Where is the sodium in self assembled monolayers of single stranded

DNA?

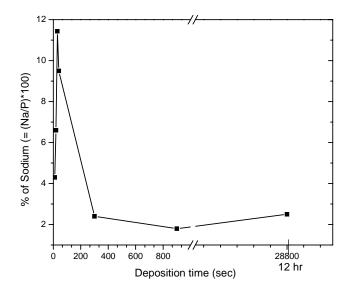

Supporting material

Table 1: XPS results for two types of monolayers made from 15 bases long single strand DNA oligomers containing either 14 adenine and one guanine (1G) or 7 adenine and 8 guanine bases (8G), after 12 hours adsorption using sodium phosphate buffer. The results are averaged over several take-off angles.

	N/P		N/O		C/P		N/S		% of Na	
									(Na/P * 1	.00%)
Sample	1G	8G	1G	8G	1G	8G	1G	8G	1G	8G
Theoretical	5	5	1.1	1.01	10.4	10.4	37.5	37.5		-
Experiment (±10%)	4.8	4.4	1.63	1.63	15.5	14.2	29	31.5	2.5 %	

Table 2: XPS results for monolayer made from single stranded DNA oligomers containing 15 bases (14 adenine and one guanine) deposited from Mg^{+2} buffer. The take-off angle is 30°.

N/P ±10%	C/P ±10%	N/O ±10%	% of Mg ⁺² (Mg/P* 100%) ±10%
4.2	12.0	0.7	4.8

Figure 2: Concentration of Na⁺ as a function of adsorption time for a monolayer made from 15 bases long single strand DNA oligomer containing 14 adenine and 1 guanine base.

Film characterization:

The monolayers made from the oligomers shown in Fig. 3 were investigated.

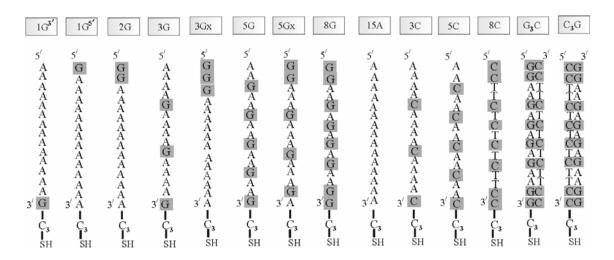


Figure 3: The oligomers that were used for making the self-assembled layer

The thickness of the monolayers made from the different oligomers is shown in Table 3.

Table 3: The thickness of different ds and ss monolayer, after 15 min. adsorption, calculated from spectroscopic ellipsometry for incidence angle $\theta = 70^{\circ}$

Sample	1G ³	1G ⁵	3 G	5G	8G	8C	15A	5C	G ₃ C
Thickness (Å) ± 2 Å	33	31	30	33	32	30	30	32	37

While the thicknesses of the layers made from single stranded oligomers are all identical within the accuracy of the measurements, the layer made from the double strand (G_3C) is clearly thicker. This finding is consistent with the double stranded DNA being more rigid, while the single strand oligomers are not completely stretched.

Density of the oligomers in the monolayer : Radioactive labeling $({}^{32}P)$:

The oligomers were radiolabeled with radioactive phosphate (32 P) and then self assembled as monolayer. The density of adsorbed molecules was quantified with phosphoimager. The results are shown in Table 4. The coverage is about the same ($\sim 1.4 \times 10^{13}$) for all the monolayers, within the error of the radioactive measurements.

Table 4: Coverage calculated from radioactive labeling for different ss and ds DNA monolayers

Sample	1G	3 G	5 G	8G	8C	15A	G _s C
$\frac{\text{molecules/cm}^2}{\times 10^{13} \pm 0.4}$	1.5	1.8	1.2	1.7	1.9	0.9	1.1

Average number of molecules is $1.4 \pm 0.4 \times 10^{13}$ molecules/cm²