THE SYNTHESIS OF CURVED AND LINEAR STRUCTURES FROM A MINIMAL SET OF MONOMERS.

Christopher G. Levins, Christian E. Schafmeister*

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (USA)

*To whom correspondence should be addressed; email: meister@pitt.edu

Supporting Information Table of Contents

General Procedures	S3 S5
Supplemental Scheme 1: Synthesis of monomers 2a and 2b	
Supplemental Scheme 2: Synthesis of the <i>pro4(2S,4S) (Boc)</i> (1b) monomer.	
Determining the enantiopurity of compound $2b$.	S16
Supplemental Scheme 3. Synthesis of α -methylbenzylamine derivatives of 2b	S16
Supplemental Figure 1: 274 nm absorbance chromatogram from HPI C analysis of α -methylbenzylamine	510
derivatives of 2h	S17
Supplemental Figure 2: 274 nm absorbance chromatogram from HPLC analysis of purified scaffold 7	S17
Supplemental Figure 3: 274 nm absorbance chromatogram from HPLC analysis of purified scaffold 8	S18
Preparation of NMR samples of compounds 7 and 8	S18
Table 1: Resonance Assignments for Scaffold 7	S20
Table 2: Cross-neaks in the ROESY spectrum of Scaffold 7	S20
Table 3: Resonance Assignments for Scaffold 8	S21
Table 4: Cross-neaks in the ROESY spectrum of scaffold 8	S21
HPLC Analysis and Excitation Spectra of Compounds in the Eluorescence Study	S22
Supplemental Figure 4: 274 nm absorbance chromatogram from HPLC analysis of 9	S22
Supplemental Figure 5: 274 nm absorbance chromatogram from HPLC analysis of 10	S22
Supplemental Figure 6: 274 nm absorbance chromatogram from HPLC analysis of 11	S23
Supplemental Figure 7: 274 nm absorbance chromatogram from HPLC analysis of 12	S23
Supplemental Figure 8: 274 nm absorbance chromatogram from HPLC analysis of 13	S24
Supplemental Figure 9: 274 nm absorbance chromatogram from HPLC analysis of 14	S24
Supplemental Figure 10: Excitation spectra for compounds 9 10 11 12 13 14	S25
NMR Spectra of Monomer Intermediates	S26
Supplemental Figure 11 ⁻¹ H spectrum of compound sc1 300 MHz DMSO-d ₂ 350K	S26
Supplemental Figure 12: Proton decoupled ¹³ C spectrum of compound sc1 75.4 MHz, DMSO-d _c r t	S27
Supplemental Figure 13 ⁻¹ H spectrum of compound sc2 300 MHz DMSO-d ₆ 350K	S28
Supplemental Figure 14: Proton decoupled ¹³ C spectrum of compound sc2, 75.4 MHz, DMSO-d ₂ , 350K	S29
Supplemental Figure 15: dept135 spectrum of compound sc2, 75.4 MHz, DMSO d ₆ , 550K	S30
Supplemental Figure 16 ⁻¹ H spectrum of compound sc3 300 MHz DMSO-d ₆ 350K	S31
Supplemental Figure 17: Proton decoupled ¹³ C spectrum of compound sc3 75.4 MHz DMSO-d _c r t	S32
Supplemental Figure 18 ⁻¹ H spectrum of compound sc4a 300 MHz DMSO-d _c 350K	S33
Supplemental Figure 19: Proton decoupled ¹³ C spectrum of compound sc4a 75 4 MHz DMSO-d _{ℓ} 350K	S34
Supplemental Figure 20 ^{\cdot1} H spectrum of compound sc4b 300 MHz DMSO-d _c 350K	S35
Supplemental Figure 21: Proton decoupled ¹³ C spectrum of compound sc4b 75 4 MHz DMSO-d _{ξ} r t	S36
Supplemental Figure 22: dept135 spectrum of compound sc4b 75.4 MHz DMSO- d_c r t	S37
Supplemental Figure 23. ¹ H spectrum of compound set 300 MHz acetic acid-d ₄ r t	S38
Supplemental Figure 24: Proton decoupled ¹³ C spectrum of compound sc6, 75.4 MHz, acetic acid- d_4 , r.t.	S39
Supplemental Figure 25: dept135 spectrum of compound sc6, 75.4 MHz, acetic acid- d_4 , r.t.	S40
Supplemental Figure 26^{-1} H spectrum of compound sc7 300 MHz DMSO-d ₄ 350K	S41
Supplemental Figure 27: Proton decoupled ¹³ C spectrum of compound sc7, 75.4 MHz, DMSO-d ₆ , r.t.	S42
Supplemental Figure 28: dept135 spectrum of compound sc8, 75.4 MHz, DMSO-d ₆ , r.t.	S43
Supplemental Figure 29 ⁻¹ H spectrum of compound sc8 300 MHz DMSO-d _{ξ} r t	S44
Supplemental Figure 30: proton decoupled ¹³ C spectrum of compound sc9, 75,4 MHz, DMSO-d ₆ , r.t.	S45
Supplemental Figure 31: dept135 spectrum of compound sc9, 75.4 MHz, DMSO-d ₆ , r.t.	S46
Supplemental Figure 32: ¹ H spectrum of compound $2a$ 300 MHz, DMSO-d ₆ 350K	S47
Supplemental Figure 33: Proton decoupled 13 C spectrum of compound 2a , 75.4 MHz, DMSO-d ₆ , r.t.	S48
Supplemental Figure 34: dept135 spectrum of compound 2a , 75.4 MHz, DMSO-d ₆ , r.t.	S49
Supplemental Figure 35: 1H spectrum of compound 2b , 300 MHz, DMSO-d ₆ , r.t.	S50
Supplemental Figure 36: Proton decoupled ¹³ C spectrum of compound 2b , 75.4 MHz, DMSO-d ₆ , r.t.	S51
Supplemental Figure 37: dept135 spectrum of compound 2b . 75.4 MHz. DMSO-d ₆ . r.t.	S52
Supplemental Figure 38: ¹ H spectrum of compound 1b . 300 MHz. DMSO-d ₆ . r.t.	S53
Supplemental Figure 39: Proton decoupled ¹³ C spectrum of compound 1b , 75.4 MHz, DMSO-d ₆ , r.t.	S54
Supplemental Figure 40: dept135 of compound 1b , 75.4 MHz, DMSO-d ₆ , r.t.	S55
2D NMR Spectra of compound 7 and compound 8 (2 nd supporting information file)	.S56

General Procedures

THF was dried by distillation from sodium and benzophenone under nitrogen. Dichloromethane (CH₂Cl₂) was dried by distillation over CaH₂ under nitrogen. Reactions were carried out under nitrogen using oven dried glassware unless otherwise noted. Column chromatography was performed using 32 - 63 D silica gel (60 Å particle size) and analytical thin-layer chromatography (TLC) analyses were performed on glass plates pre-coated with silica gel 60 (250 µm layer thickness). NMR experiments were performed on either 300 MHz or 500 MHz instruments. Chemical shifts are reported in parts per million (ppm) on the δ scale, and were referenced to residual protonated solvent peaks: spectra obtained in DMSO-d₆ were referenced to $(CHD_2)(CD_3)SO$ at δ_H 2.50 and $(CD_3)_2SO$ at δ_C 39.5; spectra obtained in acetic acid-d₄ were referenced to (CHD₂)COOD at $\delta_{\rm H}$ 2.07 and (CD₃)COOD at $\delta_{\rm C}$ 20.0. If possible, rotational isomers were resolved by obtaining spectra at 75 °C in DMSO-d₆. IR spectra were obtained using an FTIR spectrophotometer. Optical rotations were measured at 25 °C (± 2 °C) in chloroform, unless otherwise noted, using a cell with a path length of 10 cm. Mass spectrometry was performed either on a high resolution mass spectrometer with an electron impact ion source (HRMS-EI), or on a high resolution mass spectrometer using an electrospray ion source (HRESIQTOFMS). HPLC analysis was performed on an analytical HPLC instrument with a diode array detector, using a C₁₈ column (5 µm packing, 4.6 mm x 250 mm). Preparative HPLC was performed on a preparative scale HPLC system with a C₁₈ column (8 µm packing, 21.5 mm x 50 mm). HPLC-MS analysis was performed on an HPLC instrument with diode array detector and LC-MSD detector (ES ion source) using an C18 column (3.5 µm packing, 4.6 mm x 100 mm).

Solid phase chemistry was executed by hand, under argon, using a home-made solid phase peptide synthesis apparatus. Anhydrous DMF used in coupling reactions was used as received. Diisopropylethylamine (DIPEA) was distilled under nitrogen sequentially from ninhydrin and potassium hydroxide and stored over molecular sieves. After the completion of each solid phase coupling reaction, coupling yields were determined quantitatively by measuring the concentration of the piperidine-dibenzofulvene adduct ($\lambda_{max} = 301$ nm, $\varepsilon = 7800$ M⁻¹ cm⁻¹).

Supporting Information

Fluorescence excitation spectra were obtained on a fluorescence spectrophotometer. The excitation and emission slits were both set to 5 nm. Excitation was monitored at 520 nm and samples were irradiated between 270 and 450 nm at a scan rate of 120 nm/min. Samples were measured in a 1 cm quartz cell. Fluorescence samples were prepared such that their concentrations were approximately 2 μ M; this was determined based upon theoretical yields from the solid phase resin. Each sample was scanned ten times sequentially, and the ten scans were averaged. The excitation spectra were normalized such that the emission maximum of the dansyl group (337 nm) was 100 arbitrary units for all samples.

Monomer Synthesis

Conditions:

(a) Ac₂O, AcOH, reflux; (b) 2M HCl (aq.), reflux; (c) (i) 40:2:1 EtOH/H₂O/TEA; (ii) recryst. from H₂O/EtOH; (d)
(i) TMS-Cl, DIPEA, CH₂Cl₂, reflux; (ii) Cbz-Cl, 0 °C to rt.; (e) Jones reagent, acetone, 20 °C; (f) Isobutylene,
H₂SO₄ (cat.), CH₂Cl₂; (g) (NH₄)₂CO₃, KCN, 1:1 DMF/H₂O, 60 °C, sealed tube; (h) (Boc)₂O, DMAP, THF, rt.; (i)
KOH, 1:1 H₂O/THF, rt.; (j) (i) TMS-Cl, DIPEA, CH₂Cl₂, reflux; (ii) Fmoc-Cl, 0 °C to rt.; (k) TMSCHN₂, MeOH,
Et₂O; (l) TFA/CH₂Cl₂; (m) H₂, 10 wt.% Pd/C, Boc₂O, THF.

Supplemental Scheme 1: Synthesis of monomers 2a and 2b

Supplemental Scheme 2: Synthesis of the pro4(2S,4S) (Boc) (1b) monomer

(2*R*,4*R*)-4-Hydroxypyrrolidine-1,2-dicarboxylic acid 1-benzyl ester (sc1)

Commercially available *trans*-4-hydroxy-L-proline (**3**) was converted in modest yield to *cis*-4-hydroxy-D-proline (**4**) using a method described elsewhere.¹ *cis*-4-Hydroxy-D-proline (**4**, 9.50 g, 72.4 mmol) and a magnetic stir bar were added to a 250 mL three neck round bottom flask fitted with a reflux condenser, rubber septum and nitrogen inlet adapter. The flask was flushed with nitrogen, and then the amino acid was suspended in CH_2Cl_2 (155 mL). Diisopropylethylamine (36.8 mL, 212 mmol) was added to the suspension followed by chlorotrimethylsilane (TMS-Cl, 27.7 mL, 217 mmol), which was added slowly via syringe through the rubber septum. The reaction mixture was heated to reflux and stirred vigorously for 1.5 hours. The resulting redorange solution was cooled to 0 °C using an ice bath. Benzyl chloroformate (Cbz-Cl, 9.8 mL, 69 mmol) was added to the solution in one portion while nitrogen was flushed through the flask. The solution was allowed to warm to room temperature overnight with stirring, and was then concentrated by rotary evaporation. The resulting paste was dissolved in 2.5% aqueous NaHCO₃ (700 mL) and diethyl ether (600 mL) and transferred to a 2000 mL separatory funnel. The aqueous layer was separated and washed with ether (2 × 150 mL).

¹ Lowe, G.; Vilaivan, T. J. Chem. Soc., Perkin Trans. 1 1997, 4, 539.

combined and backwashed with water (2 × 60 mL). All of the aqueous layers were combined and acidified to pH 2 with 1M aqueous HCl. The aqueous solution was transferred to another separatory funnel, and the product was extracted with ethyl acetate (3 × 250 mL). The ethyl acetate layers were combined, dried over Na₂SO₄, and filtered. The solvent was removed by rotary evaporation and then under reduced pressure overnight yielding the desired product **sc1** (17.8 g, 67.5 mmol, 97.6%) as a straw colored foamy solid which was used without further purification: ¹H NMR (300 MHz, 75 °C, DMSO-*d*₆): δ 7.29-7.35 (m, 5H), 5.07 (s, 2H), 4.24-4.30 (m, 2H), 3.63 (dd, *J* = 10.8, 5.7 Hz, 1H), 3.24 (dd, *J* = 10.8, 3.9 Hz, 1H), 2.38 (ddd, *J* = 13.7, 9.1, 5.7 Hz, 1H), 1.92 (m, 1H); ¹³C NMR (75.4 MHz, DMSO-*d*₆): mixture of rotamers δ 173.4 and 173.1, 154.1 and 153.9, 137.0, 128.4 and 128.3 (2C), 127.8 and 127.6, 127.5 and 127.1 (2C), 68.6 and 67.7, 65.9, 57.7 and 57.3, 54.6 and 54.1, 37.7; IR (neat film) 3419, 2953, 1685, 1498, 1428, 1358, 1210, 1123, 1084, 1003, 969 cm⁻¹; [α]_D 28.1° (*c* 9.71, CH₃Cl); EI-MS *m/z* (relative intensity) 265 (20%), 220 (83%), 176 (34%), 130 (35%), 108 (5.5%), 91 (100%); HRMS-EI calcd for C₁₃H₁₅NO₅ (M^{•+}) 265.0950, found 265.0954.

(*R*)-4-Oxo-pyrrolidine-1,2-dicarboxylic acid 1-benzyl ester (sc2)

An 8 molar solution of Jones reagent was prepared as described elsewhere.² Compound sc1 (17.8 g, 67.1 mmol) was dissolved in acetone (1350 mL) and transferred to a 2 L Erlenmeyer flask. The solution was mixed with an overhead mechanical stirrer while adding the Jones reagent (72.2 mL, 577 mmol) slowly over approximately 10 minutes. As the reaction mixture was stirred, the color of the solution changed from bright red to dark brown. This solution was

² Hudlicky, M. Oxidations in Organic Chemistry; American Chemical Society: Washington, DC, 1990.

stirred for an additional 3 hours, and then the excess oxidant was consumed by slow addition of MeOH (~ 50 mL). The solution was filtered through a Celite packed chromatography column in order to remove precipitated chromium salts, concentrated by rotary evaporation, and diluted with EtOAc (1000 mL). The resulting solution was transferred to a 2 L separatory funnel, washed with brine (6 \times 250 mL), dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. Residual solvent was evaporated under reduced pressure, yielding the product sc2 (15.7 g, 59.9 mmol, 89.3%) as a pale yellow oil, which was used without further purification: ¹H NMR (300 MHz, 75 °C, DMSO-d₆): δ 12.42 (br s, 1H), 7.13-7.05 (m, 5H), 4.90 (s, 2H), 4.47 (dd, J = 10.5, 2.4 Hz, 1H), 3.69 (d, J = 18.3 Hz, 1H), 3.52 (d, J = 18.3 Hz, 1H), 2.89 (dd, J = 18.3 Hz, 1H), 2.89 (dd, J = 18.3 Hz, 1H), 2.89 (dd, J = 18.3 Hz, 1H), 3.69 (dd, J = 18.3 Hz, 1H), 3.18.6, 10.5 Hz, 1H), 2.28 (dd, J = 18.6, 2.4 Hz, 1H); ¹³C NMR (75.4 MHz, 75 °C, DMSO- d_6): δ 207.6, 172.3, 153.7, 136.1, 127.9 (CH, 2C), 127.3 (CH), 126.9 (CH, 2C), 66.1 (CH₂), 55.7 (CH), 52.0 (CH₂), 40.3 (CH₂); IR (neat film) 3035, 1766, 1713, 1587, 1499, 1433, 1360, 1264, 1163, 1028, 959, 874, 699 cm⁻¹; EI-MS *m/z* (relative intensity) 263 (6.5%), 218 (9.5%), 174 (12%), 128 (58%), 108 (31%), 91 (100%); HRMS-EI calcd for C₁₃H₁₃NO₅ (M^{•+}) 263.0794, found 263.0803.

(*R*)-4-Oxo-pyrrolidine-1,2-dicarboxylic acid 1-benzyl ester 2-*tert*-butyl ester (sc3)

A 500 mL round bottom flask containing a stir bar was charged with a solution of sc2 (17.0 g, 64.6 mmol) in CH₂Cl₂ (130 mL). The solution was cooled to 0 °C using an ice bath, and concentrated sulfuric acid (645 μ l) was added with stirring. Isobutylene was bubbled into the solution until the volume of the mixture had increased by approximately 50%. The flask was sealed with a rubber septum, and the reaction mixture was stirred overnight while warming to

Supporting Information

C.G. Levins, C.E. Schafmeister

room temperature. The septum was then carefully punctured, allowing the isobutylene to evaporate. The remaining solution was concentrated by rotary evaporation, and the resulting residue was distributed between EtOAc (500 mL) and 2.5% aqueous NaHCO₃ (125 mL). The EtOAc was washed with additional NaHCO₃ solution (2×125 mL), and the aqueous layers were combined and backwashed with EtOAc (250 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. Residual solvent was evaporated under reduced pressure overnight, yielding the desired product sc3 (17.2 g, 53.9 mmol, 83.4%) as a yellow oil that was used without further purification. An analytical sample was prepared by silica column chromatography (1:2 EtOAc/hexanes, $R_f = 0.33$): ¹H NMR (300 MHz, 75 °C, DMSO- d_6): δ 7.33-7.36 (m, 5H), 5.14 (s, 2H), 4.63 (d, J = 10.3 Hz, 1H), 3.93 (d, J= 18.1 Hz, 1H), 3.73 (d, J = 18.1 Hz, 1H), 3.13 (dd, J = 18.5, 10.3 Hz, 1H), 2.46 (d, J = 18.5 Hz, 1H), 1.35 (s, 9H); ¹³C NMR (75.4 MHz, DMSO- d_6): mixture of rotamers δ 208.6, 208.0, 170.8, 170.6, 154.3, 153.7, 136.5, 136.3, 128.4, 128.3, 127.9, 127.5, 81.7, 81.6, 66.5, 56.8, 56.6, 52.6, 52.3, 40.8, 27.4, 27.3; IR (neat film) 3066, 3034, 2979, 2934, 1767, 1713, 1499, 1414, 1368, 1297, 1258, 1211, 1152, 1114, 1027, 967, 912, 836, 768, 699 cm⁻¹; EI-MS *m/z* (relative intensity) 263 (11%), 218 (27%), 174 (39%), 128 (53%), 91 (100%); HRMS-EI calcd for $C_{13}H_{13}NO_5 (M - C_4H_9^{\bullet} + H^{+})$ 263.0794, found 263.0789.

(5*R*,8*R*)-2,4-Dioxo-1,3,7-triaza-spiro[4.4]nonane-7,8-dicarboxylic acid 7-benzyl ester 8-*tert*butyl ester (sc4a) and (5*S*,8*R*)-2,4-Dioxo-1,3,7-triaza-spiro[4.4]nonane-7,8-dicarboxylic acid 7-benzyl ester 8-*tert*-butyl ester (sc4b)

A 350 mL pressure vessel was charged with ammonium carbonate (10.3 g, 107.2 mmol), potassium cyanide (2.10 g, 32.2 mmol) deionized water (54 mL) and a magnetic stir bar. Compound sc3 (6.9 g, 22 mmol) was dissolved in DMF (54 mL) and added to the pressure vessel. After sealing the vessel, the flask was warmed to 60 °C in an oil bath and the solution stirred for 4 hours. The pressure vessel was then cooled to room temperature, opened cautiously, and the solution and stir bar were transferred to a 250 mL Erlenmeyer flask. The solution was adjusted to pH 6.5 by slow addition of 1M aqueous HCl, and diluted with EtOAc (200 mL) and water (~600 mL). The aqueous layer was removed and extracted with additional EtOAc (2 \times 200 mL). The organic layers were combined, washed with brine (2×100 mL), dried over MgSO₄, and concentrated by rotary evaporation yielding a crude mixture of the products sc4a and **sc4b** in a ratio of 5:1 (determined by ¹H NMR by integration of the hydantoin amide proton). The crude mixture of products was purified by flash chromatography on silica (gradient elution from CH₂Cl₂ to 95:5 CH₂Cl₂/MeOH). Fractions containing the less polar diastereomer (determined by TLC, 95:5 CH₂Cl₂/MeOH, $R_f = 0.21$) were concentrated by rotary evaporation and then under reduced pressure overnight yielding sc4a (4.3 g, 11 mmol, 52% recovered yield). The fractions containing the more polar diastereomer (determined by TLC, 95:5 CH₂Cl₂/MeOH, $R_f = 0.10$) were similarly treated yielding sc4b (1.0 g, 2.6 mmol, 12% recovered yield). The

stereochemical assignment of **sc4a** and **sc4b** was based upon the 2D-NMR analysis of their respective enantiomers.³

Less polar sc4a:

Supporting Information

¹H NMR (300 MHz, 75 °C, DMSO-*d*₆): δ 10.64 (s, 1H), 7.64 (s, 1H), 7.34 (m, 5H), 5.10 (s, 2H), 4.35 (apparent t, *J* = 7.8 Hz, 1H), 3.86 (d, *J* = 11.1 Hz, 1H), 3.49 (d, *J* = 11.1 Hz, 1H), 2.65 (dd, *J* = 13.1, 8.3 Hz, 1H), 2.09 (dd, *J* = 13.1, 7.7 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (75.4 MHz, 75 °C, DMSO-*d*₆): δ 176.1, 170.3, 155.5, 153.2, 136.2, 127.9 (2C), 127.4, 127.0 (2C), 81.0, 66.1, 64.1, 58.4, 52.3, 37.6, 27.2 (3C); IR (neat film) 3242, 3068, 2979, 1783, 1724, 1499, 1417, 1356, 1293, 1233, 1156, 1113, 1014, 833, 767, 698 cm⁻¹; [α]_D +11.9° (*c* 3.9, CHCl₃); EI-MS *m/z* (relative intensity) 333 (13%), 288 (11%), 244 (16%), 198 (7.0%), 154 (9.5%), 91 (100%); HRMS-EI calcd for C₁₅H₁₅N₃O₆ (M – C₄H₉• + H⁺) 333.0955, found 333.0967.

More polar **sc4b**:

¹H NMR (300 MHz, 75 °C, DMSO-*d*₆): δ 10.68 (s, 1H), 8.40 (s, 1H), 7.36 (m, 5H), 5.10 (s, 2H), 4.40 (apparent t, *J* = 8.4 Hz, 1H), 3.75 (dd, *J* = 11.2, 1.7 Hz, 1H), 3.58 (d, *J* = 11.2 Hz, 1H), 2.44 (ddd, *J* = 13.2, 8.0, 1.7 Hz, 1H), 2.25 (dd, *J* = 13.2, 8.9, 1H), 1.37 (s, 9H); ¹³C NMR (75.4 MHz, DMSO-*d*₆): mixture of rotamers δ 173.9 and 173.8, 170.4 and 170.0, 156.0 and 155.9, 153.4 and 153.3, 136.5 and 136.3, 128.3 and 128.2 (CH, 2C), 127.8 (CH), 127.4 and 127.3 (CH, 2C), 81.2 and 81.0, 66.6 and 65.8, 66.4 and 66.2 (CH₂), 58.9 and 58.3 (CH), 55.9 and 55.5 (CH₂), 40.3 and 39.3 (CH₂), 27.5 and 27.3 (CH₃, 3C); IR (neat film) 3246, 2980, 1781, 1733, 1498, 1418, 1367, 1312, 1217, 1192, 1159, 1138, 1060, 1014, 977, 836, 755, 698 cm⁻¹; [α]_D +23.9° (*c* 2.5, CHCl₃);

³ Levins, C.G.; Schafmeister, C.E. J. Am. Chem. Soc. 2003, 126, 4702.

EI-MS *m/z* (relative intensity) 333 (0.5%), 288 (3.0%), 244 (5.2%), 198 (1.5%), 154 (5.2%), 121 (6.2), 91 (100%); HRMS-EI calcd for $C_{15}H_{15}N_3O_6$ (M – $C_4H_9^{\bullet}$ + H⁺) 333.0955, found 333.0963.

(2R,4R)-4-Amino-pyrrolidine-1,2,4-tricarboxylic acid 1-benzyl ester 2-*tert*-butyl ester (sc6) Compound sc4a (16.8 g, 43.1 mmol) was dissolved in THF (647 mL) and transferred to a 1 L round bottom flask containing a magnetic stir bar. The solution was cooled to 0 °C, and DMAP (263 mg, 2.16 mmol) was added to the flask followed by di-tert-butyl dicarbonate (28.2 g, 129 mmol). The reaction mixture was stirred under nitrogen while warming to room temperature. After three hours, the starting material sc4a had been completely consumed (by TLC). The solution was concentrated by rotary evaporation, and then filtered through a plug of silica with 1:2 EtOAc/hexanes to remove DMAP from product sc5. The filtrate was concentrated and the resulting yellow oily residue was dissolved in THF (172 mL) and transferred to a 500 mL round bottom flask containing a magnetic stir bar. To this solution was added a 2.0 M aqueous solution of potassium hydroxide (172 mL). The reaction mixture was stirred vigorously for 30 minutes. The solution was then transferred to a 1 L separatory funnel with an additional volume of ether (172 mL) and agitated. After the aqueous and organic layers had completely separated, the aqueous layer was transferred to a 250 mL beaker and cooled to 0 °C using an ice bath. With mechanical stirring, this solution was acidified to pH 6.5 by slow addition of 2.0 M aqueous HCl, causing the precipitation of a fine, white solid. The solution was filtered and the precipitate was washed with cold water (~100 mL). The precipitate was crystallized from ~150 mL of a hot 2:1 water/ethanol solution, vielding white needle-like crystals. These were dried in a vacuum oven at 60 °C yielding sc6 (mp 187 °C dec) (9.32 g, 25.6 mmol, 59.4% yield from sc4a): ¹H NMR

(300 MHz, CD₃COOD): mixture of rotamers δ 7.41-7.38 (m, 5H), 5.25-5.20 (m, 2H), 4.56-4.52 (m, 1H), 4.14 (br s, 2H), 3.25-3.10 (m, 1H), 2.47-2.42 (m, 1H), 1.55 and 1.36 (s, 9H, rotameric); ¹³C NMR (75.4 MHz, CD₃COOD): mixture of rotamers δ 176.0, 172.7, 156.0 and 155.8, 137.0, 129.5, 129.2, 129.1, 85.0, 69.2, 67.2 and 66.2 (CH₂), 60.5 and 60.0 (CH), 55.8 and 55.4 (CH₂), 39.1 and 38.1 (CH₂), 28.0 (CH₃, 3C); IR (crushed powder) 3500, 2977, 1707, 1659, 1656, 1500, 1464, 1421, 1392, 1354, 1311, 1261, 1238, 1170, 1150, 1150, 1131, 1100, 730; [α]_D +25.8° (*c* 1.0, methanol); ESI-MS *m/z* (relative intensity, ion) 387 (19%, M + Na⁺), 331 (100%, M – C₄H₉⁺ + H⁺ + Na⁺), 309 (11%, M – C₄H₉⁺ + H⁺), 265 (34%); HRESIQTOFMS calcd for C₁₄H₁₆N₂O₆ (M – C₄H₉⁺ + H⁺ + Na⁺) 331.0906, found 331.0894.

(2*R*,4*R*)-4-(9*H*-Fluoren-9-ylmethoxycarbonylamino)-pyrrolidine-1,2,4-tricarboxylic acid 1benzyl ester 2-*tert*-butyl ester (sc7)

Finely divided **sc6** (3.90 g, 10.7 mmol) was transferred to an oven dried 500 mL three neck flask with a magnetic stir bar. This flask was placed in a vacuum oven for 4 hours under reduced pressure (50 °C, ~0.5 mm Hg) to remove any residual moisture. After backfilling with nitrogen, the flask was fitted with a reflux condenser, nitrogen inlet adapter, glass stopper, and rubber septum. After suspending the solid in CH_2Cl_2 (215 mL), diisopropylethylamine (4.50 mL, 25.8 mmol) was added to the suspension via syringe through the rubber septum. This was followed by similar addition of TMS-Cl (2.73 mL, 21.5 mmol). The flask was flushed with nitrogen, and the solution was refluxed for 1.5 hours. The solution was cooled to 0 °C in an ice bath and 9-fluorenylmethyl chloroformate (Fmoc-Cl, 2.5 g, 9.7 mmol) was added in one portion. The

Supporting Information

C.G. Levins, C.E. Schafmeister

reaction mixture was allowed to stir overnight while warming to room temperature. The reaction mixture was concentrated by rotary evaporation to an oil which was dissolved in EtOAc (500 mL) and transferred to a 1 L separatory funnel. This solution was washed with 1M aqueous HCl $(2 \times 250 \text{ mL})$, then brine (250 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. Residual solvent was removed under reduced pressure to give the desired product sc7 (5.0 g, 8.5 mmol, 87%) as a white foamy solid which was used without further purification. An analytical sample was prepared by chromatography on silica (gradient elution from CHCl₃ to 95:5 CHCl₃/MeOH): ¹H NMR (300 MHz, 75 °C, DMSO-*d*₆): δ 12.46 (br s, 1H), 7.85 (d, J = 7.5 Hz, 2H), 7.74 (br s, Fmoc-NH-, 1H), 7.69 (d, J = 7.4 Hz, 2H), 7.42-7.29 (m, 9H), 5.09 (s, 2H), 4.50-4.20 (m, 4H), 4.02 (d, J = 11.2 Hz, 1H), 3.64 (d, J = 11.2Hz, 1H), 2.84 (m, 1H), 2.32 (dd, J = 13.4, 5.5 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (75.4 MHz, DMSO-*d*₆): mixture of rotamers δ 172.9, 170.2 and 169.9, 155.6, 153.5 and 153.3, 143.5, 140.7, 136.6 and 136.4, 128.2, 128.1, 127.8, 127.6, 127.5, 127.2, 127.1, 126.9, 125.1, 119.9, 80.8 and 80.7, 66.1 (CH₂), 65.6 (CH₂), 62.7 and 61.9, 58.6 and 58.3 (CH), 54.9 and 54.5 (CH₂), 46.5 (CH), 41.5 (CH₂), 37.5 and 37.5 (CH₂), 27.4 and 27.3 (CH₃, 3C); IR (neat film) 3319, 2978, 1713, 1530, 1450, 1423, 1357, 1257, 1188, 1157, 1119, 1087, 1045, 957, 911, 877, 841, 760, 739, 698 cm⁻¹; $[\alpha]_D$ -3.3° (c 2.4, CHCl₃); ESI-MS *m/z* (relative intensity): 767.2 (7.5%), 699.2 (12%), 631.2 (33%), 609.2 (100%), 553.2 (70%), 487.2 (17%); HRESIQTOFMS calcd for $C_{33}H_{34}N_2NaO_8$ (M + Na⁺) 609.2213, found 609.2225.

(2R,4R)-4-(9H-Fluoren-9-ylmethoxycarbonylamino)-pyrrolidine-1,2,4-tricarboxylic acid 1-

benzyl ester 2-tert-butyl ester 4-methyl ester (sc8)

A solution of sc7 (14.2 g, 24.3 mmol) in anhydrous diethyl ether (150 mL) was transferred into a 500 mL three neck flask containing a magnetic stir bar and equipped with a pressure equalizing dropping funnel. Anhydrous methanol (98 mL, 2.4 mol) was added to the solution by syringe. A 2M ethereal solution of trimethylsilyldiazomethane (TMSCHN₂, ~20 mL, 40 mmol) was loaded into the dropping funnel under a N2 atmosphere. The TMSCHN2 solution was added to the reaction mixture dropwise until the solution developed a persistent yellow color, at which time the starting material had been completely consumed (determined by TLC, 1:2 EtOAc/hexanes, $R_f = 0.2$). The flask was immersed in an ice bath and a 9:1 MeOH/AcOH solution (48 mL) was slowly added to quench residual TMSCHN₂. The reaction mixture was concentrated by rotary evaporation to a vellow oil which was purified by chromatography on silica (gradient elution from hexanes to 1:1 EtOAc/hexanes). Fractions containing the desired product were concentrated by rotary evaporation. Residual solvent was removed under reduced pressure overnight giving the product sc8 (13.4 g, 22.2 mmol, 91%): ¹H NMR (300 MHz, 75 °C, DMSO- d_6): δ 7.86 (d, J = 7.4 Hz, 3H, overlap with Fmoc-NH-), 7.66 (d, J = 7.5 Hz, 2H), 7.41-7.32 (m, 9H), 5.09 (s, 2H), 4.40-4.20 (m, 4H), 3.97 (d, J = 11.3 Hz, 1H), 3.60 (m, 4H), 2.80 (br m, 1H), 2.27 (br m, 1H), 1.36 (s, 9H); 13 C NMR (75.4 MHz, DMSO- d_6): mixture of rotamers δ 171.8 and 171.7, 170.2 and 169.8, 155.7, 153.5 and 153.3, 143.5, 140.6, 136.6 and 136.4, 128.3, 128.1, 127.8, 127.7, 127.5, 127.4, 127.2, 126.9, 125.1, 125.0, 120.0, 80.9 and 80.8, 66.2 (CH₂),

65.6 (CH₂), 63.0 and 62.1, 58.4 and 58.0 (CH), 54.7 and 54.3 (CH₂), 52.6 (CH₃), 46.5 (CH), 38.4 and 37.4 (CH₂), 27.4 and 27.3 (CH₃, 3C); IR (neat film) 3320, 2977, 1743, 1711, 1526, 1450, 1417, 1356, 1296, 1246, 1157, 1114, 1084, 979, 918, 843, 760, 740, 698 cm⁻¹; $[\alpha]_D$ -3.6° (*c* 2.0, CHCl₃); ESI-MS *m/z* (relative intensity): 681.5 (4.5%), 623.4 (100%), 567.4 (45%), 501.4 (13%); HRESITOFMS calcd for C₃₄H₃₆N₂NaO₈ (M + Na⁺) 623.2369, found 623.2360.

Determining the enantiopurity of compound 2b

2b was derivatized with both enantiomers of α -methylbenzyl amine. Both (*S*) and (*R*) methylbenzylamine derivatives were prepared on analytical scale (supplemental scheme 3); **sc10** and **sc11** were separable by HPLC.

Supplemental Scheme 3: Synthesis of α-methylbenzylamine derivatives of 2b

Synthesis of sc10 and sc11

Two 4 mL conical vials with magnetic spin vanes were dried in an oven. To each vial was added the monomer **2b** (10.0 mg, 19.5 μ mol), HATU (7.4 mg,19.5 μ mol) and DMF (250 μ L). (*S*)-(-)- α -methylbenzylamine (5 μ L, 39 μ mol) was added to the solution in the first vial, and (*R*)-(+)- α -methylbenzylamine (5 μ L, 39 μ mol) was added to the second. The addition of the amine to the

Supporting Information

C.G. Levins, C.E. Schafmeister

solution caused an immediate color change from pale to bright yellow. Both vials were sealed with a rubber septum, and the solutions were stirred for an additional 30 minutes at room temperature. 1M aqueous HCl (2 mL) was added to each vial and the mixture was extracted with CHCl₃ (2 mL). The CHCl₃ extracts were washed with brine and dried over Na₂SO₄. Both solutions were concentrated by centrifugal evaporation (Savant SpeedVac), and the residues were dissolved in MeOH (2 mL), filtered through a 0.2 μ m nylon filter into vials, and analyzed by HPLC. The sample of sc10 contained less than 1.7% of a compound with the retention time of sc11; sc11 contained less than 0.4% of a compound with the retention time of sc10.

HPLC: C₁₈ column; mobile phase, MeCN (0.05% TFA) / water (0.1% TFA), 5% to 95% MeCN over 30 min; flow rate, 1.00 mL/min; UV detection at 274 nm; t_R for sc10, 27.9 min; t_R for sc11, 27.4 min.

HPLC: C₁₈ column; mobile phase, MeCN (0.05% TFA) / water (0.1% TFA), 5% to 95% MeCN over 30 min; flow rate, 0.40 mL/min; UV detection at 274 nm; t_R for 7, 10.70 min; ESI-MS m/z (ion): 799.2 (M + H⁺).

Supplemental Figure 2: 274 nm absorbance chromatogram from HPLC analysis of purified scaffold 7

HPLC: C₁₈ column; mobile phase, MeCN (0.05% TFA) / water (0.1% TFA), 5% to 95% MeCN over 30 min; flow rate, 0.40 mL/min; UV detection at 274 nm; t_R for **8**, 11.67 min; ESI-MS m/z (ion): 799.3 (M + H⁺).

```
Supplemental Figure 3: 274 nm absorbance chromatogram from HPLC analysis of purified scaffold 8
```

Preparation of NMR samples of compounds 7 and 8

The NMR samples of 7 and 8 were prepared by dissolving each in approximately 450 μ L of

degassed 9:1 H₂O/D₂O with 0.025 M ND₄COOD:CD₃COOD buffer (pH 4-5). The samples were

filtered through 0.2 µm Nylon frit centrifugal filters and transferred to a D₂O matched Shigemi

NMR tube. Experiments were acquired on a 500 MHz spectrometer at 2 °C. COSY, ROESY

(mixing time of 300 ms), HMQC and HMBC experiments were performed. Processed data sets

were analyzed using Sparky.⁴ The chemical shift assignments are based upon the COSY,

HMBC, and ROESY cross-peaks.

Explanation of abbreviations in the 2D-NMR data tables:

- **Group**: the number corresponding to the place of the monomer in the sequence. 1 corresponds to the naphthylalanine; 2, 3, 4 and 5 correspond with the monomers in the order they were attached to the resin.
- Heavy atom number: the numerical designation of the atoms in structures 7 and 8 as shown in the text of the paper.
- H Stereochemistry: the α and β designation of geminal protons on a given carbon atom, as designated in the paper.
- Atom: the first letter (C or H) designates the nucleus. The following letters are coded as follows;
 - A = alpha
 - B = beta
 - C = gamma

⁴ Goddard, T. D.; Kneller, D. G. SPARKY 3; UCSF: San Francisco, California, 2004.

Supporting Information

- D = delta
- AC = carbonyl carbon adjacent to alpha carbon
- GC = carbonyl carbon adjacent to gamma carbon
- N = amide nitrogen

Shift: chemical shift (on the δ scale)

#: number of cross-peaks in the COSY/ROESY/HMBC/HMQC used to determine the resonance **StDev**: the standard deviation of the calculated chemical shift of each resonance

Group	Heavy Atom	H Stero.	Atom	Nuc	Shift	SDev	#	Group	Heavy Atom	Atom	Nuc	Shift	SDev	#
1			HB1	1H	2.86	0.004	7	1	2	CA	13C	55.4	0.010	3
1			HB2	1H	2.92	0.004	6	1	1	CAC	13C	175.5	0.021	4
1	2		HA	1H	4.22	0.007	3	2	6	CB	13C	40.1	0.041	4
1	3		HN	1H	8.52	0.009	9	2	5	CA	13C	59.1	0.064	4
2	6	β	HB2	1H	1.48	0.018	10	2	7	CG	13C	64.4	0.050	4
2	6	α	HB1	1H	2.10	0.005	7	2	17	CGC	13C	166.0	0.049	5
2	8	β	HD2	1H	3.00	0.006	6	2	4	CAC	13C	167.8	0.046	4
2	8	α	HD1	1H	3.53	0.002	6	3	13	CB	13C	37.1	0.000	1
2	5		HA	1H	3.92	0.003	7	3	12	CA	13C	58.5	0.024	6
2	10		HN	1H	8.34	0.011	7	3	14	CG	13C	62.0	0.019	4
3	13	β	HB2	1H	1.88	0.006	8	3	25	CGC	13C	167.4	0.025	4
3	13	α	HB1	1H	2.50	0.005	5	3	11	CAC	13C	170.1	0.030	3
3	15	β	HD2	1H	3.37	0.003	6	4	20	CA	13C	57.5	0.051	5
3	15	α	HD1	1H	3.56	0.008	5	4	22	CG	13C	62.5	0.021	5
3	12		HA	1H	4.18	0.004	8	4	33	CGC	13C	166.9	0.015	4
3	18		HN	1H	8.44	0.011	7	4	19	CAC	13C	170.2	0.028	4
4	21	α	HB2	1H	2.03	0.008	8	5	29	CB	13C	37.0	0.023	2
4	21	β	HB1	1H	2.45	0.011	6	5	28	CA	13C	52.9	0.131	2
4	23	α	HD2	1H	3.34	0.005	5	5	30	CG	13C	60.4	0.008	3
4	23	β	HD1	1H	3.71	0.008	6	5	27	CAC	13C	169.6	0.071	2
4	20		HA	1H	4.23	0.004	7							
4	26		HN	1H	8.65	0.011	7							
5	29	α	HB2	1H	2.13	0.006	5							
5	29	β	HB1	1H	2.62	0.007	4							
5	31	ά	HD2	1H	3.69	0.003	2							
5	28		HA	1H	4.54	0.013	6							

 Table 1: Resonance Assignments for Scaffold 7

Resonance 1	Shift	Resonance 2	Shift	Integrated Volume
01HB1	2.85	HN	8.52	3.39E+06
01HB2	2.91	HN	8.52	1.89E+06
02HA	3.92	01HN	8.52	1.24E+07
02HB1	2.11	01HN	8.52	1.57E+06
02HB1	2.11	03HA	4.18	6.72E+06
02HB2	1.48	01HN	8.52	1.37E+06
02HB2	1.48	HD2	2.99	2.17E+07
02HB2	1.48	HN	8.33	2.94E+06
02HD1	3.53	HA	3.91	4.18E+06
02HD2	3.00	HN	8.33	1.10E+07
03HA	4.18	02HN	8.33	8.61E+05
03HB2	1.88	HD2	3.36	6.10E+06
03HB2	1.88	HN	8.43	1.53E+07
03HD1	3.55	HA	4.17	4.42E+06
03HD1	3.56	04HA	4.23	1.25E+07
03HD2	3.37	HN	8.43	4.13E+06
03HD2	3.37	04HA	4.23	4.49E+06
04HA	4.23	03HN	8.43	1.30E+06
04HB1	2.48	05HA	4.56	1.01E+08
04HB2	2.02	HD2	3.35	8.88E+06
04HB2	2.03	HN	8.64	3.88E+06
04HD1	3.70	HA	4.23	6.47E+06
04HD2	3.34	HN	8.64	1.56E+07
05HA	4.54	04HN	8.64	4.51E+05
05HB2	2.14	HD2	3.69	4.01E+06

 Table 2: Cross-peaks in the ROESY spectrum of Scaffold 7

Group	Heavy Atom	H Stero.	Atom	Nuc	Shift	SDev	#	Group	Heavy Atom	Atom	Nuc	Shift	SDev	#
1			HB1	1H	2.779	0.013	8	1		CB	13C	36.8	0.019	3
1			HB2	1H	2.837	0.012	5	1	2	CA	13C	55.0	0.043	5
1	2		HA	1H	4.24	0.01	10	1	1	CAC	13C	175.0	0.049	4
1	3		HN	1H	8.601	0.002	9	2	6	CB	13C	38.0	0.051	5
2	6	β	HB2	1H	1.69	0.004	9	2	8	CD	13C	52.9	0.023	4
2	6	α	HB1	1H	2.648	0.005	7	2	5	CA	13C	59.1	0.008	4
2	8	β	HD2	1H	3.071	0.005	9	2	7	CG	13C	63.8	0.016	6
2	8	α	HD1	1H	3.356	0.003	8	2	17	CGC	13C	165.0	0.014	5
2	5		HA	1H	4.187	0.007	8	2	4	CAC	13C	167.9	0.029	5
2	10		HN	1H	8.28	0.001	8	3	13	CB	13C	36.9	0.026	2
3	13	α	HB2	1H	1.864	0.012	10	3	15	CD	13C	55.0	0.000	1
3	13	β	HB1	1H	2.491	0.004	5	3	12	CA	13C	57.9	0.050	2
3	15	α	HD2	1H	3.402	0.012	7	3	14	CG	13C	61.6	0.081	3
3	15	β	HD1	1H	3.487	0.006	3	3	25	CGC	13C	166.7	0.019	3
3	12		HA	1H	4.401	0.003	7	3	11	CAC	13C	169.7	0.019	3
3	18		HN	1H	8.428	0.001	8	4	21	CB	13C	37.3	0.029	2
4	21	β	HB2	1H	1.91	0.009	9	4	23	CD	13C	55.1	0.000	1
4	21	α	HB1	1H	2.533	0.004	5	4	20	CA	13C	57.7	0.099	3
4	23	β	HD2	1H	3.456	0.008	4	4	22	CG	13C	61.7	0.094	4
4	23	α	HD1	1H	3.52	0.006	3	4	33	CGC	13C	166.6	0.067	3
4	20		HA	1H	4.479	0.007	6	4	19	CAC	13C	169.9	0.019	3
4	26		HN	1H	8.542	0	9	5	29	CB	13C	36.4	0.000	1
5	29	α	HB2	1H	2.083	0.012	8	5	31	CD	13C	52.1	0.000	1
5	29	β	HB1	1H	2.575	0.001	6	5	28	CA	13C	56.9	0.012	4
5	36		HME	1H	3.447	0	1	5	30	CG	13C	59.8	0.006	3
5	31	β	HD1	1H	3.646	0.003	4	5	27	CAC	13C	168.7	0.036	3
5	28		HA	1H	4.453	0.006	7	5	34	CGC	13C	169.6	0.015	4
5	37		HN	1H	8.575	0	1							

Table 3: Resonance Assignments for Scaffold 8

Resonance 1	Shift	Resonance 2	Shift	Integrated Volume
01H1	7.31	HN	8.60	2.15E+06
01H3	7.00	HN	8.60	1.76E+06
01HA	4.24	H1	7.31	1.22E+07
01HA	4.24	H3	6.99	3.55E+07
01HA	4.24	H4	7.40	2.39E+07
01HB1	2.80	H1	7.31	3.42E+07
01HB1	2.80	H3	6.98	4.31E+07
01HB1	2.79	HN	8.60	1.51E+07
02HB1	2.64	01HN	8.60	3.24E+06
02HB2	1.68	HD2	3.07	4.78E+07
02HB2	1.69	HN	8.28	2.18E+07
02HD1	3.35	HA	4.18	8.53E+06
02HD1	3.35	03HA	4.40	2.22E+07
02HD2	3.07	HN	8.28	5.99E+06
02HD2	3.07	03HA	4.40	1.14E+07
03HA	4.41	02HN	8.28	2.03E+06
03HB2	1.85	HD2	3.39	1.10E+07
03HB2	1.87	HN	8.43	2.24E+07
03HD1	3.49	HA	4.40	
03HD1	3.49	04HA	4.49	
03HD2	3.40	HB2	1.88	6.41E+07
03HD2	3.40	HN	8.43	5.45E+06
03HD2	3.40	04HA	4.47	
04HA	4.47	03HN	8.43	3.83E+06
04HB2	1.90	HN	8.54	2.18E+07
04HD1	3.52	HN	8.54	1.51E+06
04HD1	3.52	05HA	4.46	
04HD2	3.47	HB2	1.91	2.11E+08
04HD2	3.45	HN	8.54	5.85E+06
04HD2	3.46	05HA	4.46	
05HA	4.46	04HN	8.54	1.86E+06
05HB2	2.06	HN	8.58	2.58E+06
05HD1	3.64	HA	4.45	2.28E+07

Table 4: Cross-peaks in the ROESY spectrum of scaffold 8

HPLC Analysis and Excitation Spectra of Compounds in the Fluorescence Study

HPLC-MS: C₁₈ column; mobile phase, MeCN (0.05% HCOOH) / water (0.1% HCOOH), 5% to 95% MeCN over 30 min; flow rate, 0.40 mL/min; UV detection at 274 nm; t_R for **9**, 10.19 min; ESI-MS m/z (ion): 1309.0 (M + H⁺).

Supplemental Figure 4: 274 nm absorbance chromatogram from HPLC analysis of 9

HPLC-MS: C₁₈ column; mobile phase, MeCN (0.05% HCOOH) / water (0.1% HCOOH), 5% to 95% MeCN over 30 min; flow rate, 0.40 mL/min; UV detection at 274 nm; t_R for **10**, 12.90 min; ESI-MS m/z (ion): 1181.0 (M + H⁺).

Supplemental Figure 5: 274 nm absorbance chromatogram from HPLC analysis of 10

HPLC-MS: C₁₈ column; mobile phase, MeCN (0.05% HCOOH) / water (0.1% HCOOH), 5% to 95% MeCN over 30 min; flow rate, 0.40 mL/min; UV detection at 274 nm; t_R for **11**, 10.05 min; ESI-MS *m/z* (ion): 1309.0 (M + H⁺).

Supplemental Figure 6: 274 nm absorbance chromatogram from HPLC analysis of 11

HPLC-MS: C₁₈ column; mobile phase, MeCN (0.05% HCOOH) / water (0.1% HCOOH), 5% to 95% MeCN over 30 min; flow rate, 0.80 mL/min; UV detection at 274 nm; t_R for **12**, 11.48 min; ESI-MS m/z (ion): 1181.0 (M + H⁺).

Supplemental Figure 7: 274 nm absorbance chromatogram from HPLC analysis of 12

HPLC-MS: C₁₈ column; mobile phase, MeCN (0.05% TFA) / water (0.1% TFA), 5% to 95% MeCN over 30 min; flow rate, 0.40 mL/min; UV detection at 274 nm; t_R for **13**, 16.32 min; ESI-MS *m/z* (ion): 491.0 (M + H⁺).

Supplemental Figure 8: 274 nm absorbance chromatogram from HPLC analysis of 13

HPLC-MS: C₁₈ column; mobile phase, MeCN (0.05% TFA) / water (0.1% TFA), 5% to 95% MeCN over 30 min; flow rate, 0.40 mL/min; UV detection at 274 nm; t_R for 14, 13.82 min; ESI-MS *m/z* (ion): 545.2 (M + H⁺).

Supplemental Figure 9: 274 nm absorbance chromatogram from HPLC analysis of 14

Supplemental Figure 10: Excitation spectra for compounds 9, 10, 11, 12, 13, 14

Supplemental Figure 11: ¹H spectrum of compound **sc1**, 300 MHz, DMSO-d₆, 350K

Supplemental Figure 12: Proton decoupled ¹³C spectrum of compound sc1, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 13: ¹H spectrum of compound **sc2**, 300 MHz, DMSO-d₆, 350K

Supplemental Figure 14: Proton decoupled ¹³C spectrum of compound **sc2**, 75.4 MHz, DMSO-d₆, 350K

Supplemental Figure 15: dept135 spectrum of compound sc2, 75.4 MHz, DMSO-d₆, 350K

Supplemental Figure 16: ¹H spectrum of compound **sc3**, 300 MHz, DMSO-d₆, 350K

Supplemental Figure 17: Proton decoupled ¹³C spectrum of compound sc3, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 18: ¹H spectrum of compound sc4a, 300 MHz, DMSO-d₆, 350K

Supplemental Figure 19: Proton decoupled ¹³C spectrum of compound **sc4a**, 75.4 MHz, DMSO-d₆, 350K

Supplemental Figure 20: ¹H spectrum of compound sc4b, 300 MHz, DMSO-d₆, 350K

Supplemental Figure 21: Proton decoupled ¹³C spectrum of compound sc4b, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 22: dept135 spectrum of compound sc4b, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 23: ¹H spectrum of compound sc6, 300 MHz, acetic acid-d₄, room temperature

Supplemental Figure 24: Proton decoupled ¹³C spectrum of compound sc6, 75.4 MHz, acetic acid-d₄, room temperature

Supplemental Figure 25: dept135 spectrum of compound sc6, 75.4 MHz, acetic acid-d₄, room temperature

Supplemental Figure 26: ¹H spectrum of compound sc7, 300 MHz, DMSO-d₆, 350K

Supplemental Figure 27: Proton decoupled ¹³C spectrum of compound sc7, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 28: dept135 spectrum of compound sc8, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 29: ¹H spectrum of compound sc8, 300 MHz, DMSO-d₆, room temperature

Supplemental Figure 30: proton decoupled ¹³C spectrum of compound sc9, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 31: dept135 spectrum of compound sc9, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 32: ¹H spectrum of compound **2a**, 300 MHz, DMSO-d₆, 350K

Supplemental Figure 33: Proton decoupled ¹³C spectrum of compound **2a**, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 34: dept135 spectrum of compound 2a, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 35: 1H spectrum of compound 2b, 300 MHz, DMSO-d₆, room temperature

Supplemental Figure 36: Proton decoupled ¹³C spectrum of compound 2b, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 37: dept135 spectrum of compound 2b, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 38: ¹H spectrum of compound 1b, 300 MHz, DMSO-d₆, room temperature

Supplemental Figure 39: Proton decoupled ¹³C spectrum of compound 1b, 75.4 MHz, DMSO-d₆, room temperature

Supplemental Figure 40: dept135 of compound 1b, 75.4 MHz, DMSO-d₆, room temperature