\mathbf{8 b}(114 \mathrm{mg}, 0.24 \mathrm{mmol}, 75 \%$ yield) was obtained as a colorless oil. $\mathrm{Rf}_{\mathrm{f}}=0.25(\mathrm{PE} / \mathrm{EA}=8 / 2) ; \mathrm{IR}: 2950,2875,1740,1440,1340,1260,1160,1090$, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.69(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.08(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.6\left(3 * \mathrm{CH}_{2}\right), 7.4\left(3 * \mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 45.7\left(\mathrm{CH}_{2}\right), 45.75\left(\mathrm{CH}_{2}\right), 52.0$ $\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{3}\right), 64.3\left(\mathrm{CH}_{2}\right), 127.6(2 * \mathrm{CH}), 129.6(2 * \mathrm{CH}), 136.3\left(\mathrm{C}_{\mathrm{q}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.1$ $(\mathrm{CH}), 143.6\left(\mathrm{C}_{\mathrm{q}}\right), 155.6\left(\mathrm{C}_{\mathrm{q}}\right), 169.3\left(\mathrm{C}_{\mathrm{q}}\right) ; \mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{SSi}(485.67):$ C 54.41, H 7.26, N 2.88 ; Found : C 54.30, H 7.44, N 3.00.

(E)-[[2-(Dimethyl-phenyl-silanyl)-4-methoxycarbonyloxy-but-2-enyl]-(toluene-4-sulfonyl)-amino]-acetic acid methyl ester (8c)

Palladium acetate ($300 \mathrm{mg}, 1.3 \mathrm{mmol}, 0.025$ equiv.) and diphenylphosphinoethane (1.050 g , $2.6 \mathrm{mmol}, 0.05$ equiv.) were diluted in $i-\mathrm{PrOH}(110 \mathrm{~mL})$ and heated at $55^{\circ} \mathrm{C}$ for 30 min . The catalyst was then transfered with a cannula to a solution of N-tosylglycinemethylester (15.5 g , $63.4 \mathrm{mmol}, 1.2$ equiv.), the dicarbonate $7 \mathbf{c}(17.92 \mathrm{~g}, 53 \mathrm{mmol})$ and triethylamine ($8.9 \mathrm{~mL}, 64$ mmol, 1.2 equiv.) in $i-\mathrm{PrOH}(140 \mathrm{~mL})$ at the same temperature. The resulting solution was stirred for 1 h at $55^{\circ} \mathrm{C}$, then cooled with an ice bath and aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added. After extraction with diethyl ether the organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. After purification by flash chromatography $(\mathrm{PE} / \mathrm{EA}=85 / 15) \mathbf{8 c}(19.06 \mathrm{~g}, 37.7 \mathrm{mmol})$ was obtained in 71% yield as a 95/5 mixture of E / Z stereoisomers.
white solid, $\mathrm{mp}: 92-94^{\circ} \mathrm{C} ; \mathrm{Rf}_{\mathrm{f}}=0.25$ ($\mathrm{PE} / \mathrm{EA}=8 / 2$) ; IR: 2954, 1745, 1598, 1440, 1340, 1262, 1158, 1092, 911.0, 815, 734, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.48(\mathrm{~s}, 6 \mathrm{H}), 2.44$ ($\mathrm{s}, 3 \mathrm{H}$), $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-3.3\left(2 * \mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 45.6\left(\mathrm{CH}_{2}\right), 45.7$ $\left(\mathrm{CH}_{2}\right)$, $51.7\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{3}\right), 64.2\left(\mathrm{CH}_{2}\right), 127.5(2 * \mathrm{CH}), 127.9(2 * \mathrm{CH})$, $129.4(3 * \mathrm{CH})$, $134.1(2 * \mathrm{CH}), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{C}_{\mathrm{q}}\right) 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.1(\mathrm{CH}), 143.5\left(\mathrm{C}_{\mathrm{q}}\right), 155.5\left(\mathrm{C}_{\mathrm{q}}\right), 168.7$ $\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{SSi}(505.66)$: C 57.01, H 6.18, N 2.77 ; Found : C 57.00, H 6.22, N 2.71 .

(E)-[[2-(Dimethyl-phenyl-silanyl)-4-hydroxy-but-2-enyl]-(toluene-4-sulfonyl)-amino]acetic acid methyl ester (6)

Potassium carbonate ($800 \mathrm{mg}, 5.8 \mathrm{mmol}, 0.2$ equiv.) was added to a solution of aminosilane $7 \mathrm{c}(15 \mathrm{~g}, 29 \mathrm{mmol})$ in $\mathrm{MeOH}(120 \mathrm{~mL})$. The resulting suspension was stirred at room temperature. After 2 h , the methanol was removed under reduced pressure and AcOEt was added. The organic phase was washed with water. After extraction with AcOEt, the organic layers were washed with brine, dried over MgSO_{4} and concentrated to afford 6 ($12.98 \mathrm{~g}, 29$ mmol, quantitative yield). The conversion was quantitative by NMR.
$\mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE} / \mathrm{EA}=7 / 3) ;$ IR: 3539, 2953, 1739, 1598, 1338, 1248, 1212, 1109, 815, 736, 701 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.44(\mathrm{~s}, 6 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H})$, 4.10 (s, 2H), 4.19 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$ $7.37(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ -3.4 $\left(2 * \mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 45.7\left(2 * \mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 58.6\left(\mathrm{CH}_{2}\right), 127.3(2 * \mathrm{CH}), 127.7$ $(2 * \mathrm{CH}), 129.1(\mathrm{CH}), 129.4(2 * \mathrm{CH}), 133.9(2 * \mathrm{CH}), 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 137.1(\mathrm{CH}), 143.4$ $\left(\mathrm{C}_{\mathrm{q}}\right), 148.2\left(\mathrm{C}_{\mathrm{q}}\right), 169.1\left(\mathrm{C}_{\mathrm{q}}\right)$.
($2 R^{*}, \quad 3 R^{*}$)-[[2-(Dimethyl-phenyl-silanyl)-3-hydroxymethyl-oxiranylmethyl]-(toluene-4-sulfonyl)-amino]-acetic acid methyl ester (10)

A solution of the allylic alcohol $\mathbf{6}(10.1 \mathrm{~g}, 22.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Then m-CPBA ($12 \mathrm{~g}, 50 \mathrm{mmol}, 70 \% \mathrm{~m}$-CPBA in $\mathrm{H}_{2} \mathrm{O}, 2.2$ equiv.) was added by portion. The resulting suspension was stirred at room temperature for 3 h . The reaction mixture was filtered over celite and then treated with aqueous NaOH (50 mL of a 1 M solution). The organic layer was seperated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3^{*} 100 \mathrm{~mL}\right)$. The combined organic layers were neutralized with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ washed with brine, dried over MgSO_{4} and evaporated under reduced pressure. The product could be purified on a silica gel column in order to afford $10(7.86 \mathrm{~g}, 16.95 \mathrm{mmol}, 75 \%$ yield $)$ as a colorless oil.
$\mathrm{R}_{\mathrm{f}}=0.25(\mathrm{PE} / \mathrm{EA}=7 / 3) ;$ IR: 3538, 2953, 1746, 1598, 1428, 1338, 1250, 1213, 1156, 1097, $837,735,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.48(\mathrm{~s}, 3 \mathrm{H}), 0.54(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.97(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.34 to $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.54$ to $7.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.0\left(\mathrm{CH}_{3}\right)$, $4.9\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 47.2\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{C}_{\mathrm{q}}\right), 58.9(\mathrm{CH}), 60.2\left(\mathrm{CH}_{2}\right)$, $127.4(2 * \mathrm{CH}), 127.9(2 * \mathrm{CH}), 129.5(2 * \mathrm{CH}), 129.7(\mathrm{CH}), 134.4(2 * \mathrm{CH}), 135.1\left(\mathrm{C}_{\mathrm{q}}\right), 136.0$ $\left(\mathrm{C}_{\mathrm{q}}\right), 143.6\left(\mathrm{C}_{\mathrm{q}}\right), 168.9\left(\mathrm{C}_{\mathrm{q}}\right)$; HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{SSiNa} 486.1383$, found 486.1373
$\left(2 R^{*}, 3 R^{*}\right)$-[[2-(Dimethyl-phenyl-silanyl)-3-formyl-oxiranylmethyl]-(toluene-4-sulfonyl)-aminol-acetic acid methyl ester (5)

A solution of IBX ($15.4 \mathrm{mmol}, 4.3 \mathrm{~g}, 1.1$ equiv.) in DMSO (50 mL) was transfered by a cannula to a solution of the epoxy alcohol $\mathbf{1 0}$ ($14 \mathrm{mmol}, 6.6 \mathrm{~g}$) in DMSO. The resulting mixture was stirred for 3 h at room temperature, then cooled to $0^{\circ} \mathrm{C}$ and aqueous $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$ was added dropwise. Further $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ was added. The solution was filtered off the white precipitate and extracted with ether $(200 \mathrm{~mL})$. The organic layer was then washed with brine (30 mL) and dried over MgSO_{4}.
$\mathrm{R}_{\mathrm{f}}=0.3(\mathrm{PE} / \mathrm{EA}=5 / 5)$; IR: 2953, 1746, 1718, 1597, 1428, 1341, 1253, 1213, 1159, 1041, 917, 838, 815, 736, $700 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.52(\mathrm{~s}, 3 \mathrm{H}), 0.59(\mathrm{~s}, 3 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=18.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ to $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.55$ to $7.61(\mathrm{~m}, 4 \mathrm{H}), 9.44(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=-5.2\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 47.0\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{3}\right)$, $59.8\left(\mathrm{C}_{\mathrm{q}}\right), 61.0$ $(\mathrm{CH}), 127.4(2 * \mathrm{CH}), 128.1(2 * \mathrm{CH}), 129.6(2 * \mathrm{CH}), 130.2(\mathrm{CH}), 133.8\left(\mathrm{C}_{\mathrm{q}}\right), 134.4(2 * \mathrm{CH})$, $135.7\left(\mathrm{C}_{\mathrm{q}}\right), 143.8\left(\mathrm{C}_{\mathrm{q}}\right), 168.5\left(\mathrm{C}_{\mathrm{q}}\right), 198.8(\mathrm{CHO})$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{SSi}(461.13)$: C 57.24, H 5.90, N 3.03 ; Found: C 57.15, H 6.02, N 3.05.
($1 R^{*}, 4 R^{*}, 5 S^{*}, 6 R^{*}$)-1-(Dimethyl-phenyl-silanyl)-5-hydroxy-3-(toluene-4-sulfonyl)-7-oxa -3-aza-bicyclo[4.1.0]heptane-4-carboxylic acid methyl ester (4)

Diazabicycloundecene ($1.21 \mathrm{~mL}, 8.06 \mathrm{mmol}, 1.2$ equiv.) was added to a solution of epoxyaldehyde $5(3.10 \mathrm{~g}, 6.72 \mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$. The solution was stirred for 18 h at room temperature. Then aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ was added and the aqueous layer was extracted with EtOAc ($3 * 100 \mathrm{~mL}$). The organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flash chromatography on silica gel (Pentane/EA $=7 / 3)$ to afford $4(2.42 \mathrm{~g}, 5.24 \mathrm{mmol}, 78 \%$ yield $)$ as a colorless sticky oil at room temperature.
$\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{PE} / \mathrm{EA}=6 / 4) ;$ IR: 3491, 2954, 1736, 1597, 1428, 1329, 1251, 1213, 1158, 1100, 1030, 813, 783, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.31(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 2.42$ (3 H), $3.10(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.56(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 7.22$ to $7.49(\mathrm{~m}, 7 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.9\left(\mathrm{CH}_{3}\right),-5.8\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 40.8\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right)$, $52.6\left(\mathrm{C}_{\mathrm{q}}\right), 58.2(\mathrm{CH}), 60.5(\mathrm{CH}), 66.7(\mathrm{CH}), 127.5(2 * \mathrm{CH}), 128.1(2 * \mathrm{CH}), 129.5(2 * \mathrm{CH})$, $130.0(\mathrm{CH}), 133.8\left(\mathrm{C}_{\mathrm{q}}\right), 134.1(2 * \mathrm{CH})$, $135.7\left(\mathrm{C}_{\mathrm{q}}\right), 143.6\left(\mathrm{C}_{\mathrm{q}}\right), 168.0\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{SSi}(461.13)$: C 57.24, H 5.90, N 3.03 ; Found: C 56.84, H 5.85, N 3.22.
($1 R^{*}, ~ 4 R^{*}, ~ 5 S^{*}, ~ 6 R^{*}$)-5-(tert-Butyl-dimethyl-silanyloxy)-1-(dimethyl-phenyl-silanyl)-3-(toluene-4-sulfonyl)-7-oxa-3-aza-bicyclo[4.1.0]heptane-4-carboxylic acid methyl ester (12)

Imidazole ($0.6 \mathrm{~g}, 8.2 \mathrm{mmol}, 2.0$ equiv.) was added to a solution of alcohol $4(2.0 \mathrm{~g}, 4 \mathrm{mmol})$ in DMF (7 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and dimethyltertbutylsilylchloride $(1.0 \mathrm{~g}, 6.5$ mmol, 1.6 equiv.) was added, the resulting reaction mixture was stirred for 16 h at room temperature. Then aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added. The aqueous layer was extracted with ether $(3 * 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure. The crude
purified by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=9 / 1$ to $8 / 2$) affords $\mathbf{1 2}$ as a white cristallin solid ($3.59 \mathrm{~g}, 6.24 \mathrm{mmol}, 96 \%$ yield).
white solid, $\mathrm{mp} 74-75^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.7(\mathrm{PE} / \mathrm{EA}=8 / 2)$; $\mathrm{IR}: 2953,2922$, 2857, 1754, 1735, 1598, $1429,1336,1253,1199,1162,1100,1035,835,813,779,732,701 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.18(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $2.99(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ to $3.64(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.93(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ to $7.37(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.9\left(2 * \mathrm{CH}_{3}\right),-4.8\left(2 * \mathrm{CH}_{3}\right), 18.2\left(\mathrm{C}_{\mathrm{q}}\right), 21.5\left(\mathrm{CH}_{3}\right)$, $25.7\left(3 * \mathrm{CH}_{3}\right), 40.7\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{C}_{\mathrm{q}}\right), 52.3\left(\mathrm{CH}_{3}\right), 55.6(\mathrm{CH}), 58.2(\mathrm{CH}), 67.6(\mathrm{CH}), 127.5$ $(2 * \mathrm{CH}), 128.1(2 * \mathrm{CH}), 129.3(2 * \mathrm{CH}), 129.8(\mathrm{CH}), 133.9(2 * \mathrm{CH}), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $143.0\left(\mathrm{C}_{\mathrm{q}}\right), 168.8\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{SSi}_{2}(575.22)$: C 58.40, H 7.18, N 2.43 ; Found: C 58.37, H 7.36, N 2.27.

($2 S^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}$)-Acetic acid 2-acetoxymethyl-3-(tert-butyl-dimethyl-silanyloxy)-5-(dimethyl-phenyl-silanyl)-1-(toluene-4-sulfonyl)-piperidin-4-yl ester (13)

A solution of $12(2.1 \mathrm{~g}, 3.6 \mathrm{mmol})$ in dry diethylether (75 mL) was cooled to $0^{\circ} \mathrm{C}$. Then $\mathrm{LiAlH}_{4}(0.6 \mathrm{~g}, 15 \mathrm{mmol}, 4.2$ equiv.) was added by portion. The resulting reaction mixture was stirred at room temperature for 10 h . Then aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$ was added dropwise. The suspension was filtered off, and the white precipitate was washed with diethylether and ethylacetate. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The product was not purified but directly acetylated. The crude ($1.98 \mathrm{~g}, 3.6$ mmol) was solubilized in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. Then DMAP ($0.03 \mathrm{~g}, 0.24 \mathrm{mmol}, 0.1$ equiv.) and $\mathrm{NEt}_{3}\left(2.0 \mathrm{~mL}, 14 \mathrm{mmol}, 5.8\right.$ equiv.) were added. The solution was cooled to $0^{\circ} \mathrm{C}$ and acetic anhydride ($1.1 \mathrm{~mL}, 12 \mathrm{mmol}, 5.0$ equiv.) was added dropwise. The solution was stirred at room temperature for 24 h and aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 * 50 \mathrm{~mL})$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=9 / 1$ to $0 / 10)$ to afford $\mathbf{1 3}(1.25 \mathrm{~g}, 1.98 \mathrm{mmol}, 54 \%$ yield, two steps, 6% yield of $\mathbf{1 4})$. white solid, $\mathrm{mp} 116-118^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5(\mathrm{PE} / \mathrm{EA}=8 / 2) ; \mathrm{IR}: 2953,2922,2856,1742,1598$, $1325,1224,1160,1099,1037,835,812,776,734,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$=0.13(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.63(\mathrm{ddd}, J=7.2 \mathrm{~Hz}, 7.0$ Hz and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.36$ to $3.38(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J$ $=3.3 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=11 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (dd, $J=8 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ to $7.38(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.2\left(\mathrm{CH}_{3}\right),-5.15\left(\mathrm{CH}_{3}\right),-4.7\left(\mathrm{CH}_{3}\right),-4.5$ $\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{C}_{\mathrm{q}}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 22.0(\mathrm{CH}), 25.6\left(3 * \mathrm{CH}_{3}\right), 37.2\left(\mathrm{CH}_{2}\right)$, $57.0(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 64.2(\mathrm{CH}), 71.1(\mathrm{CH}), 127.5(2 * \mathrm{CH}), 127.9(2 * \mathrm{CH}), 129.2(2 * \mathrm{CH})$, $129.3(\mathrm{CH})$, $133.2(2 * \mathrm{CH})$, $135.7\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 142.8\left(\mathrm{C}_{\mathrm{q}}\right), 169.3\left(\mathrm{C}_{\mathrm{q}}\right), 170.4\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{7} \mathrm{SSi}_{2}$ (633.26) : C 58.73, H 7.47, N 2.21 ; Found: C 58.62, H 7.39, N 2.15 .
($2 S^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}$)-Acetic acid 4-acetoxy-3-(tert-butyl-dimethyl-silanyloxy)-5-hydroxy-1-(toluene-4-sulfonyl)-piperidin-2-ylmethyl ester (15)

Peracetic acid (7.5 mL of a 33% solution in HOAc, 65 mmol , \#50 equiv.) was introduced to a solution of $\mathbf{1 3}(0.8 \mathrm{~g}, 1.26 \mathrm{mmol})$ in acetic acid $(11.5 \mathrm{~mL})$. Then mercury acetate $(0.63 \mathrm{~g}, 2.0$ mmol, 1.6 equiv.) was added and the resulting suspension was stirred at room temperature for 18 h . The solution was cooled to $0^{\circ} \mathrm{C}$ and ethyl acetate was added, then the reaction mixture was slowly quenched with a satured aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The layers were separated and the aquous phase was extracted with ethyl acetate. The organic layers were washed with a satured solution of NaHCO_{3}, then with brine and dryed over MgSO_{4}. After concentration in vacuo, the crude was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=7 / 3$) to afford 15 as white cristals ($422 \mathrm{mg}, 0.82 \mathrm{mmol}, 65 \%$ yield).
white solid, mp $137-140^{\circ} \mathrm{C}$; IR : 3492, 2953, 2932, 2860, 1753, 1729, 1594, 1332, 1266, $1240,1224,1165,1100,1036,936,843,818,780,734,710,691 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}=0.4(\mathrm{PE} / \mathrm{EA}=6 / 4)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.14(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.10$ ($\mathrm{s}, 3 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=5.4 \mathrm{~Hz}, 3.55 \mathrm{~Hz}, 1 \mathrm{H})$, 3.97 (ddd, $J=11.4 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (dd, $J=10.1 \mathrm{~Hz}, 5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=10.1 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=3.3 \mathrm{~Hz}, 3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ -5.2 $\left(\mathrm{CH}_{3}\right)$, -5.0 $\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{C}_{\mathrm{q}}\right), 20.8\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 25.8\left(3 * \mathrm{CH}_{3}\right), 41.4$
$\left(\mathrm{CH}_{2}\right), 56.7(\mathrm{CH}), 60.5\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 67.4(\mathrm{CH}), 72.7(\mathrm{CH}), 127.5(2 * \mathrm{CH}), 129.6$ $(2 * \mathrm{CH}), 137.6\left(\mathrm{C}_{\mathrm{q}}\right), 143.5\left(\mathrm{C}_{\mathrm{q}}\right), 170.4\left(\mathrm{C}_{\mathrm{q}}\right), 170.8\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{8} \mathrm{SSi}$ (515.20) : C 53.57, H 7.23, N 2.72 ; Found: C 53.81, H 7.14, N 2.61. HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{NO}_{8} \mathrm{SSiNa} 538.1907$, found 538.1884.

($2 S^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}$)-Acetic acid 4-acetoxy-1-acetyl-3-(tert-butyl-dimethyl-silanyloxy)-5-(dimethyl-phenyl-silanyl)-piperidin-2-ylmethyl ester (14)

A solution of $\mathbf{1 2}(450 \mathrm{mg}, 0.708 \mathrm{mmol})$ in dry diethylether $(15 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Then LiAlH_{4} ($152 \mathrm{mg}, 3.91 \mathrm{mmol}, 5$ equiv.) was added by portion. The resulting reaction mixture was stirred at room temperature for 48 h . Then few drops of aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ were added. The suspension was filtered off, and the white precipitate was washed with ethylacetate. The organic layer was dried over MgSO_{4} and concentrated under reduce pressure. The crude was solubilized in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Then, DMAP ($8.6 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.1$ equiv.) and NEt_{3} ($0.60 \mathrm{~mL}, 4.25 \mathrm{mmol}, 6$ equiv.) were added. The solution was cooled to $0^{\circ} \mathrm{C}$ and acetic anhydride ($0.67 \mathrm{~mL}, 7.08 \mathrm{mmol}, 10$ equiv.) was added dropwise. The solution was stirred at room temperature for 16 h and aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 * 5 \mathrm{~mL})$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvant, the crude was purified by column chromatography on silica gel (pentane/EA $=85 / 15$) and $14(289 \mathrm{mg}, 0.55 \mathrm{mmol}, 78 \%$ yield, two steps) was obtained as white cristals.
white solid, $\mathrm{mp} 48-50^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE} / \mathrm{EA}=7 / 3) ; \mathrm{IR}: 2953,2930,2856,1742,1632,1429$, 1365, 1252, 1221, 1084, 1030, 834, 776, 739, $703 \mathrm{~cm}^{-1} ; 2$ rotamers were observed by NMR : 1) major ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.02(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}$, $3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.71$ (ddd, $J=13.6 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.09$ $(\mathrm{s}, 3 \mathrm{H}), 2.86(\mathrm{t}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.98$ to $4.17(\mathrm{~m}, 2 \mathrm{H}), 4.33$ to $4.39(\mathrm{~m}, 1 \mathrm{H})$, 4.62 to $4.67(\mathrm{~m}, 2 \mathrm{H}), 7.33$ to $7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.3\left(\mathrm{CH}_{3}\right)$, -$5.0\left(\mathrm{CH}_{3}\right),-4.2\left(\mathrm{CH}_{3}\right),-4.1\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{C}_{\mathrm{q}}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right)$, $25.6\left(3 * \mathrm{CH}_{3}\right), 33.2\left(\mathrm{CH}_{2}\right), 59.1(\mathrm{CH}), 61.0\left(\mathrm{CH}_{2}\right), 65.3(\mathrm{CH}), 71.7(\mathrm{CH}), 128.0(2 * \mathrm{CH})$, $\left.129.5(\mathrm{CH}), 133.6(2 * \mathrm{CH}), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 169.6\left(\mathrm{C}_{\mathrm{q}}\right), 170.4\left(\mathrm{C}_{\mathrm{q}}\right), 170.5\left(\mathrm{C}_{\mathrm{q}}\right) 2\right)$ minor ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.06(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$,
$1.80(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 3.38$ to $3.51(\mathrm{~m}, 2 \mathrm{H}), 3.98$ to $4.17(\mathrm{~m}$, $2 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ to $7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl} 3): \delta=-5.25\left(\mathrm{CH}_{3}\right),-5.2\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{C}_{\mathrm{q}}\right), 20.8\left(\mathrm{CH}_{3}\right), 21.0$ $\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 25.6\left(3 * \mathrm{CH}_{3}\right), 39.0\left(\mathrm{CH}_{2}\right), 53.0(\mathrm{CH}), 60.5\left(\mathrm{CH}_{2}\right), 64.7(\mathrm{CH})$, $77.4(\mathrm{CH}), 128.2(2 * \mathrm{CH}), 129.7(\mathrm{CH}), 133.5(2 * \mathrm{CH}), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 169.7\left(\mathrm{C}_{\mathrm{q}}\right), 170.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $170.9\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{Si}_{2}$ (521.26) : C 59.85, H 8.31, N 2.68 ; Found: C 60.06, H 8.48, N 2.76 .
($2 S^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}$)-Acetic acid 2-acetoxymethyl-3-(tert-butyl-dimethyl-silanyloxy)-5-hydroxy-piperidin-4-yl ester (16)

Peracetic acid (1.93 mL of a 33% solution in $\mathrm{HOAc}, 17 \mathrm{mmol}, 50$ equiv.) and mercury acetate ($165 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.5$ equiv.) were added to a solution of $\mathbf{1 4}(180 \mathrm{mg}, 0.34 \mathrm{mmol})$ in acetic acid (3 mL). Using the procedure previously described (synthesis of $\mathbf{1 5}$), $\mathbf{1 6}$ was obtained as a white cristallin solid ($107 \mathrm{mg}, 0.26 \mathrm{mmol}, 78 \%$).
white solid, $\mathrm{mp} 86-87^{\circ} \mathrm{C} ; \mathrm{Rf}_{\mathrm{f}}=0.2(\mathrm{PE} / \mathrm{EA}=1 / 9) ; \mathrm{IR}: 3392$, 2954, 2930, 2857, 1753, 1729, 1332, 1428, 1367, 1221, 1093, 1036, 837, $777 \mathrm{~cm}^{-1} ; 2$ rotamers were observed by NMR spectroscopy : 1) major ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.85$ (9H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=14 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ to $4.05(\mathrm{~m}$, $1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.7 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=11 \mathrm{~Hz}, 9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=13 \mathrm{~Hz}$, $5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.3\left(\mathrm{CH}_{3}\right),-5.0\left(\mathrm{CH}_{3}\right), 17.9$ $\left(\mathrm{C}_{\mathrm{q}}\right)$, $20.8\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$, $21.3\left(\mathrm{CH}_{3}\right)$, $25.6\left(3 * \mathrm{CH}_{3}\right)$, $37.9\left(\mathrm{CH}_{2}\right)$, $58.9(\mathrm{CH}), 60.9\left(\mathrm{CH}_{2}\right)$, $62.9(\mathrm{CH}), 67.9(\mathrm{CH}), 71.7(\mathrm{CH}), 170.3\left(\mathrm{C}_{\mathrm{q}}\right), 170.6\left(\mathrm{C}_{\mathrm{q}}\right), 170.9\left(\mathrm{C}_{\mathrm{q}}\right)$
2) minor ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=13 \mathrm{~Hz}, 5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ to $4.05(\mathrm{~m}$, $1 \mathrm{H}), 4.08$ to $4.13(\mathrm{~m}, 1 \mathrm{H}), 4.08$ to $4.13(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.2\left(\mathrm{CH}_{3}\right),-5.1\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{C}_{\mathrm{q}}\right), 20.8\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 21.8$ $\left(\mathrm{CH}_{3}\right), 25.6\left(3 * \mathrm{CH}_{3}\right), 43.5\left(\mathrm{CH}_{2}\right), 52.6(\mathrm{CH}), 60.3\left(\mathrm{CH}_{2}\right), 63.7(\mathrm{CH}), 73.0(\mathrm{CH}), 170.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $170.6\left(\mathrm{C}_{\mathrm{q}}\right), 170.9\left(\mathrm{C}_{\mathrm{q}}\right)$; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{Si}(403.20)$: C 53.57, H 8.24, N 3.47 ; Found: C 53.48, H 8.25, N 3.35.

$\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}\right.$)-Acetic acid 4,5-diacetoxy-2-acetoxymethyl-1-acetyl-piperidin-3-yl ester (17)

$16(23 \mathrm{mg}, 0.057 \mathrm{mmol})$ was solubilized in dry THF (1 mL) and TBAF ($0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}, 1$ M solution in THF, 2 equiv.) was added. The solution was stirred at room temperature for 9 h . The reaction mixture was then concentrated under vacuo. The crude was solubilized in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Then DMAP ($1 \mathrm{mg}, 0.0082 \mathrm{mmol}, 0.14$ equiv.) and $\mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.14$ mmol, 20 equiv.) were added. The solution was cooled to $0^{\circ} \mathrm{C}$ and acetic anhydride $(0.11 \mathrm{~mL}$, $1.14 \mathrm{mmol}, 20$ equiv.) was added. The mixture was stirred at room temperature for 20 h . Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ were added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 * 10 \mathrm{~mL})$ and the combined organic layers were washed with brine and dried over MgSO_{4}. The crude was purified by flash chromatography on silica gel (pentane/EA $=3 / 7$) to afford $\mathbf{1 7}$ ($21.3 \mathrm{mg}, 0.057 \mathrm{mmol}, 99 \%$ yield, two steps) as a colorless oil.
$\mathrm{R}_{\mathrm{f}}=0.25$ (pentane/EA $=3 / 7$) ; IR : 2929, 2856, 1739, 1655, 1422, 1368, 1210, $1207 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR (400 MHz, $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 95^{\circ} \mathrm{C}$) : $\delta=2.02(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{brt}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=11.3 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{br} \mathrm{dd}, J=$ $11.3 \mathrm{~Hz}, 8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.36-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.68(\mathrm{~m}, 1 \mathrm{H})$.

Spectral data from literature :

1) Hardick, D. J.; Hutchinson, D. W.; Trew, S. J.; Wellington, E. M. H. Tetrahedron 1992, 48(30), 6285 :
${ }^{" 1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 90^{\circ} \mathrm{C}\right.$): $\delta=1.96(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, $2.22(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.50(\mathrm{dd}, J=11.4 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (br dd, $1 \mathrm{H}), 5.36(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$. ."
2) Haukass, M. H.; O’Doherty, G. A. Org. Lett. 2001, 3, 401-404 :
${ }^{\prime 1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 95^{\circ} \mathrm{C}\right): 2.05(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, 4.18 (br m, 2H), 4.66 (dd, $J=11.7 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.56 (dd, $J=5.7 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.62 (dd, $J=3.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$."

Spectra could be also recordered at 293 K in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$:
2 rotamers were observed by NMR (ratio $=60 / 40$) : 1) major ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.91(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{brt}, J$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ to $4.24(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=13 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=10.3 \mathrm{~Hz}$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (ddd, $J=11.6 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ to $4.93(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.19$ (m, $1 \mathrm{H}) ; 2$) minor ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta=1.84(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16$ to $4.24(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=11.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ to $4.93(\mathrm{~m}, 3 \mathrm{H}), 5.14$ to $5.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) 2$ rotamers : $\delta=20.6\left(\mathrm{CH}_{3}\right), 20.65\left(\mathrm{CH}_{3}\right)$, $20.7\left(\mathrm{CH}_{3}\right), 20.75\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 34.9\left(\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right), 50.8(\mathrm{CH}), 56.7$ $(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 60.9\left(\mathrm{CH}_{2}\right), 65.9(\mathrm{CH}), 66.7(\mathrm{CH}), 67.5(\mathrm{CH}), 67.8(\mathrm{CH}), 68.8(\mathrm{CH}), 69.3$ $(\mathrm{CH}), 169.7\left(\mathrm{C}_{\mathrm{q}}\right), 169.9\left(\mathrm{C}_{\mathrm{q}}\right), 170.1\left(\mathrm{C}_{\mathrm{q}}\right), 170.3\left(\mathrm{C}_{\mathrm{q}}\right), 170.7\left(\mathrm{C}_{\mathrm{q}}\right), 170.8\left(\mathrm{C}_{\mathrm{q}}\right), 170.85\left(\mathrm{C}_{\mathrm{q}}\right)$.

(\pm)-Deoxymannojirimycin hydrochloride (1.HCl)

The peracetylated compound $17(13.7 \mathrm{mg}, 0.0367 \mathrm{mmol})$ was refluxing in 6 N HCl for 16 h . Then the reaction mixture was concentrated under reduce pressure, and $\mathbf{1}$ was obtained as a white cristallin product ($7.3 \mathrm{mg}, 0.0366 \mathrm{mmol}, 99 \%$ yield).
white solid, IR : 3545 (br), 3053 (br), 2854, 2789, 2729, 2317 (br), 2216, 2136, 1608, 1560, $1410,1339,1258,1176,1114,1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=3.21$ (ddd, $J=10.2$ $\mathrm{Hz}, 6.6 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{br} \mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=9.3 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 to $3.94(\mathrm{~m}, 2 \mathrm{H}), 4.04$ (dd, $J=12.4 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=47.4\left(\mathrm{CH}_{2}\right), 57.95\left(\mathrm{CH}_{2}\right), 60.2(\mathrm{CH}), 65.6(\mathrm{CH})$, $65.7(\mathrm{CH}), 72.3(\mathrm{CH})$.

This values are in accordance with the litterature :

Singh, O. V.; Han, H. Tetrahedron Letters 2003, 44, 2387-2391 :
${ }^{\prime 1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): 3.13 to $3.24(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=13.7 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=9.5 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ to $3.93(\mathrm{~m}, 2 \mathrm{H}), 4.04$ (dd, $J=12.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): 47.40, 57.95, 60.18, 65.57, 65.73, 72.24."

-72.2590
$工_{65.5758}^{65.7300}$

1. HCl

 ES8ELt -

$17\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$

式氝岛岛年気	－\％	年	\cdots	\％	ลิ	के ¢े	ふo wo
－0000	88	\bigcirc	\％	$\stackrel{\%}{6}$	\pm	¢	シั่入ิ
4＜｜	\dagger						

$17\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$

