Stereoselective Total Synthesis of cis- and trans-3-Hydroxypipecolic Acid

Ningning Liang and Apurba Datta ${ }^{*}$
Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
adutta@ku.edu

Supporting Information II

Experimental procedure and characterization data for compounds 6, 3A, 12, 4, 14, 15 and

 17.(2R,3R)-2-(tert-Butoxycarbonylamino)-1,3-bis(tert-butyldimethylsilyloxy)-hept-6-ene (6). To a solution of the aminodiol derivative $3(580 \mathrm{mg}, 1.6 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, catalytic DMAP and imidazole ($218 \mathrm{mg}, 3.2 \mathrm{mmol}$) were added sequentially under nitrogen atmosphere with stirring. The solution was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{TBDMSCl}(366 \mathrm{mg}, 2.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added slowly. The cooling bath was removed, and the reaction mixture was heated at $40-50{ }^{\circ} \mathrm{C}$ for 18 h . A second batch of TBDMSCl ($180 \mathrm{mg}, 1.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL) and imidazole ($125 \mathrm{mg}, 1.8 \mathrm{mmol}$) were added to the reaction mixture, and stirring was continued at the same temperature overnight. The reaction was then quenched by addition of water (15 mL), the organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residual oil was purified by flash column chromatography $(\mathrm{EtOAc} / \mathrm{hexane}=$ 5:95 to $15: 85$) to afford the di-TBDMS-protected product $6(610 \mathrm{mg}, 95 \%$, based on recovered starting material) as a light yellow viscous liquid, along with recovery of some unreacted starting material 3 (85 mg): $[\alpha]_{\mathrm{D}}^{25}-9\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right.$); IR (neat) $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
0.06 and $0.08(2 \mathrm{~s}, 12 \mathrm{H}), 0.91(\mathrm{~s}, 18 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.20(\mathrm{~m}, 2 \mathrm{H})$, $3.43-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.96-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-5.06$ $(\mathrm{m}, 2 \mathrm{H}), 5.77-5.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-4.9,-4.4,-3.9,18.5,26.0,26.2$, $28.8,29.2,30.1,30.2,33.5,33.8,54.0,55.1,61.9,69.1,79.4,115.2,138.3,138.5,156.2$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2} m / z(\mathrm{M}+\mathrm{H}) 474.3435$, found 474.3422 .

Conversion of the syn-Amino Alcohol 3 to the Corresponding Oxazolidinone Derivative 3A. To an ice-cooled solution of the amino alcohol $\mathbf{3}$ (200 mg .0 .56 mmol) in anhydrous THF (5 mL) was added potassium t-butoxide (1 M solution in THF, 2.7 mL , 2.7 mmol) dropwise. The reaction mixture was allowed to attain room temperature, and stirring was continued overnight. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under vacuum and purification of the crude residue by flash column chromatography (EtOAc/ hexane $=3: 7$) afforded the oxazolidinone $\mathbf{3 A}$ as a colorless oil $(127.5 \mathrm{mg}, 80 \%):[\alpha]^{25} 53.8(\mathrm{c}$ $1.98, \mathrm{CHCl}_{3}$); IR (neat) $3276,1753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}$, 9H), 1.68-1.79 (m, 1H), 1.82-1.94(m, 1H), 2.13-2.32(m, 2H), 3.51-3.65(m,3H), 4.32-4.36 ($\mathrm{m}, 1 \mathrm{H} ;\{\mathrm{d}, J=4.53 \mathrm{~Hz}$, after decoupling from $\mathrm{H}-1$ '; please see supporting information, page S9\}), 4.98-5.15 (m, 2H), 5.80-5.91 (m, 1H), $6.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-$ $5.3,18.3,25.9,29.0,34.4,59.1,65.0,79.0,116.0,137.1,159.6$; HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{Si}$ $m / z(\mathrm{M}+\mathrm{H}) 286.1838$, found 286.1857.
N-Benzyloxycarbonyl-(4S)-2,2-dimethyl-4-(1'-oxo-4'-pentenyl)-1,3-oxazolidine (12). To an ice-cooled solution of the Weinreb amide $\mathbf{1 1}^{16}(1.29 \mathrm{~g}, 4 \mathrm{mmol})$ in 10 mL of anhydrous THF was added dropwise a solution of 3-butenylmagnesium bromide (10 mmol) (prepared from Mg (0.48
$\mathrm{g}, 0.02 \mathrm{~g}$ atom) and 4-bromo-1-butene ($1.35 \mathrm{~g}, 10 \mathrm{mmol})$) in ether (15 mL) and stirred at the same temperature for 3 h . The reaction was quenched by careful addition of an aqueous 10% HCl solution $(25 \mathrm{~mL})$ and was stirred for 5 min . The resulting solution was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), and the combined extract was washed sequentially with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. Purification of the oily residue by flash column chromatography (ethyl acetate/hexane = 1:15) afforded the ketone $12(0.926 \mathrm{~g}$, 73%) as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}} 55$ (c 1.1, CHCl_{3}); IR (neat) $1713,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) (mixture of rotamers) $\delta 1.48$ and $1.57(2 \mathrm{~s}, 3 \mathrm{H}), 1.65$ and $1.70(2 \mathrm{~s}, 3 \mathrm{H}), 2.13-2.39(\mathrm{~m}$, 2H), 2.41-2.68 (m, 2H), 3.91-3.99 (m, 1H), 4.10-4.20(m, 1H), 4.38-4.57(m,1H), 4.88-5.23 $(\mathrm{m}, 4 \mathrm{H}), 5.60-5.88(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right)$ (mixture of rotamers) $\delta 23.7,24.9,25.2,26.1,27.0,27.1,38.0,38.5,64.9,65.3,65.4,65.9,67.0,67.7,94.9$, 95.6, 115.3, 115.4, 128.0, 128.1, 128.3, 128.5, 128.6, 135.9, 136.7, 136.9, 151.9, 153.1; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}) 318.1705$, found 286.1687.

Hydrolysis of $\mathbf{1 3}$ to the Diol 4. To a solution of the oxazolidine $\mathbf{1 3}$ ($800 \mathrm{mg}, 2.5 \mathrm{mmol}$) in 90% aqueous $\mathrm{MeOH}(10 \mathrm{~mL})$ was added Dowex-50W ion-exchange resin (2.6 g), and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . The resin was removed by filtration and washed with methanol, and the combined filtrate was concentrated in vacuo to give $648 \mathrm{mg}(93 \%)$ of the diol $\mathbf{4}$ as a light yellow, low melting solid: $[\alpha]^{25}{ }_{\mathrm{D}}-12\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right.$); IR (neat) 3301,$1684 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.64-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.50\left(\mathrm{~m}, 2 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $3.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.81-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.99-4.07(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.14(\mathrm{~m}, 4 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.79-$ $5.92(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 30.6,33.8,55.7,62.7,67.4$, $73.8,115.8,128.5,128.6,129.0,136.7,138.3,156.9 ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})$ 280.1549, found 280.1552 .

Using the diol $4(678 \mathrm{mg}, 2.43 \mathrm{mmol})$, we followed the same procedure as that for compound $\mathbf{6}$. After purification, the di-TBDMS-protected diol 14 ($1.15 \mathrm{~g}, 94 \%$) was obtained as a light yellow oily liquid: $[\alpha]^{25}{ }_{\mathrm{D}}-7\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; IR (neat) $3350,1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.08$ and $0.09(2 \mathrm{~s}, 12 \mathrm{H}), 0.92(\mathrm{~s}, 18 \mathrm{H}), 1.51-1.72(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.29(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.93(\mathrm{~m}, 4 \mathrm{H})$, 4.91-5.15 (m, 5H), 5.75-5.89 (m, 1H), 7.24-7.30(m,5H); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-$ $5.1,-4.9,-4.6,-4.4,18.5,26.3,29.2,30.2,33.0,56.0,61.8,67.0,71.3,115.0,128.4,128.6$, 128.9, 137.1, 138.9, 156.5; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{NO}_{4} \mathrm{Si}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}) 508.3278$, found 508.3287.

Conversion of $\mathbf{1 4}$ to the Piperidinol Derivative 15. Starting from the aminodiol derivative 14 ($200 \mathrm{mg}, 0.39 \mathrm{mmol}$), we followed the same procedure as that for compound 7. After purification, the cyclic carbinolamine $15(174 \mathrm{mg}, 87 \%)$ was obtained as a light yellow oil: IR (neat) $3435,1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of anomers): $\delta-0.03-0.14$ (m, $12 \mathrm{H}), 0.83-0.97(\mathrm{~m}, 18 \mathrm{H}), 1.43-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.71(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.19(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.69$ $(\mathrm{m}, 1 \mathrm{H}), 3.76-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.23(\mathrm{~m}, 3 \mathrm{H}), 5.06-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.82(\mathrm{~m}, 1 \mathrm{H}), 7.29-$ $7.43(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of anomers) $\delta-5.2,-5.1,-4.6,18.4,18.5$, $21.5,22.5,24.5,25.2,26.2,26.3,59.4,60.1,64.2,64.6,65.9,67.6,74.2,74.4,128.1,128.2$, 128.4, 128.6, 128.8, 136.8, 137.1, 156.0, 157.2; calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{NO}_{5} \mathrm{Si}_{2} \mathrm{~m} / z(\mathrm{M}+\mathrm{H}) 510.3071$, found 510.3063.

Oxidation of 16 to (2S,3S)-N-tert-butoxycarbonyl-3-(tert-butyldimethylsilyloxy)pipecolic Acid (17). Starting from the piperidine derivative $16(178 \mathrm{mg}, 0.47 \mathrm{mmol})$, we followed the same procedure as that for compound 9. Flash column chromatography afforded the pure carboxylic acid derivative $\mathbf{1 7}(122 \mathrm{mg}, 66 \%)$ as a low melting solid: $[\alpha]^{25}{ }_{\mathrm{D}}-5.5\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$;

IR (neat) $3435,1701,1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 0.03-0.16$ $(\mathrm{m}, 6 \mathrm{H}), 0.87-0.90(\mathrm{~m}, 9 \mathrm{H}), 1.17-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.91-$ $3.16(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ and $4.96(2 \mathrm{~s}, 1 \mathrm{H}), 5.09-5.26$ (m, 2H), 7.30-7.41 (m, 5H), 10.4 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8,-4.6,18.4$, $18.6,26.1,29.1,41.7,42.0,61.4,61.6,66.2,67.8,128.1,128.3,128.8,136.9,137.0,156.6$, 157.4, 175.5; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{Si} m / z(\mathrm{M}+\mathrm{H})$ 394.2050, found 394.2034.

