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Appendix

In this section, we follow the development of Krichevsky and Bonnet [1] to compute the auto- and

cross correlation functions of the intensities of emission that account for the physical and chemical

fluctuations occurring in the illuminated open volumeV supposed to contain an ideal solution ofm

reactive componentsAi (local concentrationsAi(�r, t), average concentrationsAi = 〈Ai(�r, t)〉, local

deviationsδAi = Ai(�r, t) − Ai).

General Formalism

At a given wavelengthλ, the number of photonsn(λ, t) emitted during the sampling time∆t from the

illuminated volumeV is:

n(λ, t) = ∆t

∫
V

m∑
i=1

ΦiIi(λ)
τi

A�
i (�r, t)d

3�r (1)

In Eq.(1),Φi, Ii(λ) andτi respectively designate the quantum yield of fluorescence, the normalized emis-

sion spectrum (
∫∞
0 Ii(λ)dλ = 1) and the lifetime of the considered excited stateA�

i . For longer sampling

times than the typical lifetime of a singlet state (a few ns), one can assume that partial equilibrium with

regards to the excitation/desexcitation process is reached for all theAi species in every point of the illu-

minated volume. Indeed, excitation/desexcitation is the fastest process among the processes altering the

number of photons emitted from the illuminated volume [2, 3, 4]. At low light intensitiesI(λexc, �r) (in

number of photons per unit of surface and per unit of time):A�
i (�r, t) � σν,i(λexc)I(λexc, �r)ντiAi(�r, t)

whereσν,i(λexc) contains the cross section for light absorption afterν-photon excitation atλexc: σ1,i =

2.3εi andσ2,i = 1
2δ2,i whereεi andδ2,i are respectively the molar absorption coefficient and the cross

section for two photon absorption ofAi (after averaging on time, a similar relation holds whenI(λexc, �r)

is a function of time). Under such conditions, Eq.(1) transforms into Eq.(2):

n(λ, t) = ∆t

∫
V

I(λexc, �r)ν
m∑

i=1

Qi(λexc)Ii(λ)Ai(�r, t)d3�r (2)

whereQi(λexc) = Φiσν,i(λexc) designates the brightness ofAi atλ upon excitation atλexc.

To reduce the shot noise and to allow for cross correlations, our FCS set-up (Figure 1S) possesses

two detecting avalanche photodiodesk (k=I or II) that collect part of the photons emitted during∆t:

nk(t) = ∆t

∫
V

I(λexc, �r)ν
m∑

i=1

Qk
i (λexc)Ai(�r, t)d3�r (3)

with

Qk
i (λexc) = Qi(λexc)

∫ ∞

0
αk(λ)Fk(λ)Ek(λ)Ii(λ)dλ (4)

In Eq.(4),αk(λ), Fk(λ) andEk(λ) respectively designate the collection efficiency of the channelk atλ,

the transmittance function of the optical elements located between the sample and the APDk, and the

dependence of the APDk response onλ.

S2



The correlation functionGI,II(τ) is defined in Eq.(5):

GI,II(τ) =
〈δnI([λ1, λ2]I , �r, 0)δnII([λ1, λ2]II , �r, τ)〉

nI([λ1, λ2]I , �r) nII([λ1, λ2]II , �r)
(5)

in which the notation[λ1, λ2] stands for the range of wavelengths collected by each collection channel,

I andII. GI,II(τ) can be written:

GI,II(τ) =
(∆t)2

nI nII

∫∫
I(λexc, �r)νI(λexc, �r

′)ν
∑
i,j

QI
i (λexc)QII

j (λexc)〈δAi(�r, 0)δAj(�r ′, τ)〉d3�rd3�r ′ (6)

GI,II(τ) is a convolution of the auto- and cross-correlation functions of the concentration fluctuations

with the excitation profile.

In Eq.(6),〈δAi(�r, 0)δAj(�r ′, τ)〉 can be calculated as soon asδAj(�r, τ) is known as a function of the

initial conditionsδAj(�r, 0). Indeed, the ideality of the solution imposes:

〈δAi(�r, 0)δAj(�r ′, 0)〉 = Aiδijδ(�r − �r ′) (7)

The dependence ofδAj(�r, τ) on δAj(�r, 0) is obtained from solving Eq.(8):

∂ δAi(�r, t)
∂t

= Di∇2δAi(�r, t) +
m∑

j=1

κijδAj(�r, t) (8)

In Eq.(8), the first term refers to the concentration changes resulting from diffusion (diffusion coefficient

Di) whereas the second linearized term is related to concentration changes close to equilibrium originat-

ing from occurrences of chemical reactions (theκij coefficients of the matrixK = [κij ] are combined

from the rate constants of the chemical reactions, and theAi). Eq.(8) is solved after Fourier transform

leading to Eq.(9):

∂Ãi(�q, t)
∂t

=
m∑

j=1

MijÃj(�q, t) (9)

whereÃi(�q, t) = (2π)(−3/2)
∫

exp(i�q�r)δAi(�r, t)d3�r andMij = κij − Diq
2δij. Introducing the eigen-

valuesλ(s) and the eigenvectorsX(s) of the matrixM = [Mij ], and the inverse matrixX−1 of the

eigenvectorsX(s), Eq.(6) eventually provides [1]:

GI,II(τ) =
(2π)−3

(
∑m

i=1 QI
i Ai)(

∑m
j=1 QII

j Aj)

∫
V

e

[
−ω2

xy
4

(q2
x+q2

y)−ω2
z
4

q2
z

]∑
i,j

Hijd
3�q (10)

with

Hij = QI
i (λexc)QII

j (λexc)Ai

∑
s

X
(s)
j exp(λ(s)τ)(X−1)(s)i d3�q (11)

In Eq.(10), one assumes that the illumination intensity profile is 3D-Gaussian:

I(�r, t) = I0exp

[
−2(x2 + y2)

ω2
xy

− 2z2

ω2
z

]
(12)

whereωz andωxy are the sizes of the beam waist in the direction of the propagation of light and in the

perpendicular direction respectively.

The final expression ofGI,II(τ) can be obtained by determining the�q-dependence ofHij for each

particular case.
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Isomerization coupled with diffusion

The chemical processes involving the smallest number of interconverting states that can be observed by

FCS are displayed in Figure 3S: An isomerization occurs between the ground statesA1 andA2, and

between the excited statesA�
1 andA�

2. In the present case, Eq.(8) becomes:

∂ δA1(�r, t)

∂t
= −(k12 + k11�)δA1(�r, t) + k21δA2(�r, t) + k1�1δA1�(�r, t) + D1∆ δA1(�r, t) (13)

∂ δA2(�r, t)

∂t
= k12δA1(�r, t) − (k21 + k22� )δA2(�r, t) + k2�2δA2�(�r, t) + D2∆ δA2(�r, t) (14)

∂ δA1�(�r, t)

∂t
= k11�δA1(�r, t) − (k1�2� + k1�1)δA1�(�r, t) + k2�1�δA2�(�r, t) + D1�∆ δA1�(�r, t) (15)

∂ δA2�(�r, t)

∂t
= k22�δA2(�r, t) + k1�2�δA1�(�r, t) − (k2�1� + k2�2)δA2�(�r, t) + D2�∆ δA2�(�r, t) (16)

Isomerization as well as excitations occur without major change of molecular volume leading the diffu-

sion coefficients unchanged [5]. Thus it is reasonable to assume thatD1 = D1� = D2 = D2� = d.

The reactivity of the ground state is observed by FCS

The intrinsic relaxation timesτ11� = (k11� + k1�1)−1 andτ22� = (k22� + k2�2)−1 associated to the

excitation/desexcitation processes lie in the ns range (typical lifetimes of the singlet excited statesA�
1

andA�
2). In most chemical circumstances,τ11� andτ22� are much smaller than the intrinsic relaxation

timesτ12 = (k12 + k21)−1 andτ1�2� = (k1�2� + k2�1�)−1 associated to the isomerizations. For longer

sampling times than the typical lifetime ofA�
1 andA�

2 , one can thus assume that partial equilibrium with

regards to the excitation/desexcitation processes is reached in every point of the illuminated volume:
A�

1

A1
� K11� = k11�

k1�1
and A�

2

A2
� K22� = k22�

k2�2
. Then the mechanism (13-16) reduces to Eq.(17) by

summing Eqs.(13) and (15), and Eqs.(14) and (16):

{
1

1 + K11∗
A1,

K11∗

1 + K11∗
A�

1

} κ12

⇀↽
κ21

{
1

1 + K22∗
A2,

K22∗

1 + K22∗
A�

2

}
(17)

with

κ12 =
1

1 + K11∗
k12 +

K11∗

1 + K11∗
k1∗2∗ (18)

κ21 =
1

1 + K22∗
k21 +

K22∗

1 + K22∗
k2∗1∗ (19)

In the present investigation, the typical values of the laser intensitiesI(λexc, �r) and of the cross sec-

tions for two-photon absorptionδ2(λexc) are such thatK11∗ � 1 etK22∗ � 1 [6]. Then
{

1
1+K11∗

A1,
K11∗

1+K11∗
A�

1

}
≈

A1 and
{

1
1+K22∗

A2,
K22∗

1+K22∗
A�

2

}
≈ A2:

κ12 ≈ k12 (20)

κ21 ≈ k21 (21)

Thus, although relying on the analyses of the fluctuations of the fluorescence intensity from the excited

statesA�
1 et A�

2, FCS reveals the reactivity of the ground states in most encountered experimental sit-

uations. This is especially significant since the rate constants of chemical reactions can be sometimes
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considerably altered by the nature, ground or excited, of the state (acid-base reactions for instance)

[7, 8, 9].

Expression of the correlation function GI,II(τ)

Eq.(17) is now rewritten:

A1

κ12

⇀↽
κ21

A2 (22)

keeping in mind thatA1 andA2 are averaged species involving the ground and the excited states.

Eq.(8) is written here:

∂ δA1(�r, t)
∂t

= −κ12δA1(�r, t) + κ21δA2(�r, t) + d∆ δA1(�r, t) (23)

∂ δA2(�r, t)
∂t

= κ12δA1(�r, t) − κ21δA2(�r, t) + d∆ δA2(�r, t) (24)

and the matrixM associated to (13,14):

M =

[
−(κ12 + dq2) κ21

κ12 −(κ21 + dq2)

]

whose eigenvalues are:

λ(1) = −dq2 (25)

λ(2) = −R12 − dq2 (26)

with R12 = κ12 + κ21. The eigenvalueλ(1) reveals the conservation law during the chemical reac-

tion (22); then only diffusion can alter the density inA1 andA2. λ(2) additionally contains the relax-

ation towards chemical equilibrium following a fluctuation of the concentrations inA1 andA2 due to

occurrence of reaction (22).

Introducing the apparent equilibrium constantK12 = κ12
κ21

and the total concentrationC = A1 + A2,

one obtains:

H11 =
QI

1QII
1 A1

2

C

(
1 + K12e

−R12t
)

e−dq2t (27)

H22 =
QI

2QII
2 A2

2

C

(
1 +

1
K12

e−R12t
)

e−dq2t (28)

H12 =
QI

1QII
2 A1 A2

C

(
1 − e−R12t

)
e−dq2t (29)

H21 =
QI

2QII
1 A1 A2

C

(
1 − e−R12t

)
e−dq2t (30)

and:

∑
i,j

Hij =

(
QI

1A1 + QI
2A2

) (
QII

1 A1 + QII
2 A2

)
C

×
[
1 + K12

(
QI − 1

QI + K12

)(
QII − 1

QII + K12

)
e−R12t

]
e−dq2t (31)
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with

Qk =
Qk

1

Qk
2

(32)

leading to the final expression of the correlation function:

GI,II(τ) =
1
N

(
1 +

τ

τD

)−1 (
1 +

τ

ω2τD

)−1/2

×
[
1 + K12

(
QI − 1

QI + K12

)(
QII − 1

QII + K12

)
e−R12t

]
(33)

whereN is the average number of molecules contained in the illuminated volume,τD = ω2
xy

4dν andω =
ωz
ωxy

.

In this particular case where the chemical reaction is assumed not to change the diffusion properties,

GI,II(τ) is the product of the diffusive term and of the term in square brackets associated to the chemical

relaxation. Forτ � 1
R12

:

GI,II(τ) ≈ QI
1QII

1 N1 + QI
2QII

2 N2(
QI

1N1 + QI
2N2

) (
QII

1 N1 + QII
2 N2

) (34)

whereN1 andN2 respectively designate the average numbers of molecules ofA1 andA2 contained in

the illuminated volume. At such short times, the reactive mixture ofA1 andA2 essentially behaves as a

nonreactive mixture of two fluorescent species. After the relaxation timeτ12 = 1
R12

of the reaction (22),

the chemical reaction does not contribute anymore to the correlation function: In this kinetic regime,

A1 andA2 are in “fast” exchange and the system apparently contains only one virtual species{A1,A2}
associated to the diffusion coefficientd.

One chemical reaction coupled to diffusion; three species

One is now interested in the more general situation encountered in chemistry where three species are

involved in the reaction (1). In relation with the present purpose,H designates the reactant of interest

whereas{A1,A2} is theH-specific probe exchanging between two states of different brightness. In line

with the present series of experiments, we consider that:

• the diffusion coefficients ofA1 andA2 are identical and equal tod. In contrast, the diffusion

coefficient of the third reactantH is equal toD.

• H is not fluorescent (Qk
H = 0).

One introduces the equilibrium constantK12 = k12
k21

and the total concentration inA1 andA2: C =

A1 + A2.

Eq.(8) here becomes:

∂ δA1(�r, t)
∂t

= −κ12δA1(�r, t) + κ21δA2(�r, t) + kδH(�r, t) + d∆ δA1(�r, t) (35)

∂ δA2(�r, t)
∂t

= κ12δA1(�r, t) − κ21δA2(�r, t) − kδH(�r, t) + d∆ δA2(�r, t) (36)

∂ δH(�r, t)
∂t

= κ12δA1(�r, t) − κ21δA2(�r, t) − kδH(�r, t) + D∆ δH(�r, t) (37)
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with

κ12 = k12 (38)

κ21 = k21H (39)

k = k21A2 (40)

and the matrixM associated to (35-37):

M =

 −(κ12 + dq2) κ21 k
κ12 −(κ21 + dq2) −k
κ12 −κ21 −(k + Dq2)


the eigenvalues of which are:

λ(1) = −dq2 (41)

λ(2) = −1
2
[κ12 + κ21 + k + (d + D)q2]

+
1
2

√
[(κ12 + κ21 + k) + (d − D)q2]2 + 4k(D − d)q2 (42)

λ(3) = −1
2
[κ12 + κ21 + k + (d + D)q2]

−1
2

√
[(κ12 + κ21 + k) + (d − D)q2]2 + 4k(D − d)q2 (43)

In the general case, the preceding expressions do not lead to a simple analytical expression for the

correlation functionGI,II(τ). Nevertheless, an approximate analytical expression can be obtained in

two limiting cases.

The relaxation time τ12 associated to the chemical reaction is much smaller than the diffusion time
τD

In their pioneering work involving complexation of ethidum bromide by DNA, Magde, Elson and Webb

developed the expressions of the eigenvalues (41–43) takingτ12
τD

as a small term [10, 11, 12]. Lamb et al

revisited and extended these calculations [13]. They also performed a series of experiments in which the

corresponding approximation was relevant [13, 14].

The concentration of A1 and A2 is much less than the concentration of H

The availability of sensitive detectors (APD for instance) allowed to envisage a more favorable approx-

imation than the latter. Provided thatk � κ12 + κ21, the second term under the square root in the

expressions ofλ(2) andλ(3) can be neglected in front of the first. Then:

λ(1) = −dq2 (44)

λ(2) = −Dq2 (45)

λ(3) = −R12 − dq2 (46)

with R12 = κ12 + κ21. The conditionk � κ12 + κ21 is noticeably fulfilled as soon asC � H [13].
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The occurrence of a chemical reaction (1) is naturally coupled to the diffusion of the statesA1 and

A2. For instance,A1 becomes in local excess andA2 is locally lacking with regard to the external

reservoir when reaction (1) takes place forward. Then relaxation is obtained by diffusion ofA1 andA2.

H is either produced or consumed during the same reactive event and the reaction (1) is similarly coupled

to theH diffusion. Nevertheless, the occurrence of reaction (1) does not modifyH whenC � H. Under

such conditions, the concentrationH is independent on the occurrences of the conversions between the

A1 andA2 states and the reaction (1) becomes equivalent to the reaction (22). Indeed, the expressions of

λ(1) andλ(3) here identify to the expressions (25) and (26). The additional eigenvalueλ(2) is associated

to the diffusion ofH.

If QH = 0, the different expressions obtained in the isomerization case apply to the more general

situation addressed in this subsection by substituting the apparent isomerization constantK12 = K12

H

to K12 in Eqs.(27–33). When the channelsI andII share identical optical elements, the cross corre-

lation functionGI,II(τ) is equal to the autocorrelation function of the fluorescence emission from the

illuminated volumeV , G(τ), given in Eq.(3).
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Supplementary Materials

Figures

Verdi M ira

M

O D

L1

L2

DC

Objective

Sam ple

FL’1L’2L’3

BS

APD I

APD II

BE

FI

FII

Figure 1S: FCS set-up relying on two-photon excitation that was used to perform the present series of

experiments. Experiments were performed with a mode-locked femtosecond Ti:sapphire laser (Mira)

pumped by a diode laser (Verdi) that delivers photon pulses at 76 MHz repetition rate in the 700-1000

nm range.M : mirror; OD: optical density;L1, L2: focusing lenses;BE: beam expander;DC: dichroic

mirror; F : short-pass filter;L′1, L′2, L′3: focusing lenses;BS: 50/50 splitting cube;FI, FII: band-

pass filters;APDI, APDII: avalanche photodiodes. The incoming beam is focused in the observed so-

lution. Due to two-photon excitation that quadratically depends on light intensity, fluorescence emission

is only significant from a tiny volume approximated as 3D-Gaussian in the micrometer range. Fluores-

cence is collected by the objective and the intensities measured by the avalanche photodiodes are cross

correlated.
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Microscope objective

Water

Glass plate (e=0.17 mm)

Glass tube

High viscosity

silicone

Silicone cork

Paraffin

Glass cylinder Argon

Sample

Argon

Figure 2S. Sample-containing cell under argon that was used during the present FCS experiments.
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A1 A2

A1
* A2

*

k11* k1*1

k1*2*

k2*1*

k21

k12

k22* k2*2

Figure 3S. Chemical process involving the smallest number of interconverting states that can be observed

by FCS: An isomerization occurs between the ground statesA1 andA2, and between the excited states

A�
1 andA�

2.
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Figure 4S. Evaluation of the reliability of the parameter values that can be extracted from FCS auto-

correlation curves by using Eq.(9). We used Eq.(3) to generate FCS autocorrelation curvesGf (τ) with

N=1, ω=10, H = K, andQ = ∞ for the following kτD values: 10−3, 10−2, 10−1, 1, 101, 102, 103.

Then we introduced some noise in the calculated autocorrelation functions to simulate “experimental”

autocorrelation functionsGe(τ) (markers) by adopting the typical noise level that was observed during

our present FCS measurements (−0.1 <
Ge(τ)−Gf (τ)

Gf (τ) < 0.1). We finally used Eq.(9) to fit the simulated

experimental data in the 10−3–103 range for τ
τD

by usingkτD, N , and K
H

as floatting parameters (solid

line). We only present the autocorrelation curves that gave satisfactory results: 10−1 (a), 1 (b), 101 (c),

102 (d).
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Table 1S. Derivation of the intrinsic relaxation timesτij associated to the six chemical reactions

displayed in Figure 7b:τ12 = [k12 + k21(H + OH)]−1, τ13 = [k13 + k31(H + A)]−1, τ23 = [k32 +

k23(AH +OH)]−1, τ13′ = [k13′ +k3′1(H +Y )]−1, τ23′ = [k3′2+k23′(Y H +OH)]−1, τ33′ = [k33′(A+

Y H) + k3′3(AH + Y )]−1; pKa(AH/A)=5; k12 = 2.5 10−5 s−1 [15]; k21 = 1.4 1011 M−1s−1 [15];

k31 = k3′1 = k23 = k23′ = k33′ = 1010 M−1s−1; C < 100 nM. Case1: pH is fixed by dilution ofYH
(pKa(YH/Y)=0) into theA aqueous solution; Case2: TheYH buffer (pKa(YH/Y)=5) at 0.1 M fixes

the pH of theA aqueous solution.

pH τ12 τ13 τ23 τ13′(1) τ23′(1) τ33′(1) τ13′(2) τ23′(2) τ33′(2)
(µs) (µs) (ms) (ps) (ms) (ms) (ns) (ns) (ns)

4 0.07 0.91 1.1 100 >1 >1 11 1.1 1
4.5 0.23 2.40 1.3 100 >1 >1 4.2 1.3 1
5 0.71 4.99 1.9 100 >1 >1 2.0 2.0 1
5.5 2.26 7.55 3.5 100 >1 >1 1.3 4.2 1
6 7.07 9.02 5.0 100 >1 >1 1.1 11 1

Table 2S. Evaluation of the reliability of the parameter values that can be extracted from FCS au-

tocorrelation curves by using Eq.(9). We used Eq.(3) to generate FCS autocorrelation curvesGf (τ)

with N=1, ω=10, H = K, andQ = ∞ for the following kτD values: 10−3, 10−2, 10−1, 1, 101, 102,

103. Then we introduced some noise in the calculated autocorrelation functions to simulate “experi-

mental” autocorrelation functionsGe(τ) by adopting the typical noise level that was observed during

our present FCS measurements (−0.1 <
Ge(τ)−Gf (τ)

Gf (τ) < 0.1). We finally used Eq.(9) to fit the simu-

lated experimental data in the 10−3–103 range for τ
τD

by usingkτD, N , and K
H

as floatting parameters

(Levenberg-Marquardt algorithm implemented in Kaleidagrah with a 0.1 % allowable error starting from

a same set of initial values:kτD = N = K
H

= 1). We only present the results that were obtained for the

following kτD values: 10−1, 1, 101, 102. The other values ofkτD led to nonreliable results.

kτD(theor) kτD(fit) N K
H

Linear Correlation CoefficientR

10−1 9.51 10−2 1.19 1.39 0.996
1 0.960 1.02 1.03 0.997

101 9.44 1.00 0.990 0.997
102 98.3 0.996 0.974 0.997
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