Regulation of Saccharide Binding with Basic Poly(ethynylpyridine)s by H^{+}-Induced Helix Formation

Hajime Abe,* Nozomi Masuda, Minoru Waki, and Masahiko Inouye*
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan, and PRESTO, Japan Science and Technology Agency (JST)

Contents

Experimental Section S2
Figure S1-S8 S6
${ }^{1}$ H NMR spectrum for polymer $\mathbf{2}$ and the additive effect of TFA S13
${ }^{1}$ H NMR spectra for compounds $\mathbf{5 , 7 , 8}, \mathbf{9}$, and $\mathbf{1 1}$ S14
Computationally optimized Cartesian coordinates of 12, 13, and their conjugate acids S19

Experimental Section

General. NMR spectra were recorded on a Varian Gemini 300 spectrometer using tetramethylsilane (TMS) as an internal reference. UV-vis, fluorecence, CD, and IR spectra were measured on JASCO V-560, FP-6500, J-720WI, and FTIR-460plus spectrometers, respectively. ESI-HRMS analyses were carried out on a JEOL JMS-T100LC mass spectrometer. THF was freshly distilled from sodium benzophenone ketyl before use, and other solvents were purified with standard methods.
2,6-Dibromo-4-(N-methyl- \boldsymbol{N}-octylamino)pyridine (5). A NaH ($0.97 \mathrm{~g}, 24 \mathrm{mmol}$; commercial 60\% dispersion was washed thoroughly with hexane before use) suspension in DMF (15 mL) was cooled with an ice bath, and then to the suspension was added slowly N-methyloctylamine ($3.2 \mathrm{~g}, 22 \mathrm{mmol}$). After that, to the mixture was added 2,6-dibromo-4-nitropyridine ${ }^{1}(6.2 \mathrm{~g}, 22 \mathrm{mmol})$ in one portion at $0^{\circ} \mathrm{C}$. The reaction mixture was then stirred for 2 h , being allowed to reach the room temperature. The resulting mixture was cautiously quenched by the addition of water and extracted with AcOEt. The AcOEt extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The evaporated residue was purified by silica gel column chromatography (AcOEt/hexane, 1:1) to afford $5(4.3 \mathrm{~g}, 52 \%)$ as orange oil. IR (neat) 2922, 2850, $1581 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.87-0.93(\mathrm{~m}, 3 \mathrm{H})$, $1.25-1.35(\mathrm{~m}, 12 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 14.2,22.7,26.7,26.9,29.3,29.4,31.8,38.1,52.1,108.7,140.8,155.8$; ESI-HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 377.0228$; found: 377.0239 .
4-(\mathbf{N}-Methyl- \boldsymbol{N}-octylamino)-2,6-bis(trimethylsilylethynyl)pyridine (6). To an $i-\mathrm{Pr}_{2} \mathrm{NH}$ (40 mL) suspension of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(480 \mathrm{mg}, 0.69 \mathrm{mmol})$ and $\mathrm{CuI}(130 \mathrm{mg}, 0.69 \mathrm{mmol})$ were added $5(5.2 \mathrm{~g}, 14$ mmol) and (trimethylsilyl)acetylene ($4.2 \mathrm{~g}, 29 \mathrm{mmol}$) subsequently. The mixture was stirred for 3.5 h at room temperature and concentrated, and the resulting residue was extracted with AcOEt. The AcOEt extract was filtered to remove the insoluble material and washed with 5% aqueous ethylenediamine and brine subsequently. The AcOEt layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The resulting crude oil including 6 was brought to the next deprotection step without further purification.
2,6-Diethynyl-4-(\boldsymbol{N}-methyl- N-octylamino)pyridine (7). To a THF (40 mL) solution of $\mathbf{6}$ (14 mmol) prepared above were added $n-\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M THF solution, $25 \mathrm{~mL}, 25 \mathrm{mmol}$) and a few drops of $\mathrm{H}_{2} \mathrm{O}$ subsequently. The mixture was stirred for 0.5 h at room temperature, concentrated, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$. The separated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The resulting residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, 1:1) to afford $7\left(3.0 \mathrm{~g}, 81 \%\right.$ yield from 5) as orange oil. IR (KBr) $3292,2925,2854,2097,1593 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \boldsymbol{\delta} 0.86-0.92(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.35(\mathrm{~m}, 12 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H})$, $3.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.2,22.7,26.8,27.0,29.3,29.4$, $31.8,37.8,51.7,75.5,83.3,109.9,142.3,153.3$; ESI-HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 269.2018; found: 269.2006 .

2,6-Diiodo-4-(N-methyl- N-octylamino)pyridine (8). This compound was prepared by the Cu -mediated halogen-exchange procedure reported by us. ${ }^{2}$ A mixture of $\mathbf{5}(4.6 \mathrm{~g}, 12 \mathrm{mmol}), \mathrm{CuI}(53 \mathrm{~g}$, $280 \mathrm{mmol})$, and KI ($110 \mathrm{~g}, 660 \mathrm{mg}$) in DMF (450 mL) was stirred for 14 h at $140{ }^{\circ} \mathrm{C}$. The resulting brown mixture was diluted with $\mathrm{AcOEt} /$ aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and filtered to remove insoluble material. The AcOEt layer was washed with 5% aqueous ethylenediamine and brine subsequently, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The resulting residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{8}(5.0 \mathrm{~g}, 87 \%)$ as orange oil. IR $(\mathrm{KBr}) 2925,2853,1570 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 0.86-0.94(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.35(\mathrm{~m}, 12 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.1,22.7,26.7,26.9,29.3,29.4,31.8,37.9,51.8,116.0,116.3$, 154.1; ESI-HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{I}_{2} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 472.9951; found: 472.9964 .

2,6-Bis\{[6-iodo-4-(N-methyl- N-octylamino)-2-pyridyl]ethynyl\}-4-(N-methyl- N-octylamino)pyridi

 ne (9). To an $i-\operatorname{Pr}_{2} \mathrm{NH}(30 \mathrm{~mL}) / \mathrm{THF}(50 \mathrm{~mL})$ suspension of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(310 \mathrm{mg}, 260 \mu \mathrm{~mol})$ and CuI ($50 \mathrm{mg}, 260 \mu \mathrm{~mol}$) were added $7(1.4 \mathrm{~g}, 5.3 \mathrm{mmol})$ and an excess of $\mathbf{8}(16 \mathrm{~g}, 34 \mathrm{mmol})$. The mixture was stirred for 12 h at room temperature, concentrated, and the resulting residue was diluted with AcOEt. The AcOEt suspension was filtered to remove insoluble material and diluted with further AcOEt. The AcOEt layer was washed with 5% aqueous ethylenediamine and brine subsequently, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The evaporated residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, 1:1) to afford $9(4.0 \mathrm{~g}, 79 \%$ yield based on 7$)$ as yellow oil. IR (KBr) 2924, 2853, $1582 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}\right) \delta 0.86-0.93(\mathrm{~m}, 9 \mathrm{H}), 1.22-1.37(\mathrm{~m}, 36 \mathrm{H})$, $2.93(\mathrm{~s}, 6 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.35(\mathrm{~m}, 6 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{~Hz}\right) \delta 14.2$, 22.7, 26.8, 26.9, 27.0, 27.1, 29.3, 29.4, 29.5, 31.8, 37.9, 51.9, 86.3, 88.1, 110.5, 110.9, 116.0, 118.4, 142.4, 142.6, 153.2, 153.5; ESI-HRMS m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{67} \mathrm{I}_{2} \mathrm{~N}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 957.3517; found: 957.3480.2-\{[6-Iodo-4-(N-methyl- N-octylamino)-2-pyridyl]ethynyl\}-4-(N-methyl- N-octylamino)-6-\{[4-(N -methyl- N-octylamino)-6-(trimethylsilylethynyl)-2-pyridyl]ethynyl\}pyridine (10). To an $i-\mathrm{Pr}_{2} \mathrm{NH}$ $(20 \mathrm{~mL}) /$ THF $(20 \mathrm{~mL})$ suspension of $\mathrm{Pd}_{2}(\mathrm{dba})_{2} \cdot \mathrm{CHCl}_{3}(150 \mathrm{mg}, 0.12 \mathrm{mmol})$, $\mathrm{CuI}(23 \mathrm{mg}, 0.12 \mathrm{mmol})$, and trimesitylphosphine ($140 \mathrm{mg} \quad 0.35 \mathrm{mmol}$) were added $9(2.4 \mathrm{~g}, 2.5 \mathrm{mmol})$ and (trimethylsilyl)acetylene ($79 \mathrm{mg}, 0.80 \mathrm{mmol}$) subsequently. The mixture was stirred for 13 h at room temperature and concentrated, and to the residue was added AcOEt. The AcOEt suspension was filtered to remove insoluble material, washed with aqueous 5% ethylenediamine and brine subsequently, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The resulting crude oil including $\mathbf{1 0}$ was brought to the next deprotection step without further purification.
2-\{[6-Ethynyl-4-(N-methyl- N-octylamino)-2-pyridyl]ethynyl\}-6-\{[6-iodo-4-(N-methyl- N-octylami no)-2-pyridyl]ethynyl\}-4-(\boldsymbol{N}-methyl- \boldsymbol{N}-octylamino)pyridine (11). To a THF (30 mL) solution of $\mathbf{1 0}$ prepared as above were added $n-\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M THF solution, $0.80 \mathrm{~mL}, 0.80 \mathrm{mmol}$) and a few drops of $\mathrm{H}_{2} \mathrm{O}$ subsequently. The reaction mixture was stirred for 1 h at room temperature, concentrated, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$. The separated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The resulting residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} / \mathrm{hexane}, 1: 1: 3\right)$ to afford $\mathbf{1 1}(450 \mathrm{mg}, \mathbf{6 6 \%}$ based on (trimethylsilyl)acetylene used in the
previous step) as orange oil. IR (KBr) $3305,2925,2853,2102 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.84-0.93$ (m, 9 H), 1.22-1.37 (m, 36 H), 2.93 (s, 3 H), 2.96 (s, 6 H), 3.02 (s, 1 H), 3.24-3.35 (m, 6 H), $6.63-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.88(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.1,22.7,26.7,26.9,29.3,29.5$, $31.8,37.8,37.9,51.8,75.4,83.3,86.1,87.0,87.1,88.1,109.6,110.4,110.8,115.9,118.4,142.2,142.3$, 142.5, 142.69, 142.74, 153.2, 153.4; ESI-HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 855.4550$; found: 855.4590 .

Basic Ethynylpyridine Polymer 2. To an $i-\mathrm{Pr}_{2} \mathrm{NH}(80 \mathrm{~mL}) / \mathrm{DMF}(80 \mathrm{~mL})$ suspension of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6.6 \mathrm{mg}, 9.4 \mu \mathrm{~mol})$ and $\mathrm{CuI}(1.8 \mathrm{mg}, 9.4 \mu \mathrm{~mol})$ was added $11(800 \mathrm{mg}, 940 \mu \mathrm{~mol})$. The mixture was stirred for 15 h at room temperature. To the reaction mixture was added 3-aminopropyl-functionalized silica gel ($1.0 \mathrm{mmol} / \mathrm{g}, 500 \mathrm{mg}$) to scavenge the copper salt, and the reslting suspension was filtered. The filtrate was stirred for an additional 1 h at room temperature and concentrated. The concentrated residue was diluted with AcOEt/hexane ($1: 1,300 \mathrm{~mL}$), and the solution was centrifuged ($2300 \mathrm{rpm} ; 4^{\circ} \mathrm{C} ; 5 \mathrm{~min}$). The supernatant liquid phase was decanted off. This centrifugal washing manipulation was repeated four times. The obtained precipitate was dried under reduced pressure to yield $2(380 \mathrm{mg}, 48 \% \mathrm{w} / \mathrm{w}$ yield) as brown powder. IR (KBr) 2924, 2852, $1587 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.82-0.94(\mathrm{~m}, 3 \mathrm{n} \mathrm{H}), 1.20-1.38(\mathrm{~m}, 12 \mathrm{nH}), 2.90-3.04(\mathrm{~m}$, 3 nH), 3.22-3.38 (m, 2n H), 7.82-7.92 (m, 2n H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.2,22.7,26.8,26.9$, 27.1, 29.4, 29.4, 29.5, 31.9, 37.9, 52.0, 87.2, 110.4, 142.8, 153.2.

Vapor Pressure Osmometry (VPO) Analyses for 2. VPO analyses for 2 were performed on a Gonote OSMOMAT 070 osmometer and benzil was used as a standard. A CHCl_{3} solutions of six different concentrations of $2\left(2.0 \times 10^{-3}, 4.0 \times 10^{-3}, 6.0 \times 10^{-3}, 8.0 \times 10^{-3}, 1.0 \times 10^{-2}, 1.2 \times 10^{-2}\right.$ $\mathrm{mmol} / \mathrm{kg}$, unit concentration) were measured at $40^{\circ} \mathrm{C} . M_{\mathrm{n}}$ value of $1.1 \times 10^{4} \mathrm{~g} / \mathrm{mol}$ was given by these analyses.

Evaluation of Binding Strengths of 2 with Glycosides Using Curve-Fitting Method on CD

 analyses. Polymer $2\left(1.0 \mathrm{mM}\right.$, unit concentration) and TFA (0 or 0.5 mM) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (commercial anhydrous reagent was treated with dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ before use). This solution was titrated with a solution or solid of guest glycoside, and the observed ellipticity on CD was plotted versus the concentration of the glycoside. The formal binding constants were obtained by iterative curve-fitting measurements based on the following assumptions and equation. ${ }^{3}$Assumption 1:
The concentration [2] was assumed as $2.2 \times 10^{-5} \mathrm{M}$ based on the M_{n} value ($1.1 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$) measured by VPO.
Assumption 2:
Glycosides and $\mathbf{2}$ form complexes predominantly in $1: 1$ manner as the case of oligomeric $\mathbf{1}(\mathrm{n}=24) .{ }^{4}$

Equation:

$$
\theta_{\text {obs }}=\frac{\theta_{11}}{2 K_{11}[2]_{0}}\left[1+K_{11}[\mathbf{2}]_{0}+K_{11}[\mathrm{G}]_{0}-\left\{\left(1+K_{11}[\mathbf{2}]_{0}+K_{11}[\mathrm{G}]_{0}\right)^{2}-4 K_{11}^{2}[\mathbf{2}]_{0}[\mathrm{G}]_{0}\right\}^{1 / 2}\right]
$$

K_{11} : the $1: 1$ binding constant of $\mathbf{2}$ with glycosides
$\theta_{\text {obs: }}$: the observed ellipticity
θ_{11} : ellipticity of the $1: 1$ host-guest complex (at the saturation point)
[2] $]_{0}$: the total concentration of $\mathbf{2}$
$[\mathrm{G}]_{0}$: the total concentration of guest glycoside

Computational Method. Quantum chemical calculations were carried out with a Gaussian 03 program. The geometry optimization and the evaluation of zero point energy (ZPE) were performed by the use of DFT(B3LYP) method and $6-31 \mathrm{G}(\mathrm{d})$ basis sets, and the total energy was calculated by the use of $\operatorname{DFT}(\mathrm{B} 3 \mathrm{LYP})$ method and $6-311+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ basis sets.

References

(1) Neumann, U.; Vögtle, F. Chem. Ber. 1989, 122, 589-591.
(2) Suzuki, H.; Kondo, A.; Inouye, M.; Ogawa, T. Synthesis 1986, 121-122.
(3) Connors, K. A. Binding Constants, John Wiley \& Sons, New York, 1987.
(4) Inouye, M.; Waki, M.; Abe, H. J. Am. Chem. Soc. 2004, 126, 2022-2027.

Figure S1. (A) UV-vis spectra of 2 at the concentrations varying from 1.0×10^{-3} to $5.0 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $26^{\circ} \mathrm{C}$. Light path length was 1 or 10 mm , and the measured absorbance was normalized to that for 10 mm . (B) Beer's plot of the normalized absorbance at 291 nm versus the concentration of 2 for analyses shown in (A). (C) Beer's plot of the absorbance at 363 nm versus the concentration of 2 $\left(1.0 \times 10^{-1}\right.$ to $\left.3.9 \times 10^{-4} \mathrm{M}\right)$ in CHCl_{3} at $40^{\circ} \mathrm{C}(\mathrm{VPO}$ conditions $)$. Light path length $=1 \mathrm{~mm}$.

Figure S2. Fluorescence spectra of 2 at the concentration varying from 1.0×10^{-4} to $2.5 \times 10^{-6} \mathrm{M}$ (unit concentration) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $26^{\circ} \mathrm{C} . \quad \lambda_{\text {ex }}=315 \mathrm{~nm}$, light path length $=10 \mathrm{~mm}$.

Figure S3. The change of the absorption spectrum of $\mathbf{1}$ on titration with TFA. Conditions: $\mathbf{1}(1.0 \times$ $10^{-4} \mathrm{M}$, unit concentration), TFA (0.0 to $10.0 \times 10^{-4} \mathrm{M}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 26^{\circ} \mathrm{C}$. Light path length $=10 \mathrm{~mm}$.

Figure S4. The change of CD spectrum of the complex between 2 and (A) β-D-Fru, (B) β-D-Man, or (C) β-D-Gal, on titration with TFA. Conditions: $\mathbf{2}(1.0 \mathrm{mM}$, unit concentration), hexose (2.5 mM), TFA ((A) 0 to $0.05 \mathrm{mM} /$ black, 0.1 to $0.3 \mathrm{mM} / \mathrm{red}, 0.4$ to $2.0 \mathrm{mM} /$ blue. (B) 0 to $0.025 \mathrm{mM} / \mathrm{black}, 0.05$ to $0.25 \mathrm{mM} /$ green, 0.3 to $0.4 \mathrm{mM} / \mathrm{red}, 0.5$ to $1.5 \mathrm{mM} /$ blue. (C) 0 to $0.4 \mathrm{mM} / \mathrm{black}, 0.5$ to $1.3 \mathrm{mM} / \mathrm{blue}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 26^{\circ} \mathrm{C}$. Light path length $=1 \mathrm{~mm}$.

Figure S5. The change of CD spectrum of the complex between $\mathbf{1}$ and β-D-Glc on titration with TFA. Conditions: $\mathbf{1}(1.0 \mathrm{mM}$, unit concentration), β-D-Glc $(2.5 \mathrm{mM})$, TFA $(0.0-0.6 \mathrm{mM} /$ green, $0.8-1.1$ $\mathrm{mM} /$ blue, $2.0-4.0 \mathrm{mM} /$ red, $6.0-13.0 \mathrm{mM} /$ black $), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 26^{\circ} \mathrm{C}$. Light path length $=1 \mathrm{~mm}$.

Figure S6. The change of the CD spectrum on the titration of $2\left(1.0 \times 10^{-3} \mathrm{M}\right.$, unit concentration) with β-D-Fru in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $26^{\circ} \mathrm{C}$ in the (A) absence or (B) presence of TFA $\left(5.0 \times 10^{-4} \mathrm{M}\right)$. Light path length $=1 \mathrm{~mm}$. The titration curves in the absence ($\mathrm{C}, 322 \mathrm{~nm}$ was observed) or presence ($\mathrm{D}, 316 \mathrm{~nm}$ was observed) of TFA. The lines are theoretical curves obtained by the iterative curve-fitting analyses assuming 1:1 complexation between $\mathbf{2}$ and β-D-Fru and the molecular weight of $\mathbf{2}$ as $1.1 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$.

Figure S7. The change of the CD spectrum on the titration of $\mathbf{2}(1.0 \mathrm{mM}$, unit concentration) with β-D-Man in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $26^{\circ} \mathrm{C}$ in the (A) absence or (B) presence of TFA $(0.5 \mathrm{mM})$. Light path length $=$ 1 mm . (C) The titration curves in the absence (circles, 318 nm was observed) or presence (squares, 314 nm was observed) of TFA. The lines are theoretical curves obtained by the iterative curve-fitting analyses assuming 1:1 complexation between $\mathbf{2}$ and $\boldsymbol{\beta}$-D-Man and the molecular weight of $\mathbf{2}$ as $1.1 \times$ $10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$.

Figure S8. (A) The change of the CD spectrum on the titration of $\mathbf{2}(1.0 \mathrm{mM}$, unit concentration) with β-D-Gal in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $26^{\circ} \mathrm{C}$ in the presence of TFA $(0.5 \mathrm{mM})$. Light path length $=1 \mathrm{~mm}$. (B) The titration curves in the presence (343 nm was observed) of TFA. The lines are theoretical curves obtained by the iterative curve-fitting analyses assuming 1:1 complexation between $\mathbf{2}$ and $\boldsymbol{\beta}$-D-Gal and the molecular weight of $\mathbf{2}$ as $1.1 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$.
${ }^{1}$ H NMR spectrum for polymer 2 and the additive effect of TFA

*Gray lines are guides to know downfield movement of peaks.
${ }^{1}$ H NMR spectra for compounds $5,7,8,9$, and 11

Total energy, zero point energy correction (ZPE), and optimized geometry obtained by DFT method.

Total energy $=-534.699903166$ hartree
Zero-point energy correction $(Z P E)=0.179477$ hartree Total energy including ZPE $=-534.520426$ hartree

The optimized Cartesian coordinate:

Atomic Type	Coordinates (Angstroms)		
	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	1.399663
C	1.227157	0.000000	2.096954
C	2.393044	-0.015402	1.301594
C	2.278529	-0.014690	-0.093373
H	-0.949349	-0.001190	1.918476
H	3.381570	-0.029126	1.740982
N	1.110001	-0.005830	-0.761002
C	2.568347	-0.088851	4.144412
H	3.238492	0.729124	3.852072
H	2.412355	-0.022552	5.222280
H	3.076110	-1.040481	3.928787
C	0.056829	-0.073106	4.247177
H	0.301180	-0.009638	5.308680
H	-0.624590	0.753485	4.010352
H	-0.478829	-1.018088	4.074008
N	1.283531	0.016801	3.470628
C	3.478660	-0.026563	-0.885732
C	-1.260997	0.004068	-0.691493
C	-2.335845	0.008276	-1.244421
H	-3.272817	0.011596	-1.753497
C	4.504625	-0.035968	-1.524760
H	5.396769	-0.044477	-2.108788

$12 \mathrm{H}^{+}$-ring
Total energy $=-535.096467900$ hartree
Zero-point energy correction (ZPE) $=0.193702$ hartree
Total energy including ZPE $=-534.902766$ hartree

The optimized Cartesian coordinate:

Atomic Type	Coordinates (Angstroms)		
	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	1.378889
C	1.226464	0.000000	2.111581
C	2.434100	0.000653	1.348231
C	2.399374	0.000645	-0.030223
H	-0.957260	0.000116	1.879242
H	3.403660	0.001285	1.824291
C	2.518072	-0.001118	4.185530
H	3.106378	0.892488	3.950052
H	2.312575	-0.001634	5.254569
H	3.106124	-0.894613	3.948973
C	-0.012913	-0.001809	4.217050
H	0.219133	-0.002242	5.280642
H	-0.607368	0.891490	3.996305
H	-0.606195	-0.895607	3.995154
N	1.243292	-0.000453	3.455905
C	3.565605	0.001180	-0.839004
C	-1.186233	-0.000096	-0.779150
C	-2.188373	0.000081	-1.454260
H	-3.079639	0.000063	-2.045720
C	4.550423	0.001896	-1.539142
H	5.426509	0.002363	-2.152863
N	1.191335	0.000000	-0.678143
H	1.178561	0.000000	-1.692315

$12 \mathrm{H}^{+}$-amino
Total energy $=-535.050747905$ hartree
Zero-point energy correction $(Z P E)=0.194090$ hartree
Total energy including ZPE $=-534.856658$ hartree
The optimized Cartesian coordinate:

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	1.413053
C	1.232110	0.000000	2.045458
C	2.418371	0.000135	1.327882
C	2.311910	0.000412	-0.079941
H	-0.941279	-0.000051	1.955331
H	3.397937	0.000138	1.792198

N	1.131441	0.000250	-0.722096
C	1.884386	1.254911	4.108658
H	1.367181	2.117759	3.688390
H	1.777727	1.229655	5.194347
H	2.937987	1.276168	3.832320
C	1.884337	-1.255693	4.108092
H	1.777499	-1.231051	5.193775
H	1.367237	-2.118329	3.687259
H	2.937974	-1.276752	3.831861
C	3.499356	0.000278	-0.872709
C	-1.241908	0.000273	-0.703389
C	-2.305520	0.000723	-1.276668
H	-3.235144	0.001014	-1.803862
C	4.518008	0.000596	-1.522464
H	5.405999	0.000654	-2.117068
N	1.260422	-0.000235	3.537327
H	0.279119	-0.000253	3.836531

Total energy $=-992.044458405$ hartree
Zero-point energy correction $(\mathrm{ZPE})=0.331603$ hartree
Total energy including ZPE $=-991.712855$ hartree
The optimized Cartesian coordinate:

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	2.281733
C	1.399824	0.000000	2.337291
C	2.145866	-0.006421	1.139894
C	1.398824	0.000491	-0.058036
H	1.878294	0.006733	3.307495
H	1.878375	0.007642	-1.027769
C	-0.736601	0.005043	3.510753
C	-1.320160	0.010165	4.574991
C	-2.056797	0.017412	5.803981
C	-3.456620	0.022147	5.748326
C	-4.202754	0.027583	6.945656
H	-3.934960	0.023362	4.778038
C	-2.056904	0.035302	8.085623
C	-3.455720	0.041392	8.143536
H	-3.935246	0.058196	9.113159
N	-0.715457	-0.001277	1.139125

N	-1.341400	0.022370	6.946603
C	4.245891	0.075827	-0.116622
H	4.042273	1.019076	-0.644625
H	5.317085	0.022727	0.084203
H	3.989499	-0.753007	-0.788534
C	-6.302507	0.129408	8.201181
H	-6.096828	1.077698	8.719342
H	-7.373835	0.076343	8.001024
H	-6.047781	-0.692928	8.881582
C	-0.742083	0.003897	-1.232574
C	-1.314878	0.046297	9.318191
C	-1.338005	0.006840	-2.284300
H	-1.883020	0.009613	-3.200764
C	-0.719086	0.055423	10.369954
H	-0.174108	0.063477	11.286409
N	3.520687	-0.020244	1.140211
N	-5.577687	0.018275	6.945350
C	4.245436	0.073674	2.398392
H	5.316625	0.020314	2.197770
H	4.041073	1.015936	2.927278
H	3.987931	-0.755853	3.068572
C	-6.301960	0.108032	5.686581
H	-6.095496	1.047307	5.153128
H	-6.046118	-0.725284	5.020573
H	-7.373304	0.057785	5.887240

Total energy $=-992.041457988$ hartree
Zero-point energy correction $(Z P E)=0.331360$ hartree
Total energy including ZPE $=-991.710098$ hartree
The optimized Cartesian coordinate:

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	2.281984
C	1.400779	0.000000	2.335400
C	2.146304	0.008464	1.137851
C	1.399040	0.000174	-0.059031
H	1.882270	-0.008122	3.304285
H	1.877686	-0.007030	-1.029239
C	-0.737459	-0.004951	3.511321

C	-1.343159	-0.008605	4.563346
C	-2.036071	-0.014228	5.818332
C	-1.286815	-0.045175	7.002678
C	-1.948287	-0.054831	8.248626
H	-0.207223	-0.059535	6.932531
C	-4.009202	0.013916	6.964391
C	-3.358072	-0.015777	8.203717
H	-3.956555	-0.007097	9.104942
N	-0.713944	0.001410	1.139565
N	-3.382236	0.013907	5.774745
C	4.246208	-0.089653	-0.120114
H	3.987413	0.728035	-0.804161
H	5.317517	-0.030690	0.078666
H	4.043466	-1.041406	-0.633160
C	-1.980029	0.011348	10.697398
H	-2.717087	-0.793859	10.806863
H	-1.271389	-0.071587	11.523004
H	-2.507184	0.972206	10.791957
C	-0.742915	-0.004773	-1.231694
C	-5.446966	0.049866	6.940658
C	-1.339467	-0.008575	-2.282920
H	-1.889015	-0.012065	-3.196713
C	-6.655246	0.079450	6.952853
H	-7.721109	0.106024	6.936680
N	-1.259246	-0.102362	9.439039
N	3.522526	0.026659	1.136360
C	0.192858	-0.029419	9.436784
H	0.629600	-0.849665	8.853560
H	0.564288	0.919868	9.022618
H	0.556402	-0.119699	10.461677
C	4.247725	-0.080131	2.392017
H	3.980056	0.736260	3.074280
H	4.055787	-1.033084	2.907510
H	5.318314	-0.009655	2.192997

Total energy $=-992.451090698$ hartree
Zero-point energy correction (ZPE) $=0.345926$ hartree
Total energy including ZPE $=-992.105165$ hartree
The optimized Cartesian coordinate:

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	0.000000	0.000000	0.000000

C	0.000000	0.000000	2.275305
C	1.395172	0.000000	2.356717
C	2.150674	-0.000117	1.158291
C	1.400841	0.000000	-0.040111
H	1.871204	0.000131	3.328350
H	1.886302	0.000195	-1.006813
C	-0.779150	0.000121	3.477122
C	-1.472454	-0.000003	4.476828
C	-2.349984	0.000036	5.578272
C	-3.729031	0.000268	5.443864
C	-4.578834	0.000169	6.584966
H	-4.126913	0.000502	4.439766
C	-2.572136	-0.000184	7.972673
C	-3.945215	0.000075	7.867662
H	-4.518783	0.000252	8.782727
N	-0.719834	0.000000	1.137771
C	4.249601	0.000643	-0.099777
H	4.021320	0.892190	-0.697680
H	5.319254	-0.000681	0.110240
H	4.019667	-0.889045	-0.699746
C	-6.774795	0.000018	7.660024
H	-6.601446	0.893437	8.270299
H	-7.817963	-0.000868	7.347922
H	-6.600163	-0.892775	8.270821
C	-0.731193	0.000207	-1.234581
C	-1.887072	-0.000335	9.217235
C	-1.320334	0.000347	-2.289451
H	-1.851087	0.000495	-3.215395
C	-1.292885	-0.000337	10.269322
H	-0.774568	-0.000414	11.204499
N	3.516038	-0.000367	1.161773
N	-5.921207	0.000218	6.466914
C	4.243849	0.000830	2.423958
H	5.314368	-0.000229	2.218700
H	4.014994	0.892969	3.022108
H	4.013776	-0.889542	3.024213
C	-6.547937	0.000772	5.140068
H	-6.265241	0.893560	4.571314
H	-6.265418	-0.891666	4.570682
H	-7.630101	0.000856	5.260146
N	-1.802693	-0.000241	6.837961
H	-0.793540	-0.000545	6.930670

Total energy $=-992.451701191$ hartree
Zero-point energy correction $(Z P E)=0.346110$ hartree Total energy including ZPE $=-992.105591$ hartree

The optimized Cartesian coordinate:

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	2.404943
C	1.384918	0.000000	2.412735
C	2.125610	0.000000	1.197116
C	1.377794	0.000000	-0.021303
H	1.877007	0.000000	3.373990
H	1.865337	0.000000	-0.984853
C	-0.804449	0.000000	3.560815
C	-1.592430	0.000310	4.487605
C	-2.554334	0.000565	5.548430
C	-2.120329	0.000669	6.876482
C	-3.087682	0.001036	7.911423
H	-1.059402	0.000357	7.088618
C	-4.755319	0.000950	6.126072
C	-4.437599	0.001050	7.490906
H	-5.248671	0.001098	8.206507
N	-3.837733	0.000710	5.140697
C	4.212571	0.000000	-0.077688
H	3.982312	0.893063	-0.669326
H	5.280379	-0.000064	0.135561
H	3.982219	-0.892990	-0.669397
C	-3.773143	0.001483	10.259937
H	-4.410161	-0.889451	10.190326
H	-3.299550	0.002451	11.241779
H	-4.410932	0.891725	10.188979
C	-0.796324	0.000000	-1.176080
C	-6.135128	0.000938	5.732434
C	-1.488005	0.000012	-2.166726
H	-2.095009	0.000045	-3.046981
C	-7.304974	0.000908	5.430231
H	-8.335379	0.000871	5.152061
N	-0.660185	0.000000	1.199905
H	-1.674767	0.000000	1.206283
N	3.473972	0.000000	1.189963
C	4.221502	0.000000	2.451480
H	3.994034	0.892930	3.044652
H	3.993937	-0.892869	3.044705
H	5.287826	-0.000070	2.231199
N	-2.738198	0.001287	9.231168
C	-1.332727	0.000574	9.615770
H	-0.811660	-0.891092	9.242569
H	-0.810658	0.891355	9.241878
H	-1.260366	0.000982	10.703393

Total energy $=-992.764084489$ hartree
Zero-point energy correction (ZPE) $=0.359965$ hartree Total energy including ZPE $=-992.404119$ hartree

The optimized Cartesian coordinate:

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	2.399587
C	1.377076	0.000000	2.422388
C	2.130709	-0.000069	1.200971
C	1.379610	0.000000	-0.014200
H	1.870045	0.000062	3.383521
H	1.867965	0.000077	-0.977734
C	-0.790346	0.000039	3.583136
C	-1.481339	-0.000012	4.581927
C	-2.271672	-0.000006	5.765488
C	-3.648743	0.001347	5.742724
C	-4.402342	0.001293	6.964159
H	-4.141743	0.002445	4.781606
C	-2.271607	-0.001568	8.165072
C	-3.651217	-0.000222	8.179313
H	-4.139541	-0.000326	9.142861
C	4.217624	-0.000088	-0.067195
H	3.987170	0.894847	-0.654559
H	5.283861	-0.000896	0.150751
H	3.986036	-0.894213	-0.655327
C	-6.489287	0.002373	8.232311
H	-6.257803	0.896499	8.820497
H	-7.555515	0.003032	8.014324
H	-6.258769	-0.892564	8.819630
C	-0.789241	0.000066	-1.176933
C	-1.482362	-0.003074	9.342010
C	-1.462327	0.000109	-2.180959
H	-2.049864	0.000145	-3.076131
C	-0.809707	-0.004327	10.346323
H	-0.222358	-0.005453	11.241619
N	3.470819	-0.000197	1.202225
N	-5.742453	0.002596	6.962902
C	4.222157	0.000016	2.466403
H	5.287344	-0.000610	2.243455
H	3.997108	0.895786	3.055205
H	3.996275	-0.895034	3.055965
C	-6.493773	0.004367	5.698711
H	-6.267279	0.899950	5.110188

H	-6.269317	-0.890872	5.108882
H	-7.558958	0.005421	5.921661
N	-1.604584	-0.001446	6.964395
H	-0.591047	-0.002452	6.975841
N	-0.667052	-0.000035	1.200666
H	-1.680591	-0.000042	1.189188

Total energy $=-992.763794096$ hartree
Zero-point energy correction $(\mathrm{ZPE})=0.359763$ hartree
Total energy including ZPE $=-992.404031$ hartree

The optimized Cartesian coordinate:

Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	0.000000	0.000000	0.000000
C	0.000000	0.000000	2.399651
C	1.377222	0.000000	2.422277
C	2.130836	0.000000	1.200889
C	1.379494	0.000000	-0.014189
H	1.868903	0.000000	3.384216
H	1.866969	0.000000	-0.978273
C	-0.786000	0.000000	3.586159
C	-1.448972	0.000095	4.603789
C	-2.216022	0.000130	5.802633
C	-1.637958	0.000643	7.052882
C	-2.449874	0.000658	8.236347
H	-0.559334	0.001031	7.113157
C	-4.410388	-0.000365	6.773780
C	-3.865073	0.000122	8.041000
H	-4.549438	0.000097	8.876904
C	4.217836	0.000000	-0.067729
H	3.986864	0.894485	-0.655524
H	5.283946	0.000000	0.150559
H	3.986853	-0.894490	-0.655513
C	-2.765360	0.001264	10.658186
H	-3.395852	-0.893558	10.685279
H	-2.134300	0.002043	11.544757
H	-3.396832	0.895416	10.684435
C	-0.789653	0.000000	-1.176655
C	-5.805939	-0.000888	6.527904
C	-1.462811	0.000001	-2.180648

H	-2.051006	0.000001	-3.075418
C	-6.996307	-0.001337	6.317738
H	-8.052528	-0.001732	6.141705
N	-0.667105	0.000000	1.200684
H	-1.680441	0.000000	1.187518
N	3.470935	0.000000	1.201594
C	4.222657	0.000000	2.465502
H	3.997468	0.895373	3.054791
H	3.997484	-0.895382	3.054785
H	5.287802	0.000000	2.242206
N	-1.906904	0.001152	9.461507
C	-0.446925	0.001552	9.637420
H	0.001056	-0.893788	9.193185
H	0.000609	0.896965	9.192880
H	-0.220049	0.001785	10.701812
N	-3.582373	-0.000355	5.677856
H	-4.004524	-0.000719	4.756525

