Cyclohexenones as Michael Acceptors in the StauntonWeinreb Annulation: A Simple Stannane Modification for the Synthesis of Polycyclic Systems

Bryan Hill ${ }^{\dagger}$ and Russell Rodrigo*
Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
rrodrigo@uwaterloo.ca

Supporting Information

General Information: Tetrahyrofuran (THF) was dried and distilled over Na /benzophenone and diisopropylamine was dried and distilled over CaH_{2}. All other reagents were purchased and used as obtained from commercial sources. All glassware was dried in a oven and stored in a dry box prior to use. All NMR spectra were recorded in CDCl_{3} on a Bruker 300 Avance spectrometer and reported at $\delta 7.24$ and $\delta 77.0$ for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively.

1

Stannane 1: To a solution of $i-\mathrm{Pr}_{2} \mathrm{NH}\left(3.24 \mathrm{~mL}, 23.2\right.$ mmole) and THF (90 mL) at $0^{\circ} \mathrm{C}$ was added n-BuLi ($2.0 \mathrm{M}, 10.8 \mathrm{~mL}, 21.6 \mathrm{mmole}$). After 15 mins the solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of ethyl-2-methoxy-6-methyl benzoate ${ }^{1}$ ($3.00 \mathrm{~g}, 15.45 \mathrm{mmole}$) and THF (30 mL) was added via cannula. The resulting red solution was stirred for 2 hrs at $-78^{\circ} \mathrm{C}$ before $\mathrm{Bu}_{3} \mathrm{SnCl}(5.44 \mathrm{~mL}$, 20.1 mmole) was added via a syringe. The resulting yellow solution was warmed to room temperature and quenched with aq $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3), washed with brine, dried over MgSO_{4}, filtered and concentrated. Purification by flash chromatography (25:1 Hexanes:EtOAc) yielded 4.57 $\mathrm{g},(61 \%)$ of stannane as a clear colourless liquid. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 4.34(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 3.76$ (3H, s), $2.22(2 \mathrm{H}, \mathrm{s}), 1.43-1.16(15 \mathrm{H}, \mathrm{m}), 0.92-0.72(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) δ $168.5,156.6,142.9,129.8,121.2,120.5,120.4,105.5,60.7,55.6,28.8$ (t, $J=10 \mathrm{~Hz}$), $27.2(\mathrm{t}, J=27.6$ and 34.6 Hz), 17.4, 16.2, 13.6, $9.8(\mathrm{t}, J=153.6$ and 160.3 Hz); LR-EIMS $\mathrm{m} / \mathrm{z}: 427\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 100\right), 425\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 75\right)$; LR-CIMS $\left(\mathrm{NH}_{3}\right)$: $485\left(\mathrm{MH}^{+}, 100\right)$; HREIMS calculated for $\mathrm{C}_{19} \mathrm{H}_{31}{ }^{116} \mathrm{SnO}_{3}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$: 423.1285 found 423.1284

General Ring Annulation Protocol: To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of stannane (1.4 eq) in THF was added $n-B u L i(1.4 \mathrm{eq})$ resulting in a deep red colour. The mixture was stirred for 30 mins before a solution of enone (1.0 eq) and THF was added via cannula. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hr before being warmed to room temperature and stirred for a further 3 hrs (the red colour disappears resulting in a yellow solution). The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3), washed with brine, dried over MgSO_{4}, filtered and concentrated. Purification by flash chromatography (8:1 Hexanes: EtOAc) yielded pure products.

2
Compound 2: Stannane ($500 \mathrm{mg}, 1.03 \mathrm{mmole}$) in THF (8 mL), $n-\mathrm{BuLi}(2.0 \mathrm{M}, 520 \mu \mathrm{~L}$, 1.03 mmole), cyclohex-1-en-one ($71 \mu \mathrm{~L}, 0.739 \mathrm{mmole}$) in THF (2 mL) yielded 135.4 mg (75%) of product as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.30(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $6.82(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 2.69(1 \mathrm{H}, \mathrm{dd}, J=13.2,3.0$ $\mathrm{Hz}), 2.62-2.53(1 \mathrm{H}, \mathrm{m}), 2.59(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 2.42-2.36(2 \mathrm{H}, \mathrm{m}), 1.99-1.83(2 \mathrm{H}, \mathrm{m})$, 1.62-1.52 (1H, m), 1.32-1.19 (1H, m); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 186.9,182.7,159.9,144.6$, 133.3, 120.6, 120.0, 110.4, 109.3, 55.9, 37.5, 32.9, 31.2, 29.9, 20.7; LR-EIMS m/z: 244 $\left(\mathrm{M}^{+}, 100\right), 216$ (37), 188 (42); HR-EIMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}: 244.1099$ found 244.1099.

4

Compound 4: Stannane ($500 \mathrm{mg}, 1.03 \mathrm{mmole}$) in THF (8 mL), $n-\mathrm{BuLi}(2.0 \mathrm{M}, 520 \mu \mathrm{~L}$, 1.03 mmole), 3-methyl-cyclohex-1-en-one ($83 \mu \mathrm{~L}, 0.735 \mathrm{mmole}$) in THF (2 mL) yielded $140 \mathrm{mg}(74 \%)$ of product as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.32(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}), 2.80(1 \mathrm{H}, \mathrm{d}, J=$ 15.0 Hz), $2.55(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}), 2.43-2.38(2 \mathrm{H}, \mathrm{m}), 1.86-1.66(3 \mathrm{H}, \mathrm{m}), 1.51(1 \mathrm{H}, \mathrm{dt}, J$ $=13.0,3.8 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 186.3$, 182.8, 159.9, 143.4, 133.5, 120.8, 119.9, 112.8, 110.4, 55.8, 45.1, 37.2, 32.8, 31.0, 24.7, 17.2; LR-EIMS m/z: 258 $\left(\mathrm{M}^{+}, 20\right), 243\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100\right)$; HR-EIMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}: 258.1256$ found 258.1252.

Compound 5: Stannane ($500 \mathrm{mg}, 1.03 \mathrm{mmole}$) in THF (8 mL), $n-\mathrm{BuLi}(2.0 \mathrm{M}, 520 \mu \mathrm{~L}$, $1.03 \mathrm{mmole})$, isophorone ($110 \mu \mathrm{~L}, 0.735 \mathrm{mmole}$) in THF (2 mL) yielded 175.3 mg (83%) of product as a white solid. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.27(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.85(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{d}, J$ $=15.2 \mathrm{~Hz}), 2.17(2 \mathrm{H}, \mathrm{d}, J=2.17 \mathrm{~Hz}), 1.50(2 \mathrm{H}, \mathrm{ABq}, J=4.0 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}$, s), 0.97 ($3 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 185.1,183.4,159.9,143.5,133.4,121.0,120.1$, 111.1, 110.3, 55.8, 50.5, 46.4, 45.7, 33.1, 30.8, 30.5, 30.0, 27.2; LR-EIMS m/z: 286 (${ }^{+}$, 15), 271 (100); HR-EIMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}: 286.1569$ found 286.1569.

Compound 6a: Stannane ($244 \mathrm{mg}, 0.505 \mathrm{mmole}$) in THF (5 mL), n-BuLi ($2.0 \mathrm{M}, 252$ $\mu \mathrm{L}, 0.505 \mathrm{mmole}$), enone ($133 \mathrm{mg}, 0.361 \mathrm{mmole}$) in THF (5 mL) yielded 132.9 mg (71%) of tetracycle as an amorphous solid. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.34(1 \mathrm{H}, \mathrm{t}, J=8.0$ $\mathrm{Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.95-3.91(2 \mathrm{H}, \mathrm{m}), 3.91(3 \mathrm{H}, \mathrm{s})$, $3.28(3 \mathrm{H}, \mathrm{s}), 3.28-3.24(1 \mathrm{H}, \mathrm{m}), 2.78-2.47(5 \mathrm{H}, \mathrm{m}), 2.27-2.22(1 \mathrm{H}, \mathrm{m}), 1.59-1.53(2 \mathrm{H}$, m), $1.47(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 1.04(1 \mathrm{H}, \mathrm{q}, J=11.1 \mathrm{~Hz}), 0.12$ $(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) δ 186.1, 185.4, 159.8, 144.5, 133.2, 120.6, 120.0, 110.5, $108.4,107.5,107.3,85.3,80.5,80.4,77.8,57.2,56.0,40.3,38.9,37.6,33.3,32.3,30.6$, 28.7, 26.3, 12.5, 2.7; LR-EIMS m/z: $516\left(\mathrm{M}^{+}, 75\right)$, $399\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{2}, 100\right), 457\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 90$); HR-EIMS calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}$: 516.2543 found 516.2555 .

6b

Compound 6b: Stannane ($354 \mathrm{mg}, 0.732 \mathrm{mmole}$) in THF (7.5 mL), n-BuLi ($2.0 \mathrm{M}, 370$ $\mu \mathrm{L}, 0.732 \mathrm{mmole}$), enone ($192.7 \mathrm{mg}, 0.523 \mathrm{mmole}$) in THF (7.5 mL) yielded 167.7 mg (62\%) of tetracycle as an amorphous solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.31(1 \mathrm{H}, \mathrm{t}, J=8.0$ $\mathrm{Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 3.98-$ $3.90(1 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.24-3.17(1 \mathrm{H}, \mathrm{m}), 3.22(3 \mathrm{H}, \mathrm{s}), 2.85-2.66(3 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}$, d, $J=14.1 \mathrm{~Hz}$), 2.45-2.29 ($2 \mathrm{H}, \mathrm{m}$), 2.16-2.12 ($1 \mathrm{H}, \mathrm{m}$), $1.49(3 \mathrm{H}, \mathrm{s}), 1.45-1.35(2 \mathrm{H}, \mathrm{m})$, $1.29(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 0.12(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 186.3,185.9$, 159.8, 144.5, 133.3, 120.8, 120.0, 110.5, 108.5, 108.3, 81.0, 77.7, 75.7, 74.5, 56.2, 56.0, 37.5, 36.5, 33.0, 29.6, 29.5, 28.0, 27.4, 25.2, 12.3, 2.7; LR-EIMS m/z: $516\left(\mathrm{M}^{+}, 10\right), 457$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 100\right), 399\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{2}, 35\right)$; HR-EIMS: calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}$: 516.2543 found 516.2531.

7

Compound 7: Stannane ($228 \mathrm{mg}, 0.472 \mathrm{mmole}$) in THF (5 mL), $n-\mathrm{BuLi}(2.0 \mathrm{M}, 240 \mu \mathrm{~L}$, 0.472 mmole), enone ($124.3 \mathrm{mg}, 0.337 \mathrm{mmole}$) in THF (5 mL) yielded 89.6 mg (51%) of tetracycle as an amorphous solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.31(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.83$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 4.04-3.92(2 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.26-3.22$ ($1 \mathrm{H}, \mathrm{m}$), $3.24(3 \mathrm{H}, \mathrm{s}), 2.85-2.66(3 \mathrm{H}, \mathrm{m}), 2.55-2.46(2 \mathrm{H}, \mathrm{m}), 2.23-2.13(2 \mathrm{H}, \mathrm{m}), 1.65(1 \mathrm{H}$, dd, $J=14.9,8.9 \mathrm{~Hz}$), 1.45-1.40 (1H, m), $1.44(3 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.15$ (3H, d, $J=6.2$ $\mathrm{Hz}), 0.13(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 HMz) δ 187.1, 184.8, 159.8, 144.7, 135.5, 120.8, 120.0, $110.4,108.6,108.5,81.4,77.9,74.5,74.4,56.3,56.0,37.5,36.3,33.2,31.2,29.7,28.0$, 27.6, 25.6, 13.7, 2.4; LR-EIMS m/z: 516 ($\mathrm{M}^{+}, 5$), 457 (100), 399 (25), 367 (20); HREIMS: calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si} 516.2543$ found 516.2548.

8
Compound 8: Stannane ($62 \mathrm{mg}, 0.128 \mathrm{mmole}$), in THF (5 mL), n-BuLi ($2.0 \mathrm{M}, 65 \mu \mathrm{~L}$, 0.128 mmole), enone ($30.1 \mathrm{mg}, 0.0916 \mathrm{mmole}$) in THF (1 mL) yielded $20.6 \mathrm{mg}(47 \%)$ of pentacycle as a film. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.40-7.22(6 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $6.77(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.05(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 3.92(3 \mathrm{H}, \mathrm{s})$, $3.42(3 \mathrm{H}, \mathrm{s}), 3.31-3.28(2 \mathrm{H}, \mathrm{m}), 2.94-2.88(2 \mathrm{H}, \mathrm{m}), 2.64-2.53(2 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{dd}, J=$ 17.5, 6.9 Hz), 2.12-2.02 ($1 \mathrm{H}, \mathrm{m}$), 1.09 (3H, s); LR-EIMS m/z: 476 (${ }^{+}, 42$), 444 (100), 416 (65), 367 (33), 307 (70), 201 (32); HR-EIMS calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S} 476.1657$ found 476.1656.

[^0]Stannane 1, $\mathbf{3 0 0} \mathbf{M H z}{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$

Stannane 1, $75 \mathrm{MHz}^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$

Compound 2, $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 2, $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 4, $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 4， $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

$z^{\prime} 6 t-$
LRC
$0 \cdot 1 E=$
$\mathrm{B} \cdot \mathrm{ZE}=$
2 2ε ——
1的

日 5
$\begin{aligned} & 9 \cdot 92 \\ & 0.2 L \\ & 0 \cdot L L\end{aligned}>$

OHF
OH
CH
$6.6 \mathrm{H}=$
$9021-=$

GEEL
－EDー

6． 691 ————
$8.281-$
5.291

Compound 5, $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3})

Compound $5,75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 6a, $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 6a, $75 \mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

IEP Lt

$100 \cdot 99=$
$\forall 61 / 29 —$
ECG192
GE5'

661 Eと「——
LEG PDI——
TE 6 E :

 911 '981~

Compound 6b, $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$

Compound 6b, $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 7, $300 \mathrm{MHz}{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

要㖠下一
100

Compound 8, $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3})

[^0]: ${ }^{1}$ Hauser, F.M.; Pogany, S.A. Synthesis, 1980, 814 and Hamada, Y.; Hara, O.; Kawai, A.; Kohno, Y.; Shioiri, T. Tetrahedron, 1991, 47, 8635

