## Supporting Information

## 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones are Covalent Binding Irreversible Inhibitors of the Kinase Domain of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2, also known as KDR).

Allan Wissner*, M. Brawner Floyd, Bernard D. Johnson, Heidi Fraser, Charles Ingalls, Thomas Nittoli, Russell G. Dushin, Carolyn Discafani, Ramaswamy Nilakantan, Joseph Marini, Malini Ravi, Kinwang Cheung, Xingzhi Tan, Sylvia Musto, Tami Annable, Marshall M. Siegel, Frank Loganzo.
Chemical and Screening Sciences and Oncology Research, Wyeth Research, 401 N. Middletown Road, Pearl River, NY, 10965
*Address correspondence to: Allan Wissner, Wyeth Research, 401 N. Middletown Rd, Pearl River NY 10965. Tel: (845) 602-3580, Fax: (845) 602-5561, email: wissnea@wyeth.com

## Additional syntheses and spectral data

$N$-(3,4-Dichloro-2,5-dimethoxyphenyl)-6-methoxy-7-(2-methoxyethoxy)quinazolin-4-amine (8b). This compound was prepared from $6(6.4 \mathrm{~g}$, $23.08 \mathrm{mmol})$, the hydrochloride salt of $\mathbf{7 b}(6.56 \mathrm{~g}, 25.38 \mathrm{mmol})$, and $\mathrm{NaOAc}(2.08 \mathrm{~g}$, 25.38 mmol ) using the method described above for $\mathbf{8 a}$ to yield 3.9 g of $\mathbf{8 b}$ as a white solid ( $37 \%$ ): MS (ESI) $m / z 454.1(\mathrm{M}+\mathrm{H})^{+1}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D ${ }_{6}$ ) $\delta 3.25-3.41$ (m, 3 H), 3.64 (s, 3 H), 3.69-3.79 (m, 2 H), 3.85 (s, 3 H), 3.96 (s, 3 H), 4.20-4.36 (m, 2 H), 7.21 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.41 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.90 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.37 ( $\mathrm{s}, 1 \mathrm{H}$ ), 9.54 ( $\mathrm{s}, 1 \mathrm{H}$ ).

## 2,3-Dichloro-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

$\mathbf{y l}$ ]amino\}benzo-1,4-quinone (9b). This compound was prepared from $\mathbf{8 b}(3.8 \mathrm{~g}, 8.36$ mmol ) using the procedure described above for $\mathbf{9 a}$ to give $\mathbf{9 b}$ ( 1.85 g of a red solid) in $52 \%$ yield: MS (ESI) m/z $424.1(\mathrm{M}+\mathrm{H})^{+1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49(\mathrm{~s}, 3 \mathrm{H})$, 3.79-3.97 (m, 2 H ,), 4.07 ( $\mathrm{s}, 3 \mathrm{H}$ ), 4.25-4.41 (m, 2 H ), 7.02 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.33 (s, 1 H ), 8.34 $(\mathrm{s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H})$; HRMS (ESI-FTMS (M+H) ${ }^{+1}$ ) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}, 424.04615$; found, 424.04622 . The purity of $\mathbf{9 b}$ was evaluated by two HPLC systems and found to be $99 \%$ (system A, retention time $=8.04 \mathrm{~min}$ ) and $98 \%$ (system B, retention time $=14.9 \mathrm{~min})$.
$N$-(4-Chloro-2,3,5-trimethoxyphenyl)-6-methoxy-7-(2-methoxyethoxy)
quinazolin-4-amine (8e). A solution of $\mathbf{6}(7.8 \mathrm{~g}, 28.13 \mathrm{mmol})$ and $7 \mathrm{e}(6.12 \mathrm{~g}, 28.13$ mmol ) in $\mathrm{AcOH}(246 \mathrm{ml}$ ) was refluxed for 3.5 h . The reaction was cooled to rt and diluted with ether. The resulting solid was collected by filtration to yield 12.03 g of $\mathbf{8 e}$ as a beige powder ( $95 \%$ ): MS (ESI) $\mathrm{m} / \mathrm{z} 450.1(\mathrm{M}+\mathrm{H})^{+} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D ${ }_{6}$ ) $\delta$ $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, 4.23-4.30 (m, 2 H), 7.17 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.20 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.83 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.37 ( $\mathrm{s}, 1 \mathrm{H}$ ), 9.30 (s, 1 H ).

## 2-Chloro-3-methoxy-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

 yl]amino\}benzo-1,4-quinone ( $\mathbf{9 e}$ ). Compound $\mathbf{8 e}(1.0 \mathrm{~g}, 2.22 \mathrm{mmol})$ was boiled in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$ until dissolved and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added. While still hot the solution was treated with CAN $(2.86 \mathrm{~g}, 5.22 \mathrm{mmol})$ in portions over 2 min . The reaction was then stirred at rt for 1 h , diluted with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$, and extracted with $\mathrm{CHCl}_{3}(5 \times 800 \mathrm{ml})$. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered through a pad of magnesol (eluting with $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{EtOAc}$ ). The solvent was removed at reduced pressure. The resulting solid was dissolved in boiling $\mathrm{CH}_{3} \mathrm{CN}(200 \mathrm{~mL})$ and diluted with ether ( 200 mL ). A red solid formed upon cooling and was collected by filtration to give $0.59 \mathrm{~g}(63 \%)$ of 9 e : MS (ESI) m/z $420(\mathrm{M}+\mathrm{H}){ }^{+1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.95(\mathrm{~m}, 2 \mathrm{H})$, 4.08 (s, 3 H ), $4.20(\mathrm{~s}, 3 \mathrm{H}), 4.26-4.40(\mathrm{~m}, 2 \mathrm{H})$, 7.03 (s, 1 H ), $7.32(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$, 8.47 (s, 1 H ), 8.81 (s, 1 H ). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{6} 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
## $N$-(2,5-Dimethoxy-4-methylphenyl)-6-methoxy-7-(2-methoxyethoxy)

quinazolin-4-amine ( $\mathbf{8 f}$ ). A mixture of $6(5.55 \mathrm{~g}, 0.02 \mathrm{mmol})$ and 2,4,5trimethoxyaniline ( $3.68 \mathrm{~g}, 0.022 \mathrm{mmol}$ ) in 50 mL of HOAc was refluxed at $139^{\circ} \mathrm{C}$ for 1 h. The reaction was cooled to rt . The resulting solid was filtered and washed with ether to give 4.9 g ( $62.2 \%$ ) of $\mathbf{8 f}$ as a yellow solid: $\mathrm{mp} 165-168{ }^{\circ} \mathrm{C}$; MS (ESI) $m / z 400.2$ $(\mathrm{M}+\mathrm{H}){ }^{+1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$ ) $\delta 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.73-3.75 (m, 5H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 4.24-4.26(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.16$ (s, 1 H ), 7.80 (s, 1 H ), 8.28 ( $\mathrm{s}, 1 \mathrm{H}$ ), 9.11 ( $\mathrm{s}, 1 \mathrm{H}$ ).

2-\{[6-Methoxy-7-(2-methoxyethoxy)-4-quinazolinyl]amino\}-5-methylbenzo$\mathbf{1 , 4}$-quinone ( 9 f). A solution of $\mathbf{8 f}(3.0 \mathrm{~g}, 7.51 \mathrm{mmol})$ in $100 \mathrm{mLCH}_{3} \mathrm{CN}$ was prepared by heating. $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL})$ was added to the warm mixture followed by $9.06 \mathrm{~g}(16.52 \mathrm{mmol})$ of CAN over 15 min . The reaction mixture was stirred at rt for 1.5 h . The mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was separated and dried over $\mathrm{MgSO}_{4}$. The solution was passed through a short magnesol column, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-isopropanol (9:1). The solvent was removed from the filtrate and the residue was stirred with $\mathrm{CH}_{3} \mathrm{CN} /$ ether. The resulting solid was collected to yield $2.2 \mathrm{~g}(79.3 \%)$ of $\mathbf{9 f}$ as a red crystalline solid: HRMS (ESI-FTMS, $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}, 370.13975$; found, 370.14173 ; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 2.03$ (s, $3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$, 3.74-3.76 (m, 2 H ), 4.01 ( $\mathrm{s}, 3 \mathrm{H}$ ), 4.30-4.32 (m, 2 H$), 6.89$ (s, 1 H ), 7.33 (s, 1 H ), 7.56 (s, 1 H ), 7.79 (s, 1 H ), 8.76 (s, 1 H ), 9.09 (bs, 1 H ); Anal.( $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$.1.1 $\mathrm{H}_{2} \mathrm{O}$ ) N, H, C: calcd, 58.07; found, 58.64.
$N$-(2,5-dimethoxyphenyl)-6-methoxy-7-(2-methoxyethoxy)quinazolin-4-amine $(\mathbf{8 g})$. A solution of $\mathbf{6}(5.63 \mathrm{~g}, 20.3 \mathrm{mmol})$ and 2,5 -dimethoxyaniline ( $3.42 \mathrm{~g}, 22.33 \mathrm{mmol}$ ) in 24 mL of HOAc was refluxed for 1 h . The reaction was diluted with ether. The solid was collected and recrystallized from isopropanol to yield $6.45 \mathrm{~g}(82.4 \%)$ of $\mathbf{8 g}$ as grey solid: MS (ESI) m/z 386.2 (M+H) ${ }^{+1}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $_{6}$ ) $\delta 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (m, 8 H), $3.94(\mathrm{~m}, 3 \mathrm{H}), 4.24-4.27(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.94,3.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.17 (s, 1 H ), 7.20 (d, $J=3.02 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.79 (s, 1 H ), 8.32 (s, 1 H ), 9.09 ( $\mathrm{s}, 1$ H); Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}benzo-1,4-
quinone ( $\mathbf{9 g}$ ). To a solution of $\mathbf{8 g}(6.2 \mathrm{~g}, 16.09 \mathrm{mmol})$ in 202 mL of warm $\mathrm{CH}_{3} \mathrm{CN}$ was added 30 mL of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CAN}(26.46 \mathrm{~g}, 48.26 \mathrm{mmol}$ ) portion wise over 40 min . The reaction was stirred for 30 min . It was poured into $800 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed twice with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{MgSO}_{4}$ and filtered through a pad of magnesol, eluting with EtOAc. The solvent of the product fraction was evaporated in vacuo. The residue was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$-ether to yield $2.67 \mathrm{~g}(46.7 \%)$ of $\mathbf{9 g}$ as an orange solid: MS (ESI) $m / z 356(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS, $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}, 356.12410$; found, $356.12452 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49(\mathrm{~s}, 3 \mathrm{H}$ ), 3.90 (m, 2 H ), 4.07 ( $\mathrm{s}, 3 \mathrm{H}$ ), 4.33-4.35 (m, 2 H ), 6.81 (dd, $J=4 \mathrm{~Hz}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.04(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.52 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H})$, $8.81(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} .0 .66 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-Methoxy-7-(2-methoxyethoxy)- N -(2,4,5-trimethoxyphenyl)quinazolin-4amine ( $\mathbf{8 h}$ ). A mixture of $\mathbf{6}(8.0 \mathrm{~g}, 28.85 \mathrm{mmol})$ and 2,3,5-trimethoxyaniline ( 5.81 g , 31.73 mmol ) in 35 mL HOAc was stirred at reflux for 1 h . The mixture was cooled to rt , diluted with 550 mL ether and stirred for 1 h . The solid was collected and washed with ether giving $9.05 \mathrm{~g}(75.5 \%)$ of $\mathbf{8 h}$ as a tan crystalline solid: MS (ESI) $\mathrm{m} / \mathrm{z} 416.1$ $(\mathrm{M}+\mathrm{H})^{+1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$ ) $\delta 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.75(\mathrm{~m}, 5$ H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.23-4.29(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, ~ J=3.02 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, J $=3.02 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} .0 .1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## $N$-(3-Bromo-2,5-dimethoxyphenyl)-6-methoxy-7-(2-

methoxyethoxy)quinazolin-4-amine (8k). A mixture of $\mathbf{6}(7.37 \mathrm{~g}, 26.58 \mathrm{mmol})$ and 3-bromo-2,5-dimethoxy-aniline ( $6.1 \mathrm{~g}, 27.97 \mathrm{mmol}$ ) in 33 mL of HOAc was refluxed for 1 h 15 min . The reaction was cooled, poured into $\mathrm{H}_{2} \mathrm{O}$ and neutralized with 5 N NaOH . The solid was collected, washed with $\mathrm{H}_{2} \mathrm{O}$ and air-dried. The residue was recrystallized from EtOAc-hexanes to yield $9.3 \mathrm{~g}(75.3 \%)$ of $\mathbf{8 k}$ : MS (ESI) $\mathrm{m} / \mathrm{z} 464.1(\mathrm{M}+\mathrm{H}){ }^{+1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 3.34(\mathrm{~s}, 3 \mathrm{H}$ ), $3.60(\mathrm{~s}, 3 \mathrm{H}$ ), 3.74-3.76 (m, 5 H ), 3.95 (s, 3 H ), 4.26-4.28 (m, 2 H), $7.09(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=3.02 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.38 ( $\mathrm{s}, 1 \mathrm{H}$ ), 9.35 ( $\mathrm{s}, 1 \mathrm{H}$ ).

## 2-Bromo-6-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}benzo-1,4-

quinone ( $9 \mathbf{k}$ ). To a warm solution of $\mathbf{8 k}(8.9 \mathrm{~g}, 19.17 \mathrm{mmol})$ in 436 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at 50 ${ }^{\circ} \mathrm{C}$ was added 87 mL of $\mathrm{H}_{2} \mathrm{O}$ and CAN $(26.27 \mathrm{~g}, 47.92 \mathrm{mmol})$ over 10 min . The reaction was stirred at rt for 1.5 h and heated to $45^{\circ} \mathrm{C}$. The reaction was cooled, diluted with 1 L $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and dried over $\mathrm{MgSO}_{4}$. The solution was filtered through a magnesol plug, eluting with $\mathrm{CHCl}_{3}$-EtOAcisopropanol. The solvent was evaporated. The resulting solid was chromatographed on a silica gel column, eluting with $\mathrm{CHCl}_{3}$ - $\mathrm{EtOAc}(1: 1)$. The solvent of product fractions was evaporated to give $2.4 \mathrm{~g}(28.8 \%)$ of $\mathbf{9 k}$ as a red solid crystalline: MS (ESI) $\mathrm{m} / \mathrm{z} 434$ $(\mathrm{M}+\mathrm{H}){ }^{+1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.90(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, 4.33-4.35 (m, 2 H), $7.04(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $2.27 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.54(\mathrm{~s}, 1 \mathrm{H}), 8.83$ (s, 1 H ); Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{5} .0 .25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{N}, \mathrm{H}$ : calcd, 3.35; found, 3.79.

2-Methoxy-6-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}benzo$\mathbf{1 , 4}$-quinone ( 9 h ). A sample of $\mathbf{8 h}(8.65 \mathrm{~g}, 20.82 \mathrm{mmol})$ was oxidized with CAN as described above for $\mathbf{9 a}$ to give $2.27 \mathrm{~g}(28.3 \%)$ of $\mathbf{9 h}$ as a fibrous crystalline red solid: MS (ESI) $\mathrm{m} / \mathrm{z} 386.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS, $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$, 386.13466; found, 386.13594; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d ${ }_{6}$ ) $\delta 3.34$ (s, 3 H ), 3.74-3.76 (m, 2 H ), $3.83(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.29-4.31(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.59$ $(\mathrm{s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.52 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} .0 .33\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-(methylthio)

benzo-1,4-quinone (91). This compound was prepared from $81(130 \mathrm{mg}, 0.3 \mathrm{mmol})$ and CAN ( $345 \mathrm{mg}, 21.0 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ using the procedure described above for $\mathbf{9 e}$ to give 102 mg ( $84 \%$ ) of 91 as a red solid: MS (ESI) $\mathrm{m} / \mathrm{z} 402(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}, 402.11182$; found, 402.11222; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.90$ (m, 2 H ), $4.08(\mathrm{~s}, 3 \mathrm{H}), 4.33-4.35(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 8.14$ $(\mathrm{s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H})$. The purity of 9 r was evaluated by two HPLC systems and found to be $96 \%$ (system A, retention time $=6.16 \mathrm{~min}$ ) and $93 \%$ (system B, retention time $=12.78 \mathrm{~min}$ ).

## N-(4-Bromo-2,5-dimethoxyphenyl)-6-methoxy-7-(2-methoxyethoxy)-

quinazolin-4-amine ( $\mathbf{8 m}$ ). This compound was prepared from $6(8.32 \mathrm{~g}, 30 \mathrm{mmol})$ and $\mathbf{7 m}(7.66 \mathrm{~g}, 33 \mathrm{mmol})$ in HOAc ( 30 ml ) using the procedure described above for $\mathbf{8 e}$ to give $12.17 \mathrm{~g}(87 \%)$ of $\mathbf{8 m}$ as a grey solid: mp 217-221 ${ }^{\circ} \mathrm{C}$; MS (ESI) $\mathrm{m} / \mathrm{z} 464(\mathrm{M}+\mathrm{H})^{+1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.77(\mathrm{~m}, 5 \mathrm{H}), 3.78-3.80(\mathrm{~m}, 3 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 4.22-4.28(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H})$, 8.32 (s, 1 H ), 9.18 ( $\mathrm{s}, 1 \mathrm{H}$ ).

## 2-Bromo-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}benzo-

 1,4-quinone ( $9 \mathbf{m}$ ). This compound was prepared from $8 \mathrm{~m}(300 \mathrm{mg}, 0.65 \mathrm{mmol})$ and CAN ( $0.78 \mathrm{~g}, 1.43 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(8.6 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{ml})$ using the procedure described above for $\mathbf{9 e}$ to give $256 \mathrm{mg}(90.6 \%)$ of $\mathbf{9 m}$ as a purple red solid: mp 200-210 ${ }^{\circ} \mathrm{C}$; HRMS (ESI-FTMS, $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{5}$, 434.03461; found, 434.03449; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49(\mathrm{~s}, 3 \mathrm{H}$ ), $3.88-3.90(\mathrm{~m}, 2 \mathrm{H}$ ), 4.07 ( $\mathrm{s}, 3$ H), 4.33-4.35 (m, 2 H), $7.03(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1$ H). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
## 2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-

[methyl(phenyl) amino] benzo-1,4-quinone (12). Compound 12 was prepared using the same method as described for $\mathbf{1 1}$ (Method B) starting from $1.13 \mathrm{~g}(2.5 \mathrm{mmol})$ of $\mathbf{9 a}$ and 0.99 g ( 9.23 mmol ) of N -methyl aniline in 10 mL ethylene glycol dimethyl ether. The reaction was heated at $85^{\circ} \mathrm{C}$ for 2 h . The solid was recrystallized in acetic acid and washed with ether to yield $546 \mathrm{mg}(47.4 \%)$ of 12: $\mathrm{mp} 239-243{ }^{\circ} \mathrm{C}$; MS (ESI) $\mathrm{m} / \mathrm{z} 461.2$ $(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}, 461.18195$; found,
461.18218; the purity of $\mathbf{1 2}$ was evaluated by two HPLC systems and found to be $100 \%$ (system C, retention time $=5.49 \mathrm{~min}$ ) and $89.7 \%$ (system D, retention time $=15.40 \mathrm{~min}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 3.34$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.38 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.73-3.78 (m, 2 H ), 4.04 (s, 3 H ), 4.31-4.40 (m, 2 H), $5.92(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.55 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, \mathrm{J}=7.30 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~d}, \mathrm{~J}=2.01$ $\mathrm{Hz}, 1 \mathrm{H})$.

## 2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-[(4-

 methoxyphenyl) (methyl)amino]benzo-1,4-quinone (13). Compound 13 was prepared using the same method as described for $\mathbf{1 1}$ (Method B) starting from $1.13 \mathrm{~g}(2.5 \mathrm{mmol})$ of $9 \mathbf{a}$ and $1.37 \mathrm{~g}(10.0 \mathrm{mmol})$ of N-methyl-p-anisidine in 30 mL acetic acid. The reaction was heated at $85^{\circ} \mathrm{C}$ for 2 h yielding 765 mg ( $62.4 \%$ ) of $\mathbf{1 3}$ as a brown solid: mp 197-198 ${ }^{\circ} \mathrm{C}$; MS (ESI) m/z $491.3(\mathrm{M}+\mathrm{H}){ }^{+1}$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-D 6 ) $\delta 3.34(\mathrm{~s}, 3 \mathrm{H}$ ), 3.36 (s, 3 H ), 3.72-3.77 (m, 2 H ), $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.25-4.36(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H})$, 6.96 (d, J = $8.81 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.15(\mathrm{~d}, \mathrm{~J}=8.56 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}$, $1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} .0 .50 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
## 2-(Benzyloxy)-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

yl]amino\}benzo-1,4-quinone (15). Compound 15 was prepared using the same method as described for $\mathbf{1 4}$ (Method C) starting from $0.673 \mathrm{~g}(1.504 \mathrm{mmol})$ of $\mathbf{1 3}, 20 \mathrm{~mL}(10.51$ mmol ) of benzyl alcohol, and 10 drops of $\mathrm{Et}_{3} \mathrm{~N}$ in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. In this instance, the reaction was stirred at rt overnight. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporate in vacuo. The resulting oil was treated with 200 mL of ether. The resulting solid was filtered and washed with ether to yield $0.658 \mathrm{~g}(94.8 \%)$ of $\mathbf{1 5}$ as an orange solid: $\mathrm{mp} 218-220^{\circ} \mathrm{C}$; MS (ESI) m/z 462.4 $(\mathrm{M}+\mathrm{H})^{+1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, C D C l_{3}\right) \delta 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.94(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, 4.26-4.39 (m, 2 H ), 5.14 ( $\mathrm{s}, 2 \mathrm{H}$ ), 6.04 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.04 ( s, 1 H$), 7.26$ ( $\mathrm{s}, 1 \mathrm{H}), 7.31$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.34-7.47 (m, 4 H ), 8.06 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.71 (s, 1 H ), 8.81 ( $\mathrm{s}, 1 \mathrm{H}$ ); Anal. ( $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6} .0 .25$ $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-piperidin-1-

 ylbenzo-1,4-quinone (17). Compound 17 was prepared using the same method as described for 11 (Method B) starting from $200 \mathrm{mg}(0.51 \mathrm{mmol})$ of $\mathbf{9 a}, 175 \mathrm{mg}(2.04$ mmol ) of piperidine and pyridine hydrochloride ( $59 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in 4 mL THF. In this instance, the reaction was stirred at rt for 3 h . The product was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield 78 mg ( $35 \%$ ) of $\mathbf{1 7}$ as a brown solid: $\mathrm{mp} 197-200{ }^{\circ} \mathrm{C}$; MS (ESI) $m / z 439.3(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}, 439.19760$; found, $439.19608 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.71-1.82(\mathrm{~m}, 6 \mathrm{H}$ ), $3.48(\mathrm{~s}, 3 \mathrm{H}), 3.62-$ $3.73(\mathrm{~m}, 4 \mathrm{H}), 3.83-3.94(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.25-4.42(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}$, 1 H ), 7.29-7.36 (m, 1 H ), 7.79 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.82 ( $\mathrm{s}, 1 \mathrm{H}$ ), 9.08 ( $\mathrm{s}, 1 \mathrm{H}$ ); Anal. ( $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$ ) C, H, N.
## 2-(3-Fluorophenoxy)-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

yl]amino\}benzo-1,4-quinone (19). Compound 19 was prepared using the same method as described for $\mathbf{1 8}$ (Method F) starting from $9 \mathbf{9 a}(39.29 \mathrm{mg}, 0.101 \mathrm{mmol}$ ), 3-fluorophenol ( $17 \mathrm{mg}, 0.152 \mathrm{mmol}$ ), and $1 \mathrm{~N} \mathrm{NaOH}(\mathrm{aq})(116 \mu \mathrm{~L}, 0.116 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction was shaken at rt overnight and was then worked up in the usual
manner to yield 11 mg ( $23.4 \%$ ) of 19: HRMS (ESI-FTMS $(\mathrm{M}+\mathrm{H})^{+1}$ ): calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{6}, 466.14089$; found, 466.14055 ; the purity of 27 was evaluated by two HPLC systems and found to be $100 \%$ (system C, retention time $=5.75 \mathrm{~min}$ ) and $100 \%$ (system D, retention time $=14.06 \mathrm{~min}$ ).

2-[3-(Ethylamino)phenoxy]-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}benzo-1,4-quinone (20). Compound 20 was prepared using the same method as described for $\mathbf{1 8}$ (Method F) starting from 9a ( $39.29 \mathrm{mg}, 0.101 \mathrm{mmol}$ ), 3ethylaminophenol ( $20.82 \mathrm{mg}, 0.152 \mathrm{mmol}$ ), and $1 \mathrm{~N} \mathrm{NaOH}(\mathrm{aq})(116 \mu \mathrm{~L}, 0.116 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction was shaken at rt overnight and was then worked up in the usual manner to yield 4.0 mg ( $8 \%$ ) of 20: HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}, 491.19251$; found, 491.19296; The purity of $\mathbf{2 0}$ was evaluated by two HPLC systems and found to be $92 \%$ (system C, retention time $=4.22$ $\mathrm{min})$ and $90 \%($ system D , retention time $=11.64 \mathrm{~min})$.

2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-(2-
methylaziridin-1-yl)benzo-1,4-quinone (21). Compound 21 was prepared using the same method as described for $\mathbf{1 0}$ (Method A) In this instance, a mixture of $\mathbf{9 a}(100 \mathrm{mg}$, 0.26 mmol ) and propylene imine ( $59 \mathrm{mg}, 1.04 \mathrm{mmol}$ ) was added to pyridine hydrochloride ( $59 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in dry THF ( 2 mL ). The reaction was sonicated at 40 ${ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was filtered. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through magnesol. The solvent was removed in vacuo. The resulting solid was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield 97 mg ( $90 \%$ ) of 21: MS (ESI) $\mathrm{m} / \mathrm{z} 411.2$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}, 411.16630$; found, 411.16554; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.44(\mathrm{~d}, J=5.54 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{~d}, J=3.78 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (d, $J=5.79 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.40-2.53 (m, 1 H), 3.48 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.84-3.96 (m, 2 H), 4.07 (s, 3 H ), 4.25-4.40 (m, 2 H), 6.05 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.08 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.31 (s, 1 H ), 7.96 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.82 (d, J = 8 $\mathrm{Hz}, 2 \mathrm{H})$; Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-(4-Benzylpiperidin-1-yl)-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

 yl]amino\}benzo-1,4-quinone (22). This compound 22 was prepared using the same method as described for $\mathbf{1 0}$ (Method A) starting from $75 \mathrm{mg}(0.19 \mathrm{mmol})$ of $\mathbf{9 a}, 22 \mathrm{mg}$ $(0.19 \mathrm{mmol})$ of pyridine hydrochloride, and $133 \mathrm{mg}(0.76 \mathrm{mmol})$ of 4-benzylpiperidine in 1.5 mL dry THF. The reaction was sonicated at $40{ }^{\circ} \mathrm{C}$ for 3 h . The product was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield 47 mg (47\%) of 22: MS (ESI) m/z 529.2; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5}, 529.24455$; found, 529.24414; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.37-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.84(\mathrm{~m}, J=14.10 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=7.05 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.84-$ 3.93 (m, 2 H), 4.04-4.11 (m, 3 H), 4.19-4.29 (m, 1 H), 4.30-4.40 (m, 2 H), 5.76 (s, 1 H), $7.11(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, J=7.05 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.30 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 2$ H), 7.76-7.84 (m, 1 H$), 8.82(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5} .0 .66 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N .2-(4-Benzylpiperazin-1-yl)-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}benzo-1,4-quinone (23). This compound was prepared using the same method as described for $\mathbf{1 0}$ (Method A) starting from $100 \mathrm{mg}(0.257 \mathrm{mmol})$ of $\mathbf{9 a}, 89 \mathrm{mg}$
$(0.77 \mathrm{mmol})$ of pyridine hydrochloride and $446 \mathrm{mg}(2.5 \mathrm{mmol})$ of benzylpiperazine in 1.0 mL dioxane. The materials were stirred in microwave reaction at $75^{\circ} \mathrm{C}$ for 5 min . The reaction mixture was directly purified on Gilson reverse phase HPLC (column size: 150 x 30 mm , solvent system: $20 \%-80 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{3} \mathrm{OH}$ ) to yield $136.1 \mathrm{mg}(62 \%)$ of 23: MS (ESI) $\mathrm{m} / \mathrm{z} 530.2(\mathrm{M}+\mathrm{H})^{+1}$, $265.6(\mathrm{M}+2 \mathrm{H})^{+2}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{5}, 530.23980$; found, 530.24033 ; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.77(\mathrm{~s}, 4 \mathrm{H})$, 3.41-3.53 (s, 3 H ), 3.66-3.84 (m, 6 H), 3.85-3.92 (m, 2 H), 4.01-4.09 (s, 3 H ), 4.30-4.38 (m, 2 H ), $5.76(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.96$ (s, 1 H ). The purity of 23 was evaluated by two HPLC systems and found to be $95 \%$ (system A, retention time $=3.17 \mathrm{~min})$ and $99 \%($ system $B$, retention time $=8.6 \mathrm{~min})$.

## 2-(4-Ethylpiperazin-1-yl)-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

 yl]amino\}benzo-1,4-quinone (24). Compound 24 was prepared using the same method as described for $\mathbf{1 0}$ (Method A) starting from $100 \mathrm{mg}(0.257 \mathrm{mmol})$ of $\mathbf{9 a}, 89 \mathrm{mg}$ $(0.77 \mathrm{mmol})$ of pyridine hydrochloride, and $345 \mathrm{~mL}(2.57 \mathrm{mmol})$ of 1-ethylpiperazine in 1.0 mL dioxane. The materials were stirred in microwave reaction at $75^{\circ} \mathrm{C}$ for 5 min . The reaction mixture was directly purified on Gilson reverse phase HPLC (column size: 150 x 30 mm , solvent system: $20 \%-80 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{OH}$ ). The product fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield 120 mg ( $64 \%$ ) of 24: MS (ESI) $\mathrm{m} / \mathrm{z} 468.2(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}$, 468.22415; found, 468.22404 . ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.40(\mathrm{t}, J=6.55 \mathrm{~Hz}, 3 \mathrm{H})$, 2.93-3.08 (m, 6 H ), $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 4 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.26-$ $4.39(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.89$ $(\mathrm{s}, 1 \mathrm{H})$. The purity of 24 was evaluated by two HPLC systems and found to be $97 \%$ (system A, retention time $=2.09 \mathrm{~min})$ and $95 \%($ system B, retention time $=6.26 \mathrm{~min})$.
## 2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-pyrrolidin-1-

ylbenzo-1,4-quinone (25). Compound 25 was prepared using the same method as described for $\mathbf{1 0}$ (Method A) starting from $525 \mathrm{mg}(1.35 \mathrm{mmol})$ of $\mathbf{9 a}, 155 \mathrm{mg}(1.35$ mmol ) of pyridine hydrochloride, and $0.56 \mathrm{~mL}(6.75 \mathrm{mmol})$ of pyrrolidine in 1.5 mL dry THF. The reaction was sonicated at $40{ }^{\circ} \mathrm{C}$ for 3 h . The product was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield $417 \mathrm{mg}(72 \%)$ of 25: MS (ESI) m/z $425.2(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}, 425.18195$; found (ESI_FTMS, $\left.(\mathrm{M}+\mathrm{H})^{1+}\right)$, 425.1802; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.97-2.07(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, 3.81-3.92 (m, 2 H$), 4.01(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.11(\mathrm{~s}, 3 \mathrm{H}), 4.25-4.42(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H})$, 7.06-7.19 (s, 1 H ), 7.32-7.33 (s, 1 H$), 7.81$ (s, 1 H ), 8.78-8.86 (s, 1 H$), 9.29$ (s, 1 H ); Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} .0 .66 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{N}, \mathrm{H}$ : calcd, 5.41; found, 5.85.

2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-(pyridin-3-ylmethoxy) benzo-1,4-quinone (27). Compound 27 was prepared using the same method as described for 26 (Method E) starting from 9a ( 60 mg , 0.15 mmol ), 3(hydroxymethyl)pyridine ( $167.86 \mathrm{mg}, 1.54 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(51 \mathrm{mg}, 0.3 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was shaken at rt overnight. Then it was worked up in the usual manner to yield 12.0 mg ( $17.3 \%$ ) of 27: MS (ESI) $\mathrm{m} / \mathrm{z} 463.2(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}, 463.16121$; found, $463.1608 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2$
H), 6.08 (s, 1 H ), $7.05(\mathrm{~s}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.55,4.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.86$ (m, 1 H ), 8.09 (s, 1 H$), 8.66$ (dd, $J=4.78,1.51 \mathrm{~Hz}, 1 \mathrm{H}), 8.68-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.82$ (s, 1 H); Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-(2-phenoxyethoxy)benzo-1,4-quinone (28). Compound 28 was prepared using the same method as described for 26 (Method E) starting from 9a ( $60 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), 2phenoxyethanol ( $213 \mathrm{mg}, 1.54 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(51 \mathrm{mg}, 0.3 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding $9.0 \mathrm{mg}(12 \%)$ of 28: HRMS (ESI-FTMS (M+H) ${ }^{+1}$ ): calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}, 492.17653$; found, 492.17554 . The purity of 28 was evaluated by two HPLC systems and found to be $95 \%$ (system F, retention time $=12.87 \mathrm{~min}$ ) and $92 \%$ (system $B$, retention time $=15.57 \mathrm{~min})$.

## 2-Isopropoxy-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

yl]amino\}benzo-1,4-quinone (29). Compound 29 was prepared using the same method as described for 26 (Method E) starting from 9a ( $208 \mathrm{mg}, 0.53 \mathrm{mmol}$ ), isopropanol ( 0.41 $\mathrm{ml}, 5.34 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(181.9 \mathrm{mg}, 1.07 \mathrm{mmol})$ in 500 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 2 h . It was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc, The EtOAc layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by a Gilson HPLC. The combined fractions was extracted from saturated $\mathrm{NaHCO}_{3}$ and washed with brine. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo to yield $92.5 \mathrm{mg}(42 \%)$ of 29 as an orange solid: MS (ESI) $\mathrm{m} / \mathrm{z} 414.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}, ~ 414.16596$; found, 414.16758; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.46(\mathrm{~d}, J=6.04 \mathrm{~Hz}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 4.07$ (s, 3 H ), 4.34 (m, 2 H), 4.49-4.64 (m, 1 H), 5.95 ( s, 1 H), 7.07 (s, 1 H), 8.04 ( s, 1 H), 8.77 $(\mathrm{s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H})$. The purity of 29 was evaluated by two HPLC systems and found to be $98 \%$ (system A, retention time $=6.09 \mathrm{~min})$ and $98 \%($ system B , retention time $=$ 12.79 min ).

## 3-Chloro-2-[2-fluoro-1-(fluoromethyl)ethoxy]-5-\{[6-methoxy-7-(2-

 methoxyethoxy)quinazolin-4-yl]amino\}benzo-1,4-quinone (30). Compound 30 was prepared using the same method as described for 26 (Method E) starting from 9b (479.0 $\mathrm{mg}, 1.13 \mathrm{mmol}$ ), difluoropropanol, ( $4.65 \mathrm{~g}, 25.81 \mathrm{mmol}$ ), $\mathrm{NaOPh}-3\left(\mathrm{H}_{2} \mathrm{O}\right)$, ( $211 \mathrm{mg}, 1.24$ mmol ), and $\mathrm{K}_{2} \mathrm{CO}_{3}(300.0 \mathrm{mg}, 2.17 \mathrm{mmol})$. The reaction mixture was stirred at reflux temperature for 4 h and at rt overnight yielding, after work up 0.31 mg ( $56.7 \%$ ) of $\mathbf{3 0}$ as a red crystalline solid: MS (ESI) $m / z 484(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $(\mathrm{M}+\mathrm{H})^{+1}$ ): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}, 484.10815$; found, 484.10815 ; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49$ (s, 3 H ), 3.86-3.92 (m, 2 H ), $4.06(\mathrm{~s}, 3 \mathrm{H}), 4.26-4.41$ (m, 2 H ), 4.67-4.77 (m, 2 H ), 4.82$4.88(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.61(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 8.00-8.05(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~s}$, $1 \mathrm{H}), 8.79-8.88(\mathrm{~s}, 1 \mathrm{H})$. The purity of $\mathbf{3 0}$ was evaluated by two HPLC systems and found to be $100 \%($ system A, retention time $=8.42 \mathrm{~min})$ and $92 \%($ system B , retention time $=$ $14.94 \mathrm{~min})$.
## 3-Chloro-2-[(3-fluorobenzyl)oxy]-5-\{[6-methoxy-7-(2-

 methoxyethoxy)quinazolin-4-yl]amino\}benzo-1,4-quinone (31). Compound 31 was prepared using the same method as described for 26 (Method E) starting from 9b (479$\mathrm{mg}, 1.13 \mathrm{mmol}$ ), 3-fluorobenzyl alcohol ( $1.42 \mathrm{~g}, 11.29 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$ ( $211 \mathrm{mg}, 1.24 \mathrm{mmol}$ ) in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 27 h . It was poured into dilute $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CHCl}_{3}$ yielding $330 \mathrm{mg}(56.8 \%)$ of $\mathbf{3 1}$ : MS (ESI) m/z $514(\mathrm{M}+\mathrm{H}){ }^{+1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.93(\mathrm{~m}, 2$ H), 4.03-4.07 (s, 3 H ), 4.29-4.38 (m, 2 H ), $5.72(\mathrm{~s}, 2 \mathrm{H}), ~ 6.99-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.24$ (m, 2 H ), 7.31-7.34 (m, 2 H ), 7.97-8.03 (s, 1 H ), 8.72 (s, 1 H ), 8.83 (s, 1 H ); Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClFN}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 3-Chloro-2-ethoxy-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

yl]amino\}benzo-1,4-quinone (32). Compound 32 was prepared using the same method as described for 26 (Method E) starting from 9b ( $700 \mathrm{mg}, 1.65 \mathrm{mmol}$ ), ethanol ( 30 ml , 517.2 mmol ), $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$ ( $294.8 \mathrm{mg}, 1.73 \mathrm{mmol}$ ), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $500 \mathrm{mg}, 3.6 \mathrm{mmol}$ ) in 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 7 h . and 8 drops of HOAc was added. The usual work-up yielded $350 \mathrm{mg}(48.9 \%)$ of 32: MS (ESI) m/z $434.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{6}, ~ 434.11134$; found, 434.11093; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, C D C l_{3}\right) \delta 1.46(\mathrm{t}, \mathrm{J}=7.05 \mathrm{~Hz}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.96(\mathrm{~m}, 2$ H), $4.06(\mathrm{~s}, 3 \mathrm{H}), 4.26-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{q}, \mathrm{J}=7.05 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1$ H), $7.98(\mathrm{~s}, 1 \mathrm{H}), 8.76-8.77(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H})$. The purity of $\mathbf{3 2}$ was evaluated by two HPLC systems and found to be $95 \%$ (system A, retention time $=8.79 \mathrm{~min}$ ) and $94 \%$ (system D, retention time $=15.43 \mathrm{~min}$ ).

## 2-[(2-Fluorobenzyl)oxy]-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

 yl]amino\}benzo-1,4-quinone (33). Compound 33 was prepared using the same method as described for 26 (Method E) starting from 9a ( $200 \mathrm{mg}, 0.514 \mathrm{mmol}$ ), 2-fluorobenzyl alcohol ( $1.65 \mathrm{~mL}, 15.42 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(192.4 \mathrm{mg}, 1.13 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified on a Gilson HPLC to yield $176.7 \mathrm{mg}(72 \%)$ of $\mathbf{3 3}$ : MS (ESI) $\mathrm{m} / \mathrm{z} 480.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{6}$, 480.15654; found, $480.1564 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.45-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.82-$ $3.94(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.10(\mathrm{~m}, 3 \mathrm{H}), 4.32-4.44(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}$, $1 \mathrm{H})$, 7.09-7.17 (m, 1 H$), 7.17-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 1 \mathrm{H})$, 7.48-7.56 (m, 2 H ), $8.04(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H})$. The purity of $\mathbf{3 3}$ was evaluated by two HPLC systems and found to be $90 \%$ (system A, retention time $=8.6 \mathrm{~min}$ ) and $91 \%$ (system B, retention time $=15.4 \mathrm{~min})$.
## 2-[(3-Fluorobenzyl)oxy]-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

yl]amino\} benzo-1,4-quinone (34). Compound 34 was prepared using the same method as described for 26 (Method E) starting from $9 \mathbf{a}$ ( $200 \mathrm{mg}, 0.514 \mathrm{mmol}$ ), 3-fluorobenzyl alcohol ( $1.67 \mathrm{~mL}, 15.42 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(192.4 \mathrm{mg}, 1.13 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding $144.1 \mathrm{mg}(58 \%)$ of 34: MS (ESI) $\mathrm{m} / \mathrm{z} 480.2(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESIFTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{6}, 480.15654$; found, 480.15514 ; ${ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.43-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.83-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.28-4.39(\mathrm{~m}, 2 \mathrm{H})$, $5.11(\mathrm{~s}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=9.06 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.44(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H})$. The purity of 34 was evaluated by two HPLC systems and found to be $99 \%$ (system A, retention time $=8.8$ min ) and $99 \%$ (system B, retention time $=15.7 \mathrm{~min}$ )

2-[(4-Fluorobenzyl)oxy]-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4yl]amino\} benzo-1,4-quinone (35). Compound 35 was prepared using the same method as described for 26 (Method E) starting from 9a ( $200 \mathrm{mg}, 0.514 \mathrm{mmol}$ ), 4-fluorobenzyl alcohol ( $1.68 \mathrm{ml}, 15.42 \mathrm{mmol}$ ) and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(192.4 \mathrm{mg}, 1.13 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding 132.8 mg ( $54 \%$ ) of 35: MS (ESI) $\mathrm{m} / \mathrm{z} 480.2(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESIFTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{6}, 480.15654$; found, $480.15548 ;{ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.93(\mathrm{~m}, J=5.41,3.90 \mathrm{~Hz}, 2 \mathrm{H}), 4.06$ (s, 3 H ), 4.27$4.39(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H})$, 7.37-7.48 (m, 2 H$), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$. The purity of $\mathbf{3 5}$ was evaluated by two HPLC systems and found to be $98 \%$ (system A, retention time $=8.7$ min ) and $97 \%$ (system B, retention time $=15.4 \mathrm{~min}$ ).

2-Ethoxy-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}benzo-
1,4-quinone (36). Compound 36 was prepared using the same method as described for 26 (Method E) starting from 9a ( $389 \mathrm{mg}, 1.0 \mathrm{mmol}$ ), ethanol ( $0.87 \mathrm{ml}, 15 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(255 \mathrm{mg}, 1.5 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ overnight. It was worked up in the usual manner and purified using preparative TLC plate, eluting with $3 \%$ isopropanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield $228 \mathrm{mg}(57 \%)$ of 36 as a red solid: MS (ESI) $m / z 400.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$, 400.15031 ; found, 400.15058 ; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.54(\mathrm{t}, J=6.92 \mathrm{~Hz}, 3 \mathrm{H})$, 3.49 (s, 3 H ), 3.86-3.94 (m, 2 H ), 4.07 (s, 3 H ), 4.11 ( $\mathrm{q}, J=7.05 \mathrm{~Hz}, 2 \mathrm{H}), 4.34$ (m, 2 H ), $5.96(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$. The purity of $\mathbf{3 6}$ was evaluated by two HPLC systems and found to be $100 \%$ (system A, retention time $=4.96 \mathrm{~min}$ ) and $98 \%($ system B, retention time $=11.84 \mathrm{~min})$.

2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-(2,2,2-trifluoro-1-phenylethoxy)benzo-1,4-quinone (37). Compound 37 was prepared using the same method as described for $\mathbf{2 6}$ (Method E) starting from 9a ( $200 \mathrm{mg}, 0.514 \mathrm{mmol}$ ), $\alpha$-(trifluoromethyl)benzyl alcohol ( $904 \mathrm{mg}, 5.14 \mathrm{mmol}$ ), $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(207.2 \mathrm{mg}, 1.22$ $\mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(112.3 \mathrm{mg}, 0.81 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ overnight and worked up in the usual manner to yield $179.8 \mathrm{mg}(66 \%)$ of 37 as a red solid: MS (ESI) $\mathrm{m} / \mathrm{z} 530.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $(\mathrm{M}+\mathrm{H})^{+1}$ ): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}, 530.15335$; found, $530.15321 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.41-3.52$ (m, 3 H ), 3.82-3.94 (m, 2 H$), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.27-4.37(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{q}, J=5.96 \mathrm{~Hz}, 1$ H), $5.84(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.54(\mathrm{~m}, 5 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1$ H), $8.82(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-
[(pentafluorobenzyl)oxy]benzo-1,4-quinone (38). Compound 38 was prepared using the same method as described for 26 (Method E) starting from $9 \mathbf{a}(200 \mathrm{mg}, 0.51 \mathrm{mmol}$ ), 2,3,4,5,6-pentafluorobenzyl alcohol ( $1.53 \mathrm{~g}, 7.71 \mathrm{mmol}$ ), and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(132 \mathrm{mg}, 0.77$ mmol ) in 9 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding $187.4 \mathrm{mg}(60 \%)$ of 38 as a red solid: MS (ESI) $\mathrm{m} / \mathrm{z}$ $552.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}, 552.11885$; found, 552.1169; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.94(\mathrm{~m}, 2 \mathrm{H}), 4.08$ (s, 3 H ), 4.24-4.42 (m, 2 H), 5.13 (s, 2 H ), 6.16 ( s, 1 H ), 7.07 ( s, 1 H ), 7.33 (s, 1 H ), 8.10 $(\mathrm{s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H})$. The purity of 61 was evaluated by two HPLC
systems and found to be $100 \%$ (system A, retention time $=9.9 \mathrm{~min}$ ) and $97 \%$ (system B, retention time $=16.58 \mathrm{~min})$.

2-(2,2-Difluoroethoxy)-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-
yl]amino\}benzo-1,4-quinone (39). Compound 39 was prepared using the same method as described for 26 (Method E) starting from 9a ( $316.1 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), 2,2difluoroethanol ( $1.0 \mathrm{~g}, 12.18 \mathrm{mmol}$ ), $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(207.2 \mathrm{mg}, 1.22 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(112.3 \mathrm{mg}, 0.81 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield $66.6 \mathrm{mg}(18 \%)$ of 39 as a red solid: MS (ESI) m/z $436.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$, 436.13147; found, 436.13104; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.92(\mathrm{~m}$, $2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{td}, J=12.40,4.15 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 6.22$ (tt, $J=54.61,4.06 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.05 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.33 ( s, 1 H ), 8.10 (s, 1 H ), 8.68 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.82 (s, 1 H ); Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} .0 .33 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$ : calcd, 9.00; found, 9.52.

2-\{[6-Methoxy-7-(2-methoxyethoxy)quinazolin-4-yl]amino\}-5-[(3-phenylprop-2-yn-1-yl)oxy]benzo-1,4-quinone (40). Compound 40 was prepared using the same method as described for 26 (Method E) starting from 9a ( $406.8 \mathrm{mg}, 1.045$ mmol ), 3-phenyl-2-propyn-1-ol ( $2.07 \mathrm{~g}, 15.68 \mathrm{mmol}$ ), $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(266 \mathrm{mg}, 1.57$ $\mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(144.4 \mathrm{mg}, 1.04 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding 79.8 mg ( $16 \%$ ) of 40 as a red solid: MS (ESI) $m / z 486.1(\mathrm{M}+\mathrm{H})^{+1}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}, 486.16596$; found, 486.16532 ; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.49$ (s, 3 $\mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, 7.29-7.40 (m, 4 H ), $7.46(\mathrm{dd}, J=7.93,1.64 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}$, $1 \mathrm{H})$. The purity of 40 was evaluated by two HPLC systems and found to be $100 \%$ (system A, retention time $=9.5 \mathrm{~min})$ and $99 \%($ system $B$, retention time $=16.57 \mathrm{~min})$.

## $N$-(4-chloro-2,5-dimethoxyphenyl)-6-methoxy-7-(3-pyrrolidin-1-

ylpropoxy)quinazolin-4-amine (58b). This compound was prepared from $56(7.74 \mathrm{mg}$, 16 mmol ), 57b ( $6.2 \mathrm{~g}, 48 \mathrm{mmol}$ ), and sodium sodium bis(trimethylsilyl)amide ( 1.0 M in THF, $40 \mathrm{ml}, 40 \mathrm{mmol}$ ) using the procedure described above for 58 . The product was purified on a flash column of silica gel ( $2.8 \times 25 \mathrm{~cm}$ ), eluting with $25: 25: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2^{-}}$ $\mathrm{EtOAc}-\mathrm{CH}_{3} \mathrm{OH}, 5: 1 \mathrm{EtOAc}-\mathrm{CH}_{3} \mathrm{OH}$ and then 25:5:1 $\mathrm{EtOAc}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{Et}_{3} \mathrm{~N}$ to yield 6.63 g $(87 \%)$ of $\mathbf{5 8 b}$ as a white solid: MS (ESI) $m / z 473.1(\mathrm{M}+\mathrm{H})^{+1}, 237(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-D 6 ) $\delta 1.65-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.89-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.57$ (t, $J=7.18 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H})$, 7.15 (s, 1 H ), 7.22 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.38(s, 1 H ), 7.78 ( s, 1 H ), 8.32 (s, 1 H ), 9.17 ( $\mathrm{s}, 1 \mathrm{H}$ ).

2-Chloro-5-(\{6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4$\mathbf{y l}\}$ amino)benzo-1,4-quinone (59a). This compound was prepared from 58 a ( 7.5 g , $15.86 \mathrm{mmol})$ and CAN ( $26.08 \mathrm{~g}, 47.57 \mathrm{mmol}$ ) in 200 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and 30 mL of $\mathrm{H}_{2} \mathrm{O}$ using the procedure described above for $\mathbf{9 e}$. In this instance, the reaction was worked up in the usual manner and filtered through a pad of magnesol, eluted with 3:1 $\mathrm{CHCl}_{3^{-}}$ isopropanol to give $0.74 \mathrm{~g}(10 \%)$ of $\mathbf{5 9}$ a as a red solid: MS (ESI) $m / z 443.1(\mathrm{M}+\mathrm{H})^{+1}$, $222.1(\mathrm{M}+2 \mathrm{H})^{+2}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{4}, 443.14806$; found, 443.14908; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.90-2.10(\mathrm{~m}, 5 \mathrm{H}), 2.12-2.28(\mathrm{~m}, 2 \mathrm{H})$, 2.38-2.49 (s, 3 H ), $3.09(\mathrm{~s}, 2 \mathrm{H}), 4.01-4.12(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1$
H), $8.29(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.82-8.84(\mathrm{~m}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{4} .0 .1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

2-Chloro-5-[\{6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-
$\mathbf{y l}\}$ amino]benzo-1,4-quinone (59b). This compound was prepared from $\mathbf{5 8 b}(0.47 \mathrm{~g}, 1.0$ $\mathrm{mmol})$ and $\mathrm{CAN}(1.21 \mathrm{~g}, 2.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$ using the procedure described above for $\mathbf{9 e}$ to give 403 mg ( $91 \%$ ) of $\mathbf{5 9 b}$ as a red solid. This compound was used without further purification.

2-Methoxy-5-(\{6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-yl\}amino)benzo-1,4-quinone (60). Compound 60 was prepared using the same method as described for $\mathbf{1 4}$ (Method C) starting from $133.0 \mathrm{mg}(0.3 \mathrm{mmol})$ of $\mathbf{5 9 a}, 3.0 \mathrm{~mL}(74.16$ $\mathrm{mmol})$ of methanol, and $84 \mu \mathrm{~L}(0.6 \mathrm{mmol})$ of triethylamine to yield $83 \mathrm{mg}(63 \%)$ of $\mathbf{6 0}$ as a red solid: mp $165-175{ }^{\circ} \mathrm{C}$; MS (ESI) $\mathrm{m} / \mathrm{z} 439.2(\mathrm{M}+\mathrm{H})^{+1}, 240.6(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.85-2.06(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}$, $3 \mathrm{H}), 2.92$ (d, $J=11.58 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.88-3.96$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 4.04 (d, $J=6.30 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.07 ( $\mathrm{s}, 3$ H), $5.99(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.67 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[2-Fluoro-1-(fluoromethyl)ethoxy]-5-(\{6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-yl\}amino)benzo-1,4-quinone (61). Compound 61 was prepared using the same method as described for $\mathbf{1 4}$ (Method C) starting from 164.0 mg $(0.37 \mathrm{mmol})$ of $\mathbf{5 9 a}, 0.36 \mathrm{~g}(3.7 \mathrm{mmol})$ of 1,3 -difluoro-2-propanol, and $103 \mu \mathrm{~L}(0.74$ $\mathrm{mmol})$ of triethylamine to yield $132 \mathrm{mg}(71 \%)$ of $\mathbf{6 1}$ as a red solid: $\mathrm{mp} 180-190^{\circ} \mathrm{C}$; MS (ESI) $m / z 503.2(\mathrm{M}+\mathrm{H})^{+1}, 272.6(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.66-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.88-2.06(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~d}, J=11.33 \mathrm{~Hz}, 2 \mathrm{H})$, 3.97-4.08 (m, 5 H$), 4.64-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.79-4.87(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $7.28(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} 0.25\right.$ $\left.\mathrm{H}_{2} \mathrm{CO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Chloro-3-(cyclopropylmethoxy)-5-\{[6-methoxy-7-(2-methoxyethoxy)
quinazolin-4-yl]amino\}benzo-1,4-quinone (51). This compound was prepared from 9 e ( $650 \mathrm{mg}, 1.55 \mathrm{mmol}$ ), $\mathrm{CsCO}_{3}(1.01 \mathrm{~g}, 3.1 \mathrm{mmol}$ ), and cyclopropylmethanol ( 3.35 g , 46.45 mmol ) as described above for $\mathbf{5 0}$. The product was purified by thin layer chromatography, eluting with EtOAc. The major red band was collected and the silica gel was extracted with EtOAc-isopropanol. The solvent was removed to yield 0.143 g ( $20.1 \%$ ) of 51 as a red solid: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.37-0.39(\mathrm{~m}, 2 \mathrm{H})$ 0.63-0.69 $(\mathrm{m}, 2 \mathrm{H}), 1.27-1.34(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~d}, J=$ $7.30 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.31-4.36 (m, 2 H ), 7.03 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.33 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.21 (s, 1 H ), 8.48 ( $\mathrm{s}, 1 \mathrm{H}$ ), $8.82(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Other chromatography fractions indicated the presence of $\mathbf{4 8}$, but this compound was not isolated in a pure state.

## 2-Chloro-3-isopropoxy-5-\{[6-methoxy-7-(2-methoxyethoxy)quinazolin-4-

 yl]amino\}benzo-1,4-quinone (52). This was prepared from 9e ( $600 \mathrm{mg}, 1.43 \mathrm{mmol}$ ), $\mathrm{CsCO}_{3}$ ( $931 . \mathrm{g}, 2.86 \mathrm{mmol}$ ), and isopropanol ( $42 \mathrm{ml}, 548.5 \mathrm{mmol}$ ) as described above for 50. The product was purified by chromatography on silica gel, eluting with $\mathrm{CHCl}_{3}{ }^{-}$EtOAc 1:1 to yield $0.07 \mathrm{~g}(10.9 \%)$ of $\mathbf{5 2}$ as a red powder: MS (ESI) $m / z 448(\mathrm{M}+\mathrm{H}){ }^{+1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.43(\mathrm{~d}, J=6.30 \mathrm{~Hz}, 6 \mathrm{H}$ ), 3.46-3.51 (s, 3 H ), 3.85-3.91 (m, 2 H), 4.06-4.10 (s, 3 H ), 4.31-4.35 (m, 2 H ), 4.88-5.03 (m, 1 H ), 7.04 (s, 1 H ), 7.31-7.34 (s, $1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(Benzyloxy)-5-(\{6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-yl\}amino)benzo-1,4-quinone (63). Compound 63 was prepared using the same method as described for $\mathbf{6 2}$ (Method G) starting from 59a ( $101.4 \mathrm{mg}, 0.23 \mathrm{mmol}$ ), of benzyl alcohol ( $236.8 \mathrm{mg}, 2.29 \mathrm{mmol}$ ), and cesium carbonate ( $149 \mathrm{mg}, 0.457 \mathrm{mmol}$ ) in 2 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred at rt for 3 h . In this instance the reaction was directly pass through a plug of magnesol, eluting with $\mathrm{EtOAc}, 5 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{EtOAc}, 10 \%$ $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{EtOAc}$, and $20 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{EtOAc}$. The filtrate was concentrated in vacuo to yield $26.1 \mathrm{mg}(22 \%)$ of 63: MS (ESI) $\mathrm{m} / \mathrm{z} 515.1(\mathrm{M}+\mathrm{H})^{+1}, 278.5(\mathrm{M}+2 \mathrm{H})^{+2}$; HRMS (ESIFTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}, 515.22890$; found, $515.22821 ;{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.87-2.08 (m, 7 H ), 2.32 (s, 3 H ), $2.94(\mathrm{~d}, J=11.33 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-4.09$ (m, 5 H), 5.14 ( s, 2 H ), 5.92-6.12 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.05-7.07 (s, 1 H ), 7.28 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.36-7.45 (m, $5 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} 3.0 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-Methoxy-5-\{[6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-

yl]amino\}benzo-1,4-quinone (64). Compound 64 was prepared using the same method as described for $\mathbf{1 4}$ (Method C) starting from $0.39 \mathrm{~g}(0.88 \mathrm{mmol})$ of $\mathbf{5 9 b}, 8.8 \mathrm{~mL}(74.16$ $\mathrm{mmol})$ of methanol, and $84 \mu \mathrm{~L}(0.6 \mathrm{mmol})$ of triethylamine in $6.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 4.5 h . After the solvent was evaporated under $25^{\circ} \mathrm{C}$, the residue was worked up and purified in the usual manner to yield 78 mg ( $58 \%$ ) of $\mathbf{6 4}$ as a red solid: mp 100-110 ${ }^{\circ} \mathrm{C}$; MS (ESI) $m / z$ 439.1; MS (ESI) $m / z 220(\mathrm{M}+2 \mathrm{H})^{+2}$; HRMS (ESI-FTMS $(\mathrm{M}+\mathrm{H})^{+1}$ ): calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$, 439.19760; found, 439.1981; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.76-1.86(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 4 \mathrm{H}), 2.69(\mathrm{t}, J=$ $7.30 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.09(\mathrm{~s}, 3 \mathrm{H}), 4.23-4.31(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}$, 1 H ), 7.31-7.34 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.07 ( $\mathrm{s}, 1 \mathrm{H}$ ), $8.75(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5} 3.0\right.$ $\mathrm{H}_{2} \mathrm{O}$ ) C, N, H: calcd, 6.04; found, 6.55.

2-\{[6-Methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-yl]amino\}-5-[(3-
phenylprop-2-yn-1-yl)oxy]benzo-1,4-quinone (66). Compound 66 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}$ ( $850 \mathrm{mg}, 1.8 \mathrm{mmol}$ ). The solution of $\mathbf{5 9 b}$ in $500 \mathrm{~mL} \mathrm{CHCl}_{3}$ was treated with 1-phenyl-1-propy-3-ol ( 2.38 g , $17.97 \mathrm{mmol})$ and $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}(426.27 \mathrm{mg}, 2.7 \mathrm{mmol}$. The usual workup gave 0.337 g ( $34.7 \%$ ) of 66 as an orange solid: MS (ESI) $m / z 539.1(\mathrm{M}+\mathrm{H})^{+1}$, $270.1(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.76-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.06-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 4 \mathrm{H}), 2.67$ (t, $J=7.30 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.12(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{t}, J=6.67 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 6.26$ ( $\mathrm{s}, 1$ H), 7.06 (s, 1 H ), 7.30-7.39 (m, 4 H), 7.43-7.49 (m, 2 H ), 8.10 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.73 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.81 (s, 1 H ); Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} .0 .33 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-\{[6-Methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-yl]amino\}-5-(pyridin-2-ylmethoxy)benzo-1,4-quinone (67). Compound 67 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}(850 \mathrm{mg}, 1.8 \mathrm{mmol})$. The solution of the $\mathbf{5 9 b}$ in $500 \mathrm{~mL} \mathrm{CHCl}_{3}$ was treated with ( 17.97 mmol ) of pyridine-2-
methanol and $426 \mathrm{mg}(2.7 \mathrm{mmol})$ of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. The usual workup gave $0.16 \mathrm{~g}(17.2$ $\%)$ of 67 as a red solid: MS (ESI) $m / z 516.1(\mathrm{M}+\mathrm{H})^{+1}, 258.5(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.80(\mathrm{~s}, 4 \mathrm{H}), 2.08-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=7.30 \mathrm{~Hz}, 2$ H), 4.04-4.11 (s, 3 H ), $4.27(\mathrm{t}, J=6.67 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1$ H), 7.29-7.35 (m, 2 H$), 7.58(\mathrm{~d}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.81(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.62$ (d, $J=4.28 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.72(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} .0 .75 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-(Benzyloxy)-5-\{[6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-

yl]amino\}benzo-1,4-quinone (68). Compound 68 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}$ ( $870 \mathrm{mg}, 1.84 \mathrm{mmol}$ ). The solution of the 59b in 500 mL CHCl 3 was treated with $1.99 \mathrm{~g}(18.39 \mathrm{mmol})$ of benzyl alcohol and 392.67 mg ( 2.48 mmol ) of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. After stirring, the usual workup gave 0.3 g $(31.7 \%)$ of 68 as a red solid: MS (ESI) $m / z 515.1(\mathrm{M}+\mathrm{H})^{+1}, 258(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74-1.88(\mathrm{~m}, 4 \mathrm{H}), 2.03-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=$ $7.30 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-4.12(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{t}, J=6.67 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H})$, 6.99-7.12 (s, 1 H ), 7.29-7.35 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.35-7.48 (m, 5 H ), 8.07 (s, 1 H ), 8.72 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.81 (s, 1 H ); Anal. ( $\left.\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{\circ} 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-\{[6-Methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-yl]amino\}-5-

[(penta fluorobenzyl)oxy]benzo-1,4-quinone (69). Compound 69 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}$ ( $850 \mathrm{mg}, 1.8 \mathrm{mmol}$ ). The solution of the $\mathbf{5 9 b}$ in $500 \mathrm{~mL} \mathrm{CHCl}_{3}$ was treated with $3.56 \mathrm{~g}(18.0 \mathrm{mmol})$ of 2,3,4,5,6-pentafluorobenzyl alcohol and $398 \mathrm{mg}(2.34 \mathrm{mmol})$ of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. The usual workup gave $66 \mathrm{mg}(6 \%)$ of $\mathbf{6 9}$ as a red solid: MS (ESI) $\mathrm{m} / \mathrm{z} 605.1(\mathrm{M}+\mathrm{H})^{+1}, 323.5$ $(\mathrm{M}+2 \mathrm{H})^{+2}$; HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{5}, 605.18179$; found, 605.1804; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.83(\mathrm{~s}, 4 \mathrm{H}), 2.10-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=$ $48.60 \mathrm{~Hz}, 6 \mathrm{H}$ ), $4.09(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 7.07$ $(\mathrm{s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{5} .0 .5\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-\{[6-Methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-yl]amino\}-5-[(1-

 phenylprop-2-yn-1-yl)oxy]benzo-1,4-quinone (70). Compound 70 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}$ ( $850 \mathrm{mg}, 1.8 \mathrm{mmol}$ ). The solution of the $\mathbf{5 9 b}$ in 500 mL CHCl 3 was treated with $2.38 \mathrm{~g}(17.97 \mathrm{mmol})$ of 1-phenyl-1-propyn-1-ol and $369.43 \mathrm{mg}(2.34 \mathrm{mmol})$ of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. After stirring, the usual workup gave $308 \mathrm{mg}(31.8 \%)$ of 70 as a red solid: MS (ESI) $\mathrm{m} / \mathrm{z} 539.1(\mathrm{M}+\mathrm{H})^{+1}$, $270.1(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.81(\mathrm{~s}, 4 \mathrm{H}), 2.11-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.56$ (s, 4 H$), 2.69(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{~d}, J=2.27 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{t}, J=6.55 \mathrm{~Hz}, 2 \mathrm{H})$, 5.85 (d, $J=2.27 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.31 (s, 1 H ), 7.06 ( $\mathrm{s}, 1 \mathrm{H}), 7.33$ (s, 1 H$)$, 7.41-7.49 (m, 3 H ), 7.62 (dd, $J=7.43,1.89 \mathrm{~Hz}, 2 \mathrm{H}$ ), $8.07(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.81$ (s, 1 H ); Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}\right.$. 1.0 $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.2-\{[6-Methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-yl]amino\}-5-(prop-2-yn-1-yloxy)benzo-1,4-quinone (71). Compound 71 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with 58b ( $850 \mathrm{mg}, 1.8 \mathrm{mmol}$ ). The solution of the $\mathbf{5 9 b}$ in $500 \mathrm{~mL} \mathrm{CHCl}_{3}$ was treated with $2.84 \mathrm{~g}(50.74 \mathrm{mmol})$ of propargyl
alcohol and 347.7 mg ( 2.2 mmol ) of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. After stirring, the usual workup gave $288 \mathrm{mg}(36.8 \%)$ of 71 as an orange solid: MS (ESI) $\mathrm{m} / z 463.1(\mathrm{M}+\mathrm{H})^{+1}, 232(\mathrm{M}+2 \mathrm{H})^{+2}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.76-1.85(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 4 \mathrm{H})$, $2.64-2.78(\mathrm{~m}, 3 \mathrm{H}), 4.06-4.11(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{t}, J=6.67 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=2.52 \mathrm{~Hz}, 2$ H), $6.17(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$. The purity of 71 was evaluated by two HPLC systems and found to be $100 \%$ (system C, retention time $=1.98 \mathrm{~min})$ and $98 \%($ system D , retention time $=8.01 \mathrm{~min})$.

## 2-(Allyloxy)-5-\{[6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-

yl]amino\}benzo-1,4-quinone (72). Compound 72 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}$ ( $850 \mathrm{mg}, 1.8 \mathrm{mmol}$ ). The solution of the $\mathbf{5 9 b}$ in 500 mL CHCl 3 was treated with $2.95 \mathrm{~g}(50.74 \mathrm{mmol})$ of allyl alcohol and 347.7 $\mathrm{mg}(2.2 \mathrm{mmol})$ of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. The usual workup gave $220 \mathrm{mg}(28 \%)$ of $\mathbf{7 2}$ as an orange solid: MS (ESI) m/z $465.1(\mathrm{M}+\mathrm{H})^{+1}, 233.1(\mathrm{M}+2 \mathrm{H}){ }^{+2} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.77-1.86(\mathrm{~m}, 4 \mathrm{H}), 2.10-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=7.30 \mathrm{~Hz}, 2 \mathrm{H})$, $4.07(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{t}, J=6.67 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=5.54 \mathrm{~Hz}, 2 \mathrm{H}), 5.25-5.59(\mathrm{~m}, 2 \mathrm{H})$, $5.98(\mathrm{~s}, 1 \mathrm{H}), 6.01-6.15(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H})$, $8.81(\mathrm{~s}, 1 \mathrm{H})$; Anal ( $\left.\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} .0 .4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-\{[6-Methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-yl]amino\}-5-[(1-methylprop-2-yn-1-yl)oxy]benzo-1,4-quinone (73). Compound 73 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}(850 \mathrm{mg}, 1.8 \mathrm{mmol})$. The solution of the $\mathbf{5 9 b}$ in $500 \mathrm{mLCHCl}_{3}$ was treated with $3.9 \mathrm{~g}(55.8 \mathrm{mmol})$ of 1-butyn-$3-\mathrm{ol}$ and $401.2 \mathrm{mg}(2.54 \mathrm{mmol})$ of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. The usual workup gave $235 \mathrm{mg}(29.2$ $\%$ ) of 73 as a red solid: MS (ESI) $m / z 477.2(\mathrm{M}+\mathrm{H})^{+1}, 239.1(\mathrm{M}+2 \mathrm{H})^{+2} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.80(\mathrm{~d}, J=6.55 \mathrm{~Hz}, 7 \mathrm{H}), 2.10-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 4 \mathrm{H}), 2.63-2.73$ ( $\mathrm{m}, 3 \mathrm{H}$ ), $4.08(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{t}, J=6.67 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-4.92(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 7.06$ $(\mathrm{s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}\right.$. $\left.0.66 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

## 2-(2-Furylmethoxy)-5-\{[6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-

 4-yl]amino\} benzo-1,4-quinone (74). Compound 74 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with $\mathbf{5 8 b}(850 \mathrm{mg}, 1.8 \mathrm{mmol})$. The solution of the $\mathbf{5 9 b}$ in $500 \mathrm{~mL} \mathrm{CHCl}_{3}$ was treated with $1.77 \mathrm{~g}(18.0 \mathrm{mmol})$ of furfuryl alcohol and $398 \mathrm{mg}(2.34 \mathrm{mmol})$ of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. The usual workup gave $90.0 \mathrm{mg}(9.9$ $\%$ ) of $\mathbf{7 4}$ as a red solid: HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}, 505.20816$; found, 505.2077; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.81(\mathrm{~s}, 4 \mathrm{H}), 2.09-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.56$ $(\mathrm{s}, 4 \mathrm{H}), 2.69(\mathrm{t}, J=7.05 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-4.11(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{t}, J=6.67 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}$, $2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=3.27,1.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=3.02 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}$, $1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=1.26 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} 1.33 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
## 2-(2,2-Difluoroethoxy)-5-\{[6-methoxy-7-(3-pyrrolidin-1-

ylpropoxy)quinazolin-4-yl]amino\}benzo-1,4-quinone (75). Compound 75 was prepared using the same method as described for $\mathbf{6 5}$ (Method E) starting with 58b (850 $\mathbf{m g}, 1.8 \mathrm{mmol})$. The solution of the $\mathbf{5 9 b}$ in $500 \mathrm{~mL} \mathrm{CHCl}_{3}$ was treated with $1.47 \mathrm{~g}(18.0$
mmol ) of 2,2-difluoro ethanol and $398 \mathrm{mg}(2.34 \mathrm{mmol})$ of $\mathrm{NaOPh}-3 \mathrm{H}_{2} \mathrm{O}$. The usual workup gave $42.6 \mathrm{mg}(5 \%)$ of 75 as a red solid: HRMS (ESI-FTMS $\left.(\mathrm{M}+\mathrm{H})^{+1}\right)$ : calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5}, 489.19440$; found, $489.1956 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.78-1.85(\mathrm{~m}$, $4 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 4 \mathrm{H}), 2.71(\mathrm{t}, J=7.30 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~d}, J$ $=4.03 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=4.03 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.30(\mathrm{~m}, 3 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1$ H), $7.33(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ C, H, N.

## Indications of compound purity

## Elemental Analyses:

|  | Found |  |  |  |  | Calcd. |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Comp | $\mathbf{C}$ | $\mathbf{H}$ | $\mathbf{N}$ | $\mathbf{C}$ | $\mathbf{H}$ | $\mathbf{N}$ | formula | hydration |  |  |  |
| $\mathbf{2 1}$ | 61.33 | 5.32 | 13.62 | 61.46 | 5.4 | 13.65 | C21H22N4O5 |  |  |  |  |
| $\mathbf{9 c}$ | 53.79 | 4.14 | 9.92 | 53.59 | 4.42 | 9.87 | C19H18ClN3O6 | 0.33 |  |  |  |
| $\mathbf{4 1}$ | 58.3 | 5.31 | 12.72 | 58.26 | 5.7 | 12.94 | C21H24N4O6 | 0.25 |  |  |  |
| $\mathbf{2 2}$ | 66.93 | 5.92 | 10.44 | 66.65 | 6.21 | 10.36 | C30H32N4O5 | 0.66 |  |  |  |
| $\mathbf{2 6}$ | 55.65 | 4.38 | 9.19 | 55.38 | 4.8 | 9.23 | C21H21F2N3O6 | 0.33 |  |  |  |
| $\mathbf{9 g}$ | 58.51 | 4.94 | 11.79 | 58.85 | 5.03 | 11.44 | C18H17N3O5 | 0.66 |  |  |  |
| $\mathbf{9 f}$ | 58.07 | 5.01 | 10.89 | 58.64 | 5.49 | 10.80 | C19H19N3O5 | 1.1 |  |  |  |
| $\mathbf{9 h}$ | 58.59 | 4.72 | 10.43 | 58.31 | 5.06 | 10.74 | C19H19N3O6 | 0.33 |  |  |  |
| $\mathbf{4 2}$ | 58.13 | 4.64 | 12.04 | 58.13 | 4.88 | 12.33 | C22H22N4O7 |  |  |  |  |
| $\mathbf{3 7}$ | 58.73 | 4.3 | 7.89 | 58.98 | 4.19 | 7.94 | C26H22F3N3O6 |  |  |  |  |
| $\mathbf{9 m}$ | 49.96 | 3.47 | 9.54 | 49.79 | 3.71 | 9.68 | C18H16BrN3O5 |  |  |  |  |
| $\mathbf{6 4}$ | 56.09 | 6.04 | 11.36 | 56.09 | 6.55 | 11.38 | C23H26N4O5 | 3.0 |  |  |  |
| $\mathbf{6 3}$ | 61.2 | 6.05 | 9.53 | 61.26 | 6.38 | 9.85 | C29H30N4O5 | 3.0 |  |  |  |
| $\mathbf{2 5}$ | 60.18 | 5.41 | 12.6 | 60.54 | 5.85 | 12.84 | C22H24N4O5 | 0.66 |  |  |  |
| $\mathbf{9 k}$ | 49.30 | 3.35 | 9.46 | 49.28 | 3.79 | 9.58 | C18H16BrN3O5 | 0.25 |  |  |  |
| $\mathbf{9 j}$ | 57.89 | 4.42 | 11.15 | 58.29 | 4.48 | 11.33 | C24H22N4O6S |  |  |  |  |
| $\mathbf{7 2}$ | 63.94 | 6.14 | 11.91 | 63.65 | 6.15 | 11.88 | C25H28N4O5 | 0.4 |  |  |  |
| $\mathbf{7 5}$ | 57.51 | 5.05 | 11.07 | 57.94 | 5.47 | 11.26 | C24H26F2N4O5 | 0.5 |  |  |  |
| $\mathbf{6 0}$ | 61.58 | 6.19 | 12.19 | 61.31 | 6.12 | 12.43 | C23H26N4O5 | 0.67 |  |  |  |
| $\mathbf{3 9}$ | 54.46 | 4.18 | 9.00 | 54.42 | 4.49 | 9.52 | C20H19F2N3O6 | 0.33 |  |  |  |
| $\mathbf{1 6}$ | 58.88 | 4.76 | 10.52 | 59.22 | 4.97 | 10.90 | C19H19N3O6 |  |  |  |  |
| $\mathbf{1 8}$ | 60.59 | 4.66 | 12.98 | 60.50 | 4.80 | 13.07 | C27H23N5O6 | 1.25 |  |  |  |
| $\mathbf{2 7}$ | 62.03 | 4.45 | 12.27 | 62.33 | 4.80 | 12.11 | C24H22N4O6 |  |  |  |  |
| $\mathbf{9 a}$ | 55.11 | 4.11 | 10.81 | 55.46 | 4.14 | 10.78 | C18H16ClN3O5 |  |  |  |  |


| $\mathbf{1 0}$ | 59.89 | 5.79 | 13.79 | 60.29 | 5.57 | 14.06 | C20H22N4O5 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 3}$ | 63.30 | 4.64 | 8.82 | 63.15 | 4.86 | 9.21 | C24H21N3O6 | 0.5 |
| $\mathbf{1 7}$ | 62.61 | 5.87 | 12.59 | 63.00 | 5.98 | 12.78 | C23H26N4O5 |  |
| $\mathbf{1 4}$ | 57.36 | 5.18 | 9.48 | 57.53 | 5.52 | 9.58 | C21H23N3O7 | 0.5 |
| $\mathbf{1 5}$ | 64.30 | 5.05 | 8.95 | 64.44 | 5.08 | 9.02 | C25H23N3O6 | 0.25 |
| $\mathbf{2 1}$ | 60.43 | 5.29 | 13.30 | 60.13 | 5.53 | 13.36 | C21H22N4O5 |  |
| $\mathbf{9 i}$ | 54.18 | 4.14 | 9.77 | 54.36 | 4.32 | 10.01 | C19H18ClN3O6 |  |
| $\mathbf{9 e}$ | 53.29 | 4.32 | 10.05 | 53.22 | 4.47 | 9.80 | C19H18CIN3O6 | 0.5 |
| $\mathbf{4 9}$ | 56.50 | 4.84 | 9.79 | 56.60 | 5.22 | 9.90 | C20H21N3O7 | 0.5 |
| $\mathbf{5 2}$ | 55.96 | 4.73 | 9.14 | 56.32 | 4.95 | 9.38 | C21H22ClN3O6 |  |
| $\mathbf{5 1}$ | 57.72 | 4.78 | 8.94 | 57.46 | 4.82 | 9.14 | C22H22ClN3O6 |  |
| $\mathbf{6 1}$ | 58.37 | 5.18 | 10.50 | 58.55 | 5.55 | 10.82 | C25H28F2N4O5 | 0.25 |
| $\mathbf{6 6}$ | 68.64 | 5.68 | 10.03 | 68.37 | 5.68 | 10.29 | C31H30N4O5 | 0.33 |
| $\mathbf{6 7}$ | 63.72 | 5.80 | 13.08 | 63.56 | 5.81 | 13.24 | C28H29N5O5 | 0.75 |
| $\mathbf{3 1}$ | 58.23 | 3.87 | 8.01 | 58.43 | 4.12 | 8.18 | C25H21ClFN3O6 |  |
| $\mathbf{6 8}$ | 66.24 | 5.99 | 10.62 | 66.52 | 5.97 | 10.70 | C29H30N4O5 | 0.5 |
| $\mathbf{6 9}$ | 56.62 | 4.15 | 9.06 | 56.77 | 4.27 | 9.13 | C29H25F5N4O5 | 0.5 |
| $\mathbf{7 0}$ | 66.92 | 5.52 | 10.12 | 66.89 | 5.79 | 10.07 | C31H30N4O5 | 1.0 |
| $\mathbf{7 3}$ | 63.95 | 5.72 | 11.41 | 63.92 | 6.05 | 11.47 | C26H28N4O5 | 0.66 |
| $\mathbf{7 4}$ | 61.41 | 5.61 | 10.67 | 61.35 | 5.85 | 10.60 | C27H28N4O6 | 1.33 |

## HPLC Purity

| Comp | Method 1 | Purity <br> $\mathbf{1}$ | Retention <br> Time |
| :--- | :--- | :---: | :---: |
| $\mathbf{6 5}$ | MeCN/H2O 40 to 90, 254 nm | $86 \%$ | 2.03 |
| $\mathbf{5 0}$ | MeCN/H2O 40 to 90, 254 nm | $100 \%$ | 3.89 |
| $\mathbf{1 2}$ | MeCN/H2O 40 to 90, 254 nm | $100 \%$ | 5.49 |
| $\mathbf{9 d}$ | MeCN/H2O 40 to 90, 254 nm | $100 \%$ | 2.74 |
| $\mathbf{1 9}$ | MeCN/H2O 40 to 90, 254 nm | $100 \%$ | 5.75 |
| $\mathbf{2 0}$ | MeCN/H2O 40 to 90, 254 nm | $92 \%$ | 4.22 |
| $\mathbf{3 2}$ | MeCN/H2O 30 to 90, 230 nm | $95 \%$ | 8.79 |
| $\mathbf{5 1}$ | MeCN/H2O 30 to 90, 230 nm | $93 \%$ | 2.1 |
| $\mathbf{4 3}$ | MeCN/H2O 10 to 90, 254 nm | $95 \%$ | 12.87 |
| $\mathbf{1 1}$ | MeCN/H2O 40 to 90, 254 nm | $93 \%$ | 2.94 |
| $\mathbf{4 0}$ | MeCN/H2O 40 to 90, 230 nm | $94 \%$ | 5.46 |
| $\mathbf{5 7}$ | MeCN/H2O 30 to 90, 230 nm | $100 \%$ | 4.96 |
| $\mathbf{6 7}$ | MeCN/H2O 30 to 90, 230 nm | $100 \%$ | 9.5 |
| $\mathbf{9 1}$ | MeCN/H2O 30 to 90, 230 nm | $96.3 \%$ | 6.16 |
| $\mathbf{3 8}$ | MeCN/H2O 30 to 90, 230 nm | $100 \%$ | 9.9 |
| $\mathbf{2 9}$ | MeCN/H2O 30 to 90, 230 nm | $98 \%$ | 6.09 |


| $\mathbf{3 3}$ | MeCN/H2O 30 to $90,230 \mathrm{~nm}$ | $90 \%$ | 8.6 |
| :--- | :--- | :---: | :---: |
| $\mathbf{3 4}$ | MeCN/H2O 30 to $90,230 \mathrm{~nm}$ | $99 \%$ | 8.8 |
| $\mathbf{3 5}$ | MeCN/H2O 30 to $90,230 \mathrm{~nm}$ | $98 \%$ | 8.7 |
| $\mathbf{9 b}$ | MeCN/H2O 30 to $90,230 \mathrm{~nm}$ | $99 \%$ | 8.04 |
| $\mathbf{2 3}$ | MeCN/H2O 30 to $90,230 \mathrm{~nm}$ | $95 \%$ | 3.17 |
| $\mathbf{2 4}$ | MeCN/H2O 30 to $90,230 \mathrm{~nm}$ | $97 \%$ | 2.09 |
| $\mathbf{3 0}$ | MeCN/H2O 30 to $90,230 \mathrm{~nm}$ | $100 \%$ | 8.42 |
| $\mathbf{6 2}$ | MeCN/H2O 20 to $60,230 \mathrm{~nm}$ | $98 \%$ | 2.033 |


| Comp | Method 2 | Purity |  |
| :--- | :--- | :---: | :---: |
| $\mathbf{2}$ | Retention <br> Time |  |  |
| $\mathbf{6 5}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $76 \%$ | 7.79 |
| $\mathbf{5 0}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $89 \%$ | 12.2 |
| $\mathbf{1 2}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $89.7 \%$ | 15.40 |
| $\mathbf{9 d}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $96 \%$ | 8.63 |
| $\mathbf{1 9}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $100 \%$ | 14.06 |
| $\mathbf{2 0}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $90 \%$ | 11.64 |
| $\mathbf{3 2}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $94 \%$ | 15.43 |
| $\mathbf{5 1}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $91 \%$ | 6.3 |
| $\mathbf{4 3}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $92.2 \%$ | 15.57 |
| $\mathbf{1 1}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,254 \mathrm{~nm}$ | $100 \%$ | 12.47 |
| $\mathbf{4 0}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $92 \%$ | 15.62 |
| $\mathbf{5 7}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $98 \%$ | 11.84 |
| $\mathbf{6 7}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $99 \%$ | 16.57 |
| $\mathbf{9 1}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $93 \%$ | 12.78 |
| $\mathbf{3 8}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $97 \%$ | 16.58 |
| $\mathbf{2 9}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $98 \%$ | 12.79 |
| $\mathbf{3 3}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $91 \%$ | 15.4 |
| $\mathbf{3 4}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $99 \%$ | 15.7 |
| $\mathbf{3 5}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $97 \%$ | 15.4 |
| $\mathbf{9 b}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $98 \%$ | 14.9 |
| $\mathbf{2 3}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $99 \%$ | 8.6 |
| $\mathbf{2 4}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $95 \%$ | 6.26 |
| $\mathbf{3 0}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $92 \%$ | 14.94 |
| $\mathbf{6 2}$ | $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} 70$ to $90,230 \mathrm{~nm}$ | $98 \%$ | 2.97 |

Analytical HPLC were conducted on an HP 1090 liquid chromatography system over a $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$ YMC ODS-A column ( $5 \mathrm{um}, 120 \mathrm{~A}$ ) using multiple wavelength uv detection (typically 230 and 254 nm ).

System A: - a gradient elution of increasing concentrations of $\mathrm{CH}_{3} \mathrm{CN}$ in water containing $0.02 \%$ TFA ( $30-90 \%$ over 20 minutes)

- wavelength 230 nm
- flow rate of $1 \mathrm{~mL} / \mathrm{min}$

System B: - a gradient elution of increasing concentrations of $\mathrm{CH}_{3} \mathrm{CN}$ in water containing $0.02 \%$ TFA ( $70-90 \%$ over 20 minutes)

- wavelength 230 nm
- flow rate of $1 \mathrm{~mL} / \mathrm{min}$

System C: - a gradient elution of increasing concentrations of $\mathrm{CH}_{3} \mathrm{CN}$ in water containing $0.02 \%$ TFA (40-90\% over 20 minutes)

- wavelength 254 nm
- flow rate of $1 \mathrm{~mL} / \mathrm{min}$

System D: - a gradient elution of increasing concentrations of $\mathrm{CH}_{3} \mathrm{CN}$ in water containing $0.02 \%$ TFA ( $70-90 \%$ over 20 minutes)

- wavelength 254 nm
- flow rate of $1 \mathrm{~mL} / \mathrm{min}$

System E: - a gradient elution of increasing concentrations of $\mathrm{CH}_{3} \mathrm{CN}$ in water containing $0.02 \%$ TFA ( $40-90 \%$ over 20 minutes)

- wavelength 230 nm
- flow rate of $1 \mathrm{~mL} / \mathrm{min}$

System F: - a gradient elution of increasing concentrations of $\mathrm{CH}_{3} \mathrm{CN}$ in water containing $0.02 \%$ TFA ( $10-90 \%$ over 20 minutes)

- wavelength 254 nm
- flow rate of $1 \mathrm{~mL} / \mathrm{min}$

System G: - a gradient elution of increasing concentrations of $\mathrm{CH}_{3} \mathrm{CN}$ in water containing $0.02 \%$ TFA ( $20-60 \%$ over 20 minutes)

- wavelength 230 nm
- flow rate of $1 \mathrm{~mL} / \mathrm{min}$

