Supporting Information

For
Spectrophotometric Study of Fluorescence Sensing and Selective Binding of Biochemical Substrates by $2,2^{\prime}$-Bridged $\operatorname{Bis}(\beta$-cyclodextrin) and Its Water-Soluble Fullerene Conjugate

Yu Liu,* Peng Liang, Yong Chen, Yan-Li Zhao, Fei Ding and Ao Yu

Equations to calculate the $K s$ values for the 1:2 inclusion complexation between

 host and guest.After validating the 1:2 complexation stoichiometry between host and guest by the continous variation method, the inclusion complexation of two guest molecules with a host molecule is expressed by eq 1 , and the complex stability constant ($K \mathbf{s}$) is expressed by eq 2 .

$$
\begin{gather*}
\mathrm{H}+2 \mathrm{G} \stackrel{K s}{\longleftrightarrow} \mathrm{H} \cdot 2 \mathrm{G} \tag{1}\\
K s=\frac{[H \cdot 2 G]}{[H][G]^{2}} \tag{2}
\end{gather*}
$$

where $[H],[G]$, and $[H \cdot 2 G]$ represent the equilibrium concentration of the host, the guest, and the formed complex, respectively.

The fluorescence intensity (F) is proportional to the concentration of the fluorophore (c) in dilute solution (eq 3),

$$
\begin{equation*}
F=\varepsilon_{\mathrm{F}} c \tag{3}
\end{equation*}
$$

From eq 3, we can obtain the following equations. (In this case, the host is nonfluorescent)

$$
\begin{gather*}
F_{0}=\varepsilon_{\mathrm{F}}[G]_{0} \tag{4}\\
F=\varepsilon_{\mathrm{F}}[G]+\varepsilon_{\mathrm{F}}^{\prime}[H \cdot 2 G]=\varepsilon_{\mathrm{F}}\left[[G]_{0}-2[H \cdot 2 G]\right)+\varepsilon_{\mathrm{F}}^{\prime}[H \cdot 2 G]=\varepsilon_{\mathrm{F}}[G]_{0}+\left(\varepsilon_{\mathrm{F}}^{\prime}-2 \varepsilon_{\mathrm{F}}\right)[H \cdot 2 G] \tag{5}
\end{gather*}
$$

where $[G]_{0}$ signifies the initial concentration of the guest, ε_{F} and ε_{F} ' represent the molar fluorescence intensity of the free guest and the complex.

Subtracting eq 4 from eq 5, we obtain,

$$
\begin{equation*}
\Delta F=F-F_{0}=\left(\varepsilon_{\mathrm{F}}-2 \varepsilon_{\mathrm{F}}{ }^{\prime}\right)[H \cdot 2 G]=\Delta \varepsilon_{\mathrm{F}}[H \cdot 2 G] \tag{6}
\end{equation*}
$$

where ΔF and $\Delta \varepsilon_{\mathrm{F}}$ denote the changes in the fluorescence intensity and molar fluorescence intensity of guest molecule upon complexation with host compounds.

We also have the following equations,

$$
\begin{align*}
& {[H]=[H]_{0}-[H \cdot 2 G]} \tag{7}\\
& {[G]=[G]_{0}-2[H \cdot 2 G]} \tag{8}
\end{align*}
$$

By combining eqs 2, 6, 7 and 8 , and neglecting the terms of $[H \cdot 2 G]^{2}$ and $[H \cdot 2 G]^{3}$ by similar ways to Tamaki's ${ }^{1}$ and Bender's ${ }^{2}$ treatments for spectral changes on complex formation, we can obtain eq 9,

$$
\begin{equation*}
\frac{[H]_{0}[G]_{0}^{2}}{\Delta F}=\frac{1}{\Delta \varepsilon_{F} K s}+\frac{[G]_{0}\left([G]_{0}+4[H]_{0}\right)}{\Delta \varepsilon_{F}} \tag{9}
\end{equation*}
$$

Using the approximate linear plot $\frac{[H]_{0}[G]_{0}{ }^{2}}{\Delta F}$ vs $[G]_{0}\left([G]_{0}+4[H]_{0}\right)$, the complex stability constant (Ks) of two guest molecules with a host molecule is obtained.

[^0]1967, 89, 3242-3253.

[^0]: ${ }^{1}$ Tamaki, T.; Kokubu, T.; Ichimura, K. Tetrahedron 1987, 43, 1485-1494.
 ${ }^{2}$ VanEtten, R. L.; Sebastian, J. F.; Clowes, G. A.; Bender, M. L. J. Am. Chem. Soc.

