## Supporting Information

# Synthesis of Alkynyl and Vinyl Selenides via Selenodecarboxylation of Arylpropiolic and Cinnamic Acids 

Jaya Prakash Das, Ujjal Kanti Roy and Sujit Roy*<br>Organometallics \& Catalysis Laboratory, Chemistry Department Indian Institute of Technology, Kharagpur 721302, India

## CONTENT:

1. General methods
2. General procedure for the preparation of arylpropiolic acids
3. General procedure for the synthesis of alkynyl selenides using IBDA/ArSeSeAr
4. General procedure for the synthesis of vinyl selenides using IBDA/ArSeSeAr
5. Iodosylbenzene (IB) promoted selenodecarboxylation of phenylpropiolic acid $\mathbf{1}$
6. Iodosylbenzene (IB) promoted selenodecarboxylation of 4-methoxycinnamic acid $\mathbf{6}$
7. General procedure for solid state selenodecarboxylation of arylpropiolic acids using IBDA
8. General procedure for solid state selenodecarboxylation of cinnamic acids using IBDA
9. Isolation and Characterization of hypervalent iodonium intermediate (10)
10. In-situ generation of benzeneselenenyl sulfate
11. Attempted reaction of 4-methoxycinnamic acid with 4-tolyldiselenide under photolytic condition
12. Attempted reaction of phenylpropiolic acid with 4-tolyldiselenide under photolytic condition
13. Salient observations on attempted selenodecarboxylation under other conditions Reactions with electrophilic organoselenium reagents ( $\mathrm{ArSe}^{+}$) Table S1 Reactions under Free Radical (ArSe') Condition, Table S2
14. General kinetics procedure for selenodecarboxylation of arylpropiolic acids (Table S3 \& Figure S1)
15. References, Spectroscopic and Analytical Data of Products
16. X-ray Crystallographic Structure of (E)-(2-(p-Methoxyphenyl)vinylseleno)toluene ( $\mathbf{6 b}$ )
17. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ESI-MS Spectra of Alkynyl and Vinyl Selenides

## 1. General methods:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}(200 \mathrm{MHz})$ NMR spectra were recorded on a BRUKER-AC 200 MHz and ${ }^{1} \mathrm{H}(400$ MHz ) NMR spectra (for compounds $\mathbf{1 b} \& \mathbf{2 b}$ ) were recorded on a VARIAN VXR 400 spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 7.27 \mathrm{ppm}$ ). Data are reported as follows: chemical shifts, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, coupling constant $(\mathrm{Hz})$. ESI-MS spectra were taken using Waters LCT mass spectrometer. Elemental analyses were carried out using a CHNS/O Analyzer Perkin Elmer 2400 Series II instrument. Melting points were determined on an Electrothermal 9100 melting point apparatus and are uncorrected. UV-vis measurement was carried out using Jasco V530 spectrophotometer.

All the reactions were performed under an inert atmosphere of argon. All the starting materials were $>98 \%$ pure vide NMR. Pre-coated silica gel $60 \mathrm{~F}_{254}$ (Merck) was used for thin layer chromatography and silica gel 100-200 mesh (SRL) was used for column chromatography. Attempted photochemical reactions were done in a quartz photoreactor employing medium pressure 100 W UV lamp. Dichloromethane and acetonitrile were refluxed over phosphorous pentoxide and distilled. Diphenyl diselenide and bis-4-tolyl diselenide were prepared by standard Grignard route and recrystallized to obtain analytical grade purity. Iodosobenzene diacetate (IBDA) was prepared by literature procedure (Kazmierczak, P.; Skulski, L. Synthesis, 1998, 1721) and recrystallized from $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O} / \mathrm{EtOAc}$. Iodosylbenzene (IB) was prepared by literature procedure (Vogel's Textbook of Practical Organic Chemistry; ELBS-Addison Wesley Longman Ltd.: England, 1997; pp. 869). Substituted $\alpha, \beta$-unsaturated carboxylic acids were prepared from the corresponding aldehydes by malonic acid condensation reaction using standard protocol. Substituted aromatic propiolic acids were synthesized from the corresponding aldehydes via Corey's method (Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769) and is described below. The purity of the acids was $>98 \%$ (based on NMR).

## 2. General procedure for the preparation of arylpropiolic acids:

Triphenylphosphine ( 20 mmol ) was added to a well-stirred solution of carbon tetrabromide ( 10 mmol ) in dry dichloromethane ( 50 mL ). Upon addition of aldehyde ( 5 mmol ), the orange colored solution slowly faded away. The reaction mixture was stirred at ambient temperature for 4-6 hours till completion (TLC monitoring). After removal of solvent, the residue was repeatedly triturated with hexane ( $10 \times 25 \mathrm{~mL}$ ) and hexane solution was concentrated. This cycle was continued three times. Finally the mixture was subjected to column chromatography (silica gel $60-120$ mesh, eluent hexane) to afford the 1,1-dibromoolefin.

A solution of 1,1-dibromoolefin ( 6 mmol ) in 10 mL of dry THF at $-78^{\circ} \mathrm{C}$ was treated with a solution of $\mathrm{n}-\mathrm{BuLi}$ in hexane ( $1.6 \mathrm{M}, 7.5 \mathrm{~mL}, 12 \mathrm{mmol}$ ) under argon atmosphere. After stirring for 1 h
at $-78^{\circ} \mathrm{C}$, the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ during 1 h , and again cooled to $-60{ }^{\circ} \mathrm{C}$. Solid carbon dioxide ( 5 g ) was added to the above solution at $-60^{\circ} \mathrm{C}$ and the mixture was allowed to warm gradually to room temperature. The mixture was poured into water, and ethyl acetate was added. The aqueous layer was separated and washed further with ethyl acetate. The aqueous part was acidified with $6(\mathrm{~N}) \mathrm{HCl}$ and extracted with ethyl acetate ( $3 \times 50 \mathrm{~mL}$ ). The organic layer was washed with brine and dried over anhydrous magnesium sulfate. Evaporation of solvent afforded pure arylpropiolic acid in 70-75\% yield.

## 3. General procedure for the synthesis of alkynyl selenides using IBDA/ArSeSeAr:

To a solution of arylpropiolic acid ( 1 mmol ) in acetonitrile ( 3 mL ), IBDA ( $161 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and diaryl diselenide ( 0.3 mmol ) was added The reaction mixture was stirred at room temperature till completion (TLC monitoring for ArSeSeAr, precoated silica gel $60 \mathrm{~F}_{254}$ TLC sheets, eluent: n-hexaneEtOAc 9:1). After completion of the reaction solvent was removed under reduced pressure, and the mixture was subjected to column chromatography over silica gel (100-200 mesh, eluent hexane) to afford the corresponding acetylenic selenides. The isolated yields are reported with respect to diaryl dieselenide. The products showed satisfactory spectral and analytical data and were compared to authentic samples wherever possible.

## 4. General procedure for the synthesis of vinyl selenides using IBDA/ArSeSeAr:

To a solution of $\alpha, \beta$-unsaturated aromatic carboxylic acid ( 1 mmol ) in acetonitrile ( 3 mL ), IBDA ( $161 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) was added and the solution was stirred for 10 min at $60{ }^{\circ} \mathrm{C}$ temperature. Following the addition of diaryl diselenide $(0.4 \mathrm{mmol})$ the reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ till completion (TLC monitoring for ArSeSeAr, precoated silica gel $60 \mathrm{~F}_{254}$ TLC sheets, eluent: n-hexaneEtOAc 9:1). After removing solvent under reduced pressure the mixture was subjected to column chromatography over silica gel (100-200 mesh, eluent $1 \%$ ethyl acetate in hexane) to afford the corresponding vinyl selenides. The isolated yields are reported with respect to diaryl dieselenide. The products showed satisfactory spectral and analytical data and were compared to authentic samples wherever possible.

## 5. Iodosylbenzene (IB) promoted selenodecarboxylation of phenylpropiolic acid 1:

To a solution of phenylpropiolic acid $\mathbf{1}(1 \mathrm{mmol}, 146 \mathrm{mg})$ in acetonitrile ( 3 mL ), IB ( 0.5 mmol , 110 mg ) and dipheyl diselenide ( $0.3 \mathrm{mmol}, 94 \mathrm{mg}$ ) was added. The reaction mixture was stirred at room temperature till completion (TLC monitoring for ArSeSeAr, precoated silica gel $60 \mathrm{~F}_{254}$ TLC sheets, eluent: n-hexane-EtOAc 9:1). After completion of the reaction solvent was removed under reduced pressure, and the mixture was subjected to column chromatography over silica gel (100-200 mesh, eluent hexane) to afford 1a ( $88 \%$ w.r.t. diphenyl diselenide).

## 6. Iodosylbenzene (IB) promoted selenodecarboxylation of 4-methoxycinnamic acid 6:

To a solution of 4-methoxycinnamic acid $6(1 \mathrm{mmol}, 178 \mathrm{mg})$ in acetonitrile ( 3 mL ), IB $(0.5 \mathrm{mmol}$ 110 mg ) was added and the solution was stirred for 10 min at $60{ }^{\circ} \mathrm{C}$ temperature. Following the addition of dipheyl diselenide ( $0.4 \mathrm{mmol}, 125 \mathrm{mg}$ ) the reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 8 hours. Then the solvent was evaporated under reduced pressure and the mixture was subjected to column chromatography over silica gel (100-200 mesh, eluent $1 \%$ ethylacetate in hexane) to afford 6 a (65\% w.r.t. Diphenyl diselenide).

## 7. General procedure for solid-state selenodecarboxylation of arylpropiolic acids using IBDA:

A mixture of the acid ( 1 mmol ), IBDA ( $0.5 \mathrm{mmol}, 161 \mathrm{mg}$ ) and diphenyl diselenide $(0.3 \mathrm{mmol}, 94$ mg ) was ground in a mortar for 10 min . The formation of acetic acid and wetting of the reaction mixture was observed. Extraction of the product into dichloromethane followed by chromatography (silica gel: 100-200 mesh, eluent: hexane) led to the pure alkynyl selenides.

## 8. General procedure for solid-state selenodecarboxylation of cinnamic acids using IBDA:

A mixture of the acid ( 1 mmol ), IBDA ( $0.5 \mathrm{mmol}, 161 \mathrm{mg}$ ) and diphenyl diselenide ( 0.4 mmol , 125 mg ) was ground in a mortar for 15 min . The formation of acetic acid and wetting of the reaction mixture was observed. Extraction of the product into dichloromethane followed by chromatography (silica gel: 100-200 mesh, eluent: $1 \%$ ethyl acetate in hexane) led to the pure vinyl selenides.

## 9. Isolation and characterization of hypervalent iodonium intermediate (10):



To a solution of 4-methoxycinnamic acid ( $89 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) in acetonitrile ( 3 mL ), IBDA ( 89 mg , 0.275 mmol ) was added and the solution was stirred at $60^{\circ} \mathrm{C}$ temperature. After 10 minutes a white solid precipitated. The stirring was continued for another 1 hour. The precipitate was collected by filtration, and washed repeatedly with acetonitrile to remove unreacted starting materials and acetic acid. After drying in vacuum, 122 mg ( $80 \%$ w.r.t. Acid) of phenyliodosobenzene dicinnamate salt 10 was isolated. White solid, mp $165^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 3.81\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 6.86(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.41(\mathrm{~d}, 4 \mathrm{H}$, $\left.\mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.49(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 3 \mathrm{H}-\mathrm{Ph}), 8.19(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{C D C l}_{3}$ ) $\delta: 55.32,94.26,114.27,116.1,127.19,127.44,129.64,130.22,137.37,144.47$, 161.24, 169.3.

ESI-MS: for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{IO}_{6}[\mathrm{M}],[\mathrm{M}]^{+}=559.15$
Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{IO}_{6}$ : C, 55.87; H, 4.12; Found: C, 55.32; H, 3.92.

## 10. In-situ generation of benzeneselenenyl sulfate:

Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoli, D.; Balducci, R. J. Org. Chem. 1990, 55, 429. Diphenyl diselenide ( $156 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and ammoniumperoxy disulfate ( $137 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) in MeOH or in MeCN were stirred at reflux for 2 h . After cooling to room temperature, the mixture was used in further reaction. $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and $\left[\left\{\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5}\right\} \mathrm{Et}_{3} \mathrm{~N}\right]_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ were also used in place of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ to generate benzeneselenenyl sulfate.

## 11. Attempted reaction of 4-methoxycinnamic acid with 4-tolyl diselenide under photolytic condition:

4-tolyl diselenide ( $85 \mathrm{mg}, 0.25 \mathrm{mmol}$ ), 4-methoxycinnamic acid ( $89 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and AIBN ( 8 $\mathrm{mg}, 0.05 \mathrm{mmol}$ in 2-potions) were dissolved in 5 mL of chloroform in a quartz photoreactor attached to a condenser and argon line. The solution was degassed for 10 minutes with a stream of argon and a positive pressure of argon was maintained through out the course of the experiment. The solution was irradiated for 20 hours using medium pressure UV lamp, while maintaining the internal temperature of the solution at $35{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR of the mixture, after solvent removal, showed only the starting material peaks. Further work up by chromatography led to recovery of the starting material in quantitative yield.

## 12. Attempted reaction of phenylpropiolic acid with 4-tolyl diselenide under photolytic condition:

Using identical procedure as above, but using 4-tolyl diselenide ( $82 \mathrm{mg}, 0.24 \mathrm{mmol}$ ), phenylpropiolic acid ( $73 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and AIBN ( $8 \mathrm{mg}, 0.05 \mathrm{mmol}$ in 2-potions) in 5 mL of chloroform failed to show selenodecarboxylation. ${ }^{1} \mathrm{H}$ NMR of the mixture, after solvent removal, showed only the starting material peaks. Further work up by chromatography led to recovery of the starting material in quantitative yield.
13. Salient observations on attempted selenodecarboxylation under other conditions:
(i) Reactions with electrophilic organoselenium reagents ( $\mathrm{ArSe}^{+}$):

Electrophilic selenenylating agents are well known in literature. Most important among them are organoselenenyl halides, acetates, triflates, sulfates. We therefore attempted a number of experiments utilizing these selenenylating reagents. For all the experiments 4 -methoxycinnamic acid $\mathbf{6}$ was chosen as the model substrate. Major observations are summarized in Table-S1. Reaction of $\mathbf{6}$ with $\mathrm{PhSeCl}(1$ equiv.) and $E t_{3} \mathrm{~N}$ (1 equiv.) in MeCN as solvent afforded the selenodecarboxylated product ( $E$ )-(2-(4-methoxyphenyl)-vinylseleno)benzene $\mathbf{6 a}$ in $21 \%$ isolated yield (entry a). In presence of other additives such as $\mathrm{Bu}_{3} \mathrm{~N}$ or LiOAc, negligible yield of $\mathbf{6 a}$ was observed (entries b, c). Decarboxylative chlorination and formation of diphenyl diselenide are major side reactions in these cases, as evident by the isolation of 4-methoxy- $\beta$-chlorostyrene and diphenyl diselenide during work up. We associate the above difficulties to the nucleophilic chloride counterion of PhSeCl . Henceforth we explored
selenenylating agents that do not contain nucleophilic counterions such as $\mathrm{PhSeOTf},(\mathrm{PhSe})_{2} \mathrm{SO}_{4}$, and $N$-phenylseleno phthalimide (PthNSePh). However, in all cases the desired vinyl selenide 6a was obtained in poor yields (entries d-k).

Table S1. Attempted Selenodecarboxylation of 4-methoxycinnamic acid 6 with various selenenylating reagents. ${ }^{\text {a }}$

| Entry | Reagents $^{\text {b }}$ | Additive (equiv) $^{\text {c }}$ | Solvent | Time (h) | Yield (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | PhSeCl | $\mathrm{Et}_{3} \mathrm{~N}(1)$ | MeCN | 4 | 21 |
| b | PhSeCl | $\mathrm{Bu}{ }_{3} \mathrm{~N}(1)$ | MeCN | 4 | 20 |
| c | PhSeCl | $\mathrm{LiOAc}(1)$ | MeCN | 4 | 5 |
| d | PhSeOTf | - | DCM | 24 | 20 |
| e | $(\mathrm{PhSe})_{2} \mathrm{SO}_{4}$ | - | MeCN | 24 | 5 |
| f | $(\mathrm{PhSe})_{2} \mathrm{SO}_{4}$ | $\mathrm{Et}_{3} \mathrm{~N}(1)$ | MeCN | 24 | 10 |
| g | $(\mathrm{PhSe})_{2} \mathrm{SO}_{4}$ | $\mathrm{Et}_{2} \mathrm{NH}(1)$ | MeCN | 24 | 17 |
| $\mathrm{~h}^{\text {d }}$ | $(\mathrm{PhSe})_{2} \mathrm{SO}_{4}$ | $\mathrm{Et}_{2} \mathrm{NH}(1)$ | MeCN | 24 | 25 |
| i | $(\mathrm{PhSe})_{2} \mathrm{SO}_{4}$ | $\mathrm{Et}_{2} \mathrm{NH}(0.1)$ | MeCN | 24 | 10 |
| $j^{\text {d }}$ | $(\mathrm{PhSe})_{2} \mathrm{SO}_{4}$ | $\mathrm{Et}_{2} \mathrm{NH}(0.1)$ | MeOH | 24 | 15 |
| k | PthNSePh | $\mathrm{Et}_{2} \mathrm{NH}(1)$ | DCM | 24 | 10 |

${ }^{\mathrm{a}}$ Unless otherwise stated, reactions were carried out at $40{ }^{\circ} \mathrm{C},{ }^{\mathrm{c}}$ With respect to 6 , ${ }^{\mathrm{d}}$ Under reflux.

## (ii) Reactions under free radical (ArSe) condition:

The selenodecarboxylation was also attempted under radical condition. An easy entry into ArSe radical is by the photolysis or thermolysis of ArSeSeAr, often in the presence of AIBN. Thus, a solution of 4-methoxycinnamic acid $(0.5 \mathrm{mmol})$ 6, diphenyl diselenide $(0.25 \mathrm{mmol})$ and AIBN $(0.05$ mmol in two portions) in chloroform ( 5 mL ) and under argon was irradiated in a photochemical reactor with medium pressure UV-lamp. After 20 h , the starting materials were recovered back nearly quantitatively. As shown in Table S 2 , various attempts to modify the reaction condition by changing additive, temperature, and dilution did not afford the desired selenodecarboxylated product.

Table S2. Attempted Selenodecarboxylation of 4-methoxycinnamic acid 6 under free radical condition in chloroform. ${ }^{\text {a }}$

| Entry | Reagents | Additive | Condition | Observation |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | PhSeSePh | AIBN | $h v$ | No reaction. Starting materials |  |
| b | PhSeSePh | AIBN | Reflux | recovered in all the cases after 20h. |  |
| c | TolSeSeTol | AIBN | $h v$ |  |  |
| d | $P h S e S e P h$ | $\mathrm{Bz}_{2} \mathrm{O}_{2}$ | Reflux |  |  |
| e | $P h S e S e P h$ | $\mathrm{Bz}_{2} \mathrm{O}_{2}$ | $h v$ |  |  |
| $\mathrm{f}^{b}$ | PhSeSePh | AIBN | $h v$ |  |  |

[^0] $\mathrm{mL}) .{ }^{\mathrm{b}}$ In 10 mL chloroform.

The results from the above are summarized below.

1. None of the reactions with electrophilic selenenylating reagents is preparatively useful.
2. Use of additives could not improve the yields.
3. Reactions under free radical condition failed with the recovery of the starting materials.

## 14. General kinetics procedure for selenodecarboxylation of arylpropiolic acids

The UV-vis spectra of unsymmetrical alkynyl selenides 1a, 2a, and 3a in chloroform show a weak but distinct peak at 313-315 nm ( $\varepsilon$ 3760-5290 litmol $^{-1} \mathrm{~cm}^{-1}$, Table S3), at which IBDA and PhSeSePh are nearly transparent $\left(\varepsilon<50\right.$ litmol $\left.^{-1} \mathrm{~cm}^{-1}\right)$. In each case linear Beer plot of absorbance versus concentration afforded the corresponding molar extinction constant $\varepsilon$-values, which were utilized to evaluate concentration of product in reaction mixture.

A 10 mL flask equipped with a magnetic bar was charged with diphenyl diselenide, iodosobenzene diacetate and arylpropiolic acid in 1:5:10 molar ratio in chloroform ( 4 mL ). The flask was degassed with argon and placed into a constant temperature bath at $25^{\circ} \mathrm{C}$ and vigorously stirred. Known volume of aliquots were withdrawn periodically, diluted to 10 mL in a volumetric flask and washed with saturated sodium bicarbonate solution in order to make the solution free from excess arylpropiolic acids. UV-vis monitoring of solutions were carried out at 315 nm for alkynyl selenide 1a and at 313 nm for 2a and 3a respectively to determine product concentration $\left(\mathrm{P}_{\mathrm{t}}\right)$. As shown in Figure S1, linear plot of $\ln \left[a_{0} /\left(a_{0}-x\right)\right]$ vs. time ( $t$ ) indicated pseudo first order kinetics with respect to diselenide in accordance with the following equation.

$$
\begin{aligned}
& k_{\mathrm{R}} \mathrm{t}=\ln \left[\mathrm{a}_{0} /\left(\mathrm{a}_{0}-\mathrm{x}\right)\right] \\
& \mathrm{a}_{0}=\text { initial concentration of } \mathrm{PhSeSePh} \\
& \left(\mathrm{a}_{0}-\mathrm{x}\right)=\text { concentration of } \mathrm{PhSeSePh} \text { at time } \mathrm{t} \\
& \mathrm{x}=0.5 \mathrm{P}_{\mathrm{t}}
\end{aligned}
$$

The rate constants $k_{R}$ were determined for the first $20 \%$ conversion of the reaction.

Table S3. Kinetic data for the selenodecarboxylation of arylpropiolic acids with $\mathrm{PhSeSePh} / \mathrm{IBDA}$

| entry | $\mathrm{a}_{\mathrm{o}}$ | Product |  |  |  | $\mathrm{k}_{\mathrm{R}} \times 10^{3}\left(\mathrm{~s}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | $\lambda(\mathrm{nm})$ | $\varepsilon$ |  |  |
| 1 | 0.04 M | 1a | 315 | 5290 | H | 3.7 |
| 2 | 0.04 M | 2a | 313 | 3760 | OMe | 14.6 |
| 3 | 0.02 M | 3a | 313 | 4590 | Cl | 0.3 |

Figure S1: Pseudo-first order rate plots for the selenodecarboxylation of 1, 2 and 3



## 15. REFERENCES, SPECTROSCOPIC AND ANALYTICAL DATA OF PRODUCTS

## 1-phenylseleno-2-phenylacetylene (1a):



Braga, A. L.; Comasseto, J. V.; Petragnani, N. Synthesis 1984, 240.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ : 7.05-7.65 (m, 10H); ESI-MS: for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Se}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=259.00$, $[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}=300.03$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Se}$ : C, 65.37; H, 3.89; Found: C, 65.77; H, 3.76.

## 1-(p-Tolylseleno)-2-phenylacetylene (1b):



Zhang, J. L.; Chen, Z. C. Synth. Commun. 1997, 27, 3757
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 2.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 7.15\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 7.30-7.34\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}\right), 7.46-$ $7.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{d}}\right)$; ESI-MS: for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Se}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=273.00,[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}=314.03$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Se}: \mathrm{C}, 66.42$; H, 4.43; Found: C, 66.73; H, 4.22.

1-(phenylseleno)-2-(p-meo-phenyl)acetylene (2a):


Braga, A. L.; Comasseto, J. V.; Petragnani, N. Synthesis 1984, 240.
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right) \delta: 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.22-7.38\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{e}}\right), 7.46$ (d, 2H, J= $9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}$ ), 7.52-7.63 (m, 2H, $\mathrm{H}_{\mathrm{c}}$ ); ESI-MS: for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OSe}:[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=289.02$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OSe}$ : C, 62.72; H, 4.18; Found: C, 63.05 ; H, 4.08.

## 1-(p-tolylseleno)-2-(p-methoxyphenyl)acetylene (2b):



Latypova, V. Z.; Yakovleva, O. G.; Rydvanskii, Y. V.; Kataeva, L. M.; Kargin, Y. M. Zhurnal Obshchei Khimi 1984, 54, 848
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \boldsymbol{\delta :} 2.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.85\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.13(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.43\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.47\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$; ESI-MS: for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OSe}:[\mathrm{M}]$, $[\mathrm{M}+\mathrm{H}]^{+}=303.01$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OSe}$ C, 63.79 ; H, 4.65; Found: C, 63.83; H, 4.67.

## 1-(phenylseleno)-2-(p-chlorophenyl)acetylene (3a):



Braga, A. L.; Comasseto, J. V.; Petragnani, N. Synthesis 1984, 240.
Husebye, S.; Meyers, E. A.; Zingaro, R. A.; Braga, A. L.; Comasseto, J. V.; Petragnani, N. Acta. Cryst. 1986, C42, 1789-1792
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{3}$ ) $\delta: 7.18-7.67(\mathrm{~m}, 9 \mathrm{H})$; ESI-MS: for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClSe}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=292.96\left({ }^{35} \mathrm{Cl}\right) \&$ $294.95\left({ }^{37} \mathrm{Cl}\right),[\mathrm{M}+\mathrm{H}-\mathrm{Cl}]^{+}=257.99\left({ }^{35} \mathrm{Cl}\right) \& 255.99\left({ }^{37} \mathrm{Cl}\right)$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClSe}: \mathrm{C}, 57.63 ; \mathrm{H}$, 3.09; Found: C, 58.01; H, 2.83.

## 1-(p-tolylseleno)-2-(p-chlorophenyl)acetylene (3b):


${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 2.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 7.15\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.28\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.39(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.47\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \delta: 21.01,71.25,100.97,121.75$, 124.59, 128.62, 129.68, 130.38, 132.82, 134.42, 137.42; ESI-MS: for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClSe}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=$ $306.98\left({ }^{35} \mathrm{Cl}\right) \& 308.98\left({ }^{37} \mathrm{Cl}\right),[\mathrm{M}+\mathrm{H}-\mathrm{Cl}]^{+}=272.01\left({ }^{35} \mathrm{Cl}\right) \& 270.01\left({ }^{37} \mathrm{Cl}\right),[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}=$ $348.01\left({ }^{35} \mathrm{Cl}\right) \& 350.01\left({ }^{37} \mathrm{Cl}\right)$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClSe}$ C, 58.92 ; H, 3.60; Found: C, 58.87 ; H, 3.42 .

## 1-(Phenylseleno)-2-(2’-thienyl)acetylene (4a):



Braga, A. L.; Comasseto, J. V.; Petragnani, N. Synthesis 1984, 240.
${ }^{1} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5,5.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.14-7.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{e}}, \mathrm{H}_{\mathrm{f}}\right), 7.45-7.62(\mathrm{~m}$, $2 H, H_{d}$ ); ESI-MS: for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{SSe}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=264.96$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{SSe}: \mathrm{C}, 54.75$; H , 3.04; Found: C, 54.88; H, 2.97.

## 1-(p-Tolylseleno)-2-(2'-thienyl)acetylene (4b):


${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 2.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 6.98\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4,5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.14\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right)$, 7.21-7.30 (m, $2 \mathrm{H}, \mathrm{Ha} \& \mathrm{H}_{\mathrm{c}}$ ), $7.45\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \delta: 21.00,74.48,94.93$, 123.35, 124.83, 126.89, 127.96, 129.59, 130.35, 133.12, 137.36; ESI-MS: for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{SSe}$ [M], $[\mathrm{M}+\mathrm{H}]^{+}=278.97$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{SSe}$ : C, 56.32 ; H, 3.61; Found: C, 56.65; H, 3.53.

## 1-Phenylselanylethynyl-naphthalene (5a):


${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right) \delta: 7.20-8.00(\mathrm{~m}, 11 \mathrm{H}), 8.30-8.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 73.97,101.13$, $120.79,125.20,126.17,126.47,126.94,127.16,128.30,129.09,129.62,130.81,133.16,133.44 ;$ ESI-MS: for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Se}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=309.02$; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Se}$ : C, 70.36; H, 3.91; Found: C, 70.53; H, 3.96.

## (E)-(2-(p-Methoxyphenyl)vinylseleno)benzene (6a):



Yu, Y.; Xian, H. Synth. Commun. 1997, 27, 345
Shin, W. S.; Lee, K.; Oh, D. Y. Bull. Of the Korean chem. Soc. 1996, 17, 981
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{Ha}), 7.03$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.25-7.34\left(\mathrm{~m}, 3 \mathrm{H}-\mathrm{Ph}+2 \mathrm{H}-\mathrm{H}_{\mathrm{c}}\right), 7.49-7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \delta:$ 55.28, 114.06, 115.90, 127.10, 127.37, 129.24, 129.87, 130.73, 131.99, 135.87, 159.35; ESI-MS: for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{OSe}[\mathrm{M}],[\mathrm{M}]^{+}=290.04$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{OSe}: \mathrm{C}, 62.28$; H, 4.84; Found: C, 62.40; H, 4.73; Light yellow solid, mp $50-51{ }^{\circ} \mathrm{C}$.
(E)-(2-(p-Methoxyphenyl)vinylseleno)toluene (6b):

${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 2.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 6.84(\mathrm{~d}, 2 \mathrm{H}$, $\left.J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.12\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 7.26\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.43(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}$ ); ESI-MS: for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OSe}[\mathrm{M}],[\mathrm{M}]^{+}=304.02$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OSe}: \mathrm{C}$, 63.37; H, 5.28; Found : C, 63.58; H, 5.11; Light yellow solid, mp 69.5-70.5 ${ }^{\circ} \mathrm{C}$.
(E)-(2-(3,4,5-Trimethoxyphenyl)vinylseleno)benzene (7a):

${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 3.85\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 6.8(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{a}}\right), 7.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.28-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.52-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$; ESI-MS: for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=351.03,[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}=392.05,[\mathrm{M}+\mathrm{MeCN}+\mathrm{Na}]^{+}=414.03$; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Se}$ : C, 58.45 ; H, 5.16; Found: C, 58.78 ; H, 5.44; Light yellow solid, mp 50.6-51.5 ${ }^{\circ} \mathrm{C}$.
(E)-(2-(3,4,5-Trimethoxyphenyl)vinylseleno)toluene (7b):

${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 2.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right)$, $6.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.14\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 7.45(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{d}}$ ) ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{C D C l}_{3}$ ) $\delta: 21.10,56.07,60.87,103.15,119.48,125.93,130.16,132.86,133.18$, 134.12, 137.67, 137.88, 153.34; ESI-MS: for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}],[\mathrm{M}+\mathrm{H}]^{+}=365.05,[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}=$ 406.08; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Se}$ : C, 59.50; H, 5.51; Found: C, 59.73; H, 5.26; oil.

## (E)-5-(2-Phenylselanyl-vinyl)-benzo[1,3]dioxole (8a):


${ }^{1} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{3}$ ) $\boldsymbol{\delta}: 5.95\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\right), 6.76-6.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ha}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{e}}\right), 6.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{b}}$ ), 7.25-7.35 (m, 3H, Ph), 7.50-7.54 (m, 2H, Ph); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{C D C l}_{3}$ ) $\delta: 101.10,105.40,108.31$, 116.76, 120.86, 127.21, 129.26, 130.45, 131.51, 132.16, 135.46, 147.32, 148.05; ESI-MS: for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}],[\mathrm{M}]^{+}=304.00$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Se}: \mathrm{C}, 59.41$; H, 3.96; Found: C, 59.23; H, 4.05; oil.

## (E)-5-(2-p-tolylselanyl-vinyl)-benzo[1,3]dioxole (8b):


${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right) \delta: 2.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 5.94\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\right), 6.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 6.74$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{e}}\right), 6.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 6.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.12\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Hg}_{\mathrm{g}}\right), 7.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}$ ); ESI-MS: for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}],[\mathrm{M}]^{+}=318.00$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Se}: \mathrm{C}, 60.57 ; \mathrm{H}$, 4.42; Found: C, 60.38 ; H, 4.26; White solid, mp $50-50.6^{\circ} \mathrm{C}$.
(E)-(2-(phenyl)vinylseleno)benzene (9a):


Comasseto, J. V.; Ferreira, J. T. B. J. Organomet. Chem. 1984, 240.
${ }^{1} \mathbf{H}$ NMR ( $\left.\mathrm{CDCl}_{3}\right) \delta: 6.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 6.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.1-7.6(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph})$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Se}$ : C, 64.87; H, 4.67; Found: C, 65.12; H, 4.39; Oil.
16. X-ray Crystallographic Structure of (E)-(2-(p-Methoxyphenyl)vinylseleno)toluene (6b):


Crystals of $\mathbf{6} \mathbf{b}$ suitable for structure determination was grown from hexane at $4{ }^{\circ} \mathrm{C}$.

ORTEP diagram of $\mathbf{6 b}$.


## Crystal data and structure refinement for $\mathbf{6 b}$.

| Identification code | 6b |
| :---: | :---: |
| Empirical formula | C16 H16 O Se |
| Formula weight | 303.25 |
| Temperature | 293(2) K |
| Wavelength | 0.71073 Å (Mo K ${ }^{\text {a' }}$ ) |
| Crystal system | Orthorhombic |
| Space group | P212121 |
| Unit cell dimensions | $\mathrm{a}=5.960(18) \AA$ alpha $=90 \operatorname{deg}$ <br> $\mathrm{~b}=7.710(10) \AA$ beta $=90 \operatorname{deg}$ <br> $\mathrm{c}=31.23(3) \AA$ gamma $=90 \operatorname{deg}$ |
| Volume | $1435(5) \AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.404 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $2.603 \mathrm{~mm}^{-1}$ |
| F (000) | 616 |
| Crystal size | $0.16 \times 0.14 \times 0.03 \mathrm{~mm}$ |
| Theta range for data collection | 2.72 to 24.96 deg. |
| Index ranges | $0<=\mathrm{h}<=7 ; 0<=\mathrm{k}<=9 ; 0<=1<=37$ |
| Reflections collected | 1402 |
| Independent reflections | 1402 [ $\mathrm{R}(\mathrm{int}$ ) $=0.0000]$ |
| Reflections observed (>2sigma) | 849 |
| Data Completeness | 0.933 |
| Absorption correction | None |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 1402 / 0 / 165 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.016 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $\mathrm{R}=0.0812 \quad \mathrm{wR}=0.1816$ |
| R indices (all data) | $\mathrm{R}=0.1438 \quad \mathrm{wR}=0.2146$ |
| Absolute structure parameter | -0.07(6) |
| Largest diff. Peak and hole | 0.824 and -0.490 e. $\AA^{-3}$ |

Table S3. Atomic coordinates (x10^4) and equivalent isotropic displacement parameters ( $\AA^{\wedge} 2 \times 10^{\wedge} 3$ ) .U (eq) is defined as one third of the trace of the orthogonalized Uij tensor.

| Atom | x | y | z | $\mathrm{U}(\mathrm{eq})$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| $\mathrm{Se}(1)$ | $2500(2)$ | $5135(2)$ | $8978(1)$ | $88(1)$ |
| $\mathrm{O}(1)$ | $9481(13)$ | $4441(12)$ | $6654(2)$ | $75(2)$ |
| $\mathrm{C}(13)$ | $8660(20)$ | $4353(14)$ | $7059(4)$ | $61(3)$ |
| $\mathrm{C}(9)$ | $5606(18)$ | $330(14)$ | $8305(3)$ | $59(3)$ |
| $\mathrm{C}(12)$ | $6653(18)$ | $5233(15)$ | $7129(4)$ | $65(3)$ |
| $\mathrm{C}(2)$ | $6520(20)$ | $434(13)$ | $9561(4)$ | $68(3)$ |
| $\mathrm{C}(10)$ | $6649(18)$ | $4358(13)$ | $7864(3)$ | $53(3)$ |
| $\mathrm{C}(14)$ | $9618(19)$ | $3480(15)$ | $7401(3)$ | $61(3)$ |
| $\mathrm{C}(7)$ | $7290(20)$ | $2090(17)$ | $9584(4)$ | $70(3)$ |
| $\mathrm{C}(8)$ | $3862(19)$ | $5208(18)$ | $8438(4)$ | $78(4)$ |
| $\mathrm{C}(11)$ | $5697(16)$ | $5264(15)$ | $7527(3)$ | $58(3)$ |
| $\mathrm{C}(5)$ | $4150(20)$ | $3243(15)$ | $9211(4)$ | $67(3)$ |
| $\mathrm{C}(15)$ | $8662(19)$ | $3505(16)$ | $7796(3)$ | $64(3)$ |
| $\mathrm{C}(4)$ | $3330(20)$ | $1597(17)$ | $9170(4)$ | $70(3)$ |
| $\mathrm{C}(16)$ | $11450(20)$ | $3540(20)$ | $6546(4)$ | $87(4)$ |
| $\mathrm{C}(3)$ | $4440(20)$ | $199(19)$ | $9347(4)$ | $86(4)$ |
| $\mathrm{C}(1)$ | $7820(30)$ | $-1102(18)$ | $9729(4)$ | $96(5)$ |
| $\mathrm{C}(6)$ | $6220(20)$ | $3444(18)$ | $9423(4)$ | $70(3)$ |

Table S4. Bond length $[\AA]$ for $\mathbf{6 b}$.

| $\mathrm{Se}(1)-\mathrm{C}(8)$ | $1.870(12)$ | $\mathrm{Se}(1)-\mathrm{C}(5)$ | $1.903(12)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O}(1)-\mathrm{C}(13)$ | $1.359(13)$ | $\mathrm{O}(1)-\mathrm{C}(16)$ | $1.408(14)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | $1.387(14)$ | $\mathrm{C}(13)-\mathrm{C}(12)$ | $1.390(18)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)$ | $1.308(16)$ | $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.512(15)$ |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 0.9300 | $\mathrm{C}(12)-\mathrm{C}(11)$ | $1.368(15)$ |
| $\mathrm{C}(12)-\mathrm{H}(12)$ | 0.9300 | $\mathrm{C}(2)-\mathrm{C}(7)$ | $1.357(17)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.42(2)$ | $\mathrm{C}(2)-\mathrm{C}(1)$ | $1.51(2)$ |
| $\mathrm{C}(10)-\mathrm{C}(15)$ | $1.385(15)$ | $\mathrm{C}(10)-\mathrm{C}(11)$ | $1.385(13)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | $1.359(14)$ | $\mathrm{C}(14)-\mathrm{H}(14)$ | 0.9300 |
| $\mathrm{C}(7)-\mathrm{C}(6)$ | $1.321(18)$ | $\mathrm{C}(7)-\mathrm{H}(7)$ | 0.9300 |
| $\mathrm{C}(8)-\mathrm{H}(8)$ | 0.9300 | $\mathrm{C}(11)-\mathrm{H}(11)$ | 0.9300 |
| $\mathrm{C}(5)-\mathrm{C}(4)$ | $1.366(17)$ | $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.412(18)$ |
| $\mathrm{C}(15)-\mathrm{H}(15)$ | 0.9300 | $\mathrm{C}(4)-\mathrm{C}(3)$ | $1.381(18)$ |
| $\mathrm{C}(4)-\mathrm{H}(4)$ | 0.9300 | $\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(3)-\mathrm{H}(3)$ | 0.9300 | $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(6)-\mathrm{H}(6)$ | 0.9300 |  |  |

Table S5. Bond angles [ ${ }^{\wedge}$ ] ] for $\mathbf{6 b}$.

| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $127.4(11)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | 116.3 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | 116.3 | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $120.6(10)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$ | 119.7 | $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$ | 119.7 |
| $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$ | $116.0(12)$ | $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$ | $123.1(13)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | $120.8(12)$ | $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$ | $118.6(10)$ |
| $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$ | $119.3(9)$ | $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$ | $122.1(10)$ |
| $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$ | $121.3(10)$ | $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$ | 119.4 |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$ | 119.4 | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$ | $124.2(13)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$ | 117.9 | $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7)$ | 117.9 |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Se}(1)$ | $127.9(10)$ | $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$ | 116.0 |
| $\mathrm{Se}(1)-\mathrm{C}(8)-\mathrm{H}(8)$ | 116.0 | $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$ | $120.8(10)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$ | 119.6 | $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$ | 119.6 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $117.3(11)$ | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Se}(1)$ | $119.5(10)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Se}(1)$ | $123.2(10)$ | $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$ | $120.6(10)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$ | 119.7 | $\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15)$ | 119.7 |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | $121.0(11)$ | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$ | 119.5 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$ | 119.5 | $\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$ | 109.5 |
| $\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$ | 109.5 | $\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$ | 109.5 |
| $\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 109.5 | $\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 109.5 | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | $120.6(12)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$ | 119.7 | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$ | 119.7 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$ | 109.5 | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$ | 109.5 | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$ | 109.5 | $\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$ | $120.8(12)$ | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$ | 119.6 |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$ | 119.6 |  |  |

Symmetry transformations used to generate equivalent atoms

Table S6. Anisotropic displacement parameters $\left(\AA^{\wedge} 2 \times 10^{\wedge} 3\right)$ for $\mathbf{6 b}$. The anisotropic displacement factor exponent takes the form: $-2 p^{\wedge} 2\left[h^{\wedge} 2 a^{* \wedge} 2 \mathrm{U} 11+\ldots+2 h k a^{*} b^{*} \mathrm{U} 12\right]$

| Atom | U11 | U22 | U33 | U23 | U13 | U12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| Se(1) | $76(1)$ | $104(1)$ | $84(1)$ | $-1(1)$ | $12(1)$ | $25(1)$ |
| O(1) | $72(5)$ | $99(6)$ | $54(4)$ | $14(4)$ | $8(4)$ | $14(5)$ |
| C(13) | $66(7)$ | $49(6)$ | $69(7)$ | $9(5)$ | $-12(6)$ | $3(6)$ |
| C(9) | $55(6)$ | $58(6)$ | $64(6)$ | $6(6)$ | $0(6)$ | $2(6)$ |
| C(12) | $36(4)$ | $72(7)$ | $85(8)$ | $18(7)$ | $-19(5)$ | $0(6)$ |
| C(2) | $90(8)$ | $41(7)$ | $72(7)$ | $-4(5)$ | $10(7)$ | $-6(6)$ |
| C(10) | $44(5)$ | $51(5)$ | $63(6)$ | $10(5)$ | $-12(5)$ | $-10(5)$ |
| C(14) | $54(7)$ | $70(7)$ | $60(6)$ | $8(6)$ | $11(6)$ | $9(6)$ |
| C(7) | $57(7)$ | $84(8)$ | $69(7)$ | $-8(6)$ | $-4(8)$ | $1(8)$ |
| C(8) | $48(7)$ | $93(9)$ | $92(8)$ | $7(8)$ | $-14(6)$ | $12(7)$ |
| C(11) | $43(5)$ | $67(7)$ | $63(6)$ | $7(6)$ | $-1(5)$ | $12(6)$ |
| C(5) | $57(7)$ | $63(7)$ | $80(8)$ | $5(7)$ | $12(6)$ | $2(6)$ |
| C(15) | $61(7)$ | $75(7)$ | $56(6)$ | $2(6)$ | $-11(6)$ | $25(7)$ |
| C(4) | $47(6)$ | $78(8)$ | $85(8)$ | $-12(7)$ | $-13(6)$ | $-2(6)$ |
| C(16) | $65(7)$ | $119(11)$ | $76(8)$ | $16(8)$ | $12(7)$ | $20(9)$ |
| C(3) | $82(9)$ | $75(9)$ | $101(9)$ | $-10(8)$ | $-2(8)$ | $-30(9)$ |
| C(1) | $124(14)$ | $80(9)$ | $85(8)$ | $-3(7)$ | $-11(10)$ | $-5(10)$ |
| C(6) | $72(8)$ | $76(8)$ | $61(7)$ | $-4(7)$ | $1(6)$ | $-16(7)$ |

Table S7. Hydrogen coordinates ( $\mathrm{x} 10^{\wedge} 4$ ) and isotropic displacement parameters $\left(\AA^{\wedge} 2 \times 10^{\wedge} 3\right)$ for $\mathbf{6 b}$.

| Atom | $x$ | $y$ | $z$ | $U(e q)$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| $H(9)$ | 6283 | 3605 | 8505 | 71 |
| $H(12)$ | 5958 | 5807 | 6903 | 78 |
| $H(14)$ | 10943 | 2865 | 7359 | 74 |
| $H(7)$ | 8644 | 2283 | 9723 | 84 |
| $H(8)$ | 3221 | 5961 | 8240 | 93 |
| $H(11)$ | 4393 | 5901 | 7572 | 69 |
| $H(15)$ | 9367 | 2945 | 8023 | 77 |
| $H(4)$ | 1998 | 1414 | 9020 | 84 |
| $H(16 A)$ | 12735 | 4166 | 6650 | 130 |
| $H(16 B)$ | 11552 | 3422 | 6241 | 130 |
| $H(16 C)$ | 11423 | 2407 | 6675 | 130 |
| $H(3)$ | 3821 | -905 | 9326 | 103 |
| $H(1 A)$ | 9277 | -1134 | 9597 | 145 |
| H(1B) | 7028 | -2152 | 9664 | 145 |
| $H(1 C)$ | 7994 | -997 | 10034 | 145 |
| H(6) | 6848 | 4543 | 9449 | 84 |

17. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ESI-MS Spectra of Acetylenic and Vinyl Selenides ${ }^{\text {a }}$


1b




[^1]




Capillary: 3800 V
Capillary: 3800 V
Sample Cone: 40 V
Extraction Cone: 1 V
Extraction Cone: 1 V
Solvent: MeCN:H2O;Formic Acid :: 50:50:0.05

306.9863




4a






4b



$\mathrm{H}_{3} \mathrm{CO}$








Capillary: 3500 V
Sample Cone: 35 V

Extraction Cone: 3 V
Solvent: MeCN:H2O:Formic Acid :: 50:50:0.05


7a



| $\begin{aligned} & \overrightarrow{1} \\ & \text { n } \\ & \text { है } \end{aligned}$ |  | è $\stackrel{8}{8}$ $\stackrel{y}{*}$ |
| :---: | :---: | :---: |

$\stackrel{0}{3}$
$\stackrel{\text { ®. }}{8}$





5.







Capillary: 3800 V
Sample Cone: 40 V
Extraction Cone: 1 V
Solvent: MeCN:H2O:Formic Acid :: 50:50:0.05

224.0818
8a

 302.0000




8b

6.5
4.5
$\mathrm{PM}^{\circ}$


END OF SUPPORTING INFORMATION


[^0]:    ${ }^{\text {a }}$ Conndition: Acid $1(0.5 \mathrm{mmol}) / \operatorname{ArSeSeAr}(0.25 \mathrm{mmol}) /$ additive ( 0.05 mmol in two portions) in chloroform (5

[^1]:    100
    289.0214
    $[\mathrm{M}+\mathrm{H}]^{+}$
    Capillary: 3500 V
    Sample Cone: 40 V
    Extraction Cone: 3 V
    Solvent: MeCN:H2O:Formic Acid :: 50:50:0.05
    288.0160
    
    $2 a$
    286.0196
    

