Table S1 Structural statistics and root-mean-se	mare deviations for 10 low energy st	ructures of the KcsA / charv	bdotoxin complex
Table S1. Structural statistics and root-mean-sc	fuale deviations for to low energy st	ructures of the Resh / chary	ouotoxin complex.

Structural statistics ^a	<sa></sa>	$<\overline{SA}>_{\rm r}$
Rmsd from experimental distance restraints (Å) ^b		·
All (576)	0.008 ± 0.002	0.004
Intermolecular (13)	0.032 ± 0.012	0.020
Charybdotoxin NOE restraints (111)	0.007 ± 0.003	0.001
KcsA NOE restraints (452)	0.004 ± 0.002	0.001
CNX potential energies (kcal mol ⁻¹) ^c		
E _{tot}	328±18	318
E _{bond}	13±0.5	13
E _{ang}	198±4	198
E _{imp}	16±1	17
E _{repel}	45±3	44
E _{noe}	2 ± 1	1
E_{cdih}	2 ± 0.4	2
E _{ncs}	52±14	43
Rmsd from idealized geometry		
bonds (Å)	0.00 ± 0.00	0.00
angles (deg)	0.33 ± 0.00	0.30
impropers (deg)	0.17±0.01	0.12
Cartesian coordinate rmsd (Å)	N, C_{α} , and C'	all heavy
$\langle SA \rangle_{VS.} \langle \overline{SA} \rangle^d$	0.66±0.05	$0.92{\pm}0.05$
$\langle SA \rangle$ vs. $\langle \overline{SA} \rangle^{e}$	1.35±0.26	1.69±0.27

^aWhere $\langle SA \rangle$ is the ensemble of 10 NMR-derived solution structures of the KcsA / charybdotoxin complex.; $\langle \overline{SA} \rangle$ is

the mean atomic structure; $\langle \overline{SA} \rangle_r$ is the energy-minimized average structure. ^bDistance restraints were employed with a square-well potential ($F_{noe} = 50$ kcal mol⁻¹ Å⁻²). No distance restraint was violated by more than 0.3 Å in any of the final structures. In addition to 576 experimental distance restraints, 35 symmetry distance restraints for maintaining symmetry of the tetrameric subunits of KcsA were used in the calculations.

^cThe energies reported here were obtained by using F_{repel} of 0.8 times their CHARMM values with a force constant of 4.0 kcal mol⁻¹ Å⁻⁴ and by energy minimization of structures generated from the protocol as described in the experimental procedures. ^dRmsd for the KcsA (residues 23-119) / charybdotoxin complex.

^eRmsd for charybdotoxin when the KcsA (residues 23-119) / charybdotoxin complexes are superimposed.

Figure S1. The methyl regions of ${}^{1}H/{}^{13}C$ -HSQC spectra of (A) ${}^{13}CH_{3}{IVLMA} / {}^{1}H{YW}$ and (B) ${}^{13}CH_{3}{LA}$ labeled KcsA. All available methyl group assignments are indicated in (A).

Figure S2. 1 H/ 1 H NOESY spectra of charybdotoxin in the (A) absence and (B) presence of perdeuterated KcsA. Both samples were in 20 mM sodium phosphate (pH 7.5), 5 mM KCl, 1 mM DTT, and 80 mM d₃₈-Foscholine-12. The mixing times were 150 and 100 ms for (A) and (B), respectively.

Figure S3. Stereoview of the backbone atoms (N, $C\alpha$, C') of 10 NMR-derived structures of KcsA / charybdotoxin complex when superimposed upon all the backbone atoms in the complex. KcsA and charybdotoxin are colored in black and red, respectively.

