Comparative Virtual and Experimental High-Throughput Screening for Glycogen Synthase Kinase-3 β Inhibitors

Tímea Polgár, Andrea Baki, Györgyi I. Szendrei and György M. Keserü*

Brief description of the assays used for checking promiscuous inhibitors

Asp protease assay
Inhibition of the β-secretase activity was measured by PanVera's BACE fluorescence resonance energy transfer assay kit as described in the protocol (www.invitrogen.com/content/sfs/panvera/L0724.pdf).

Glu receptor assay
Inhibition of an undisclosed metabotropic Glu receptor activity was measured in a radioligand binding assay using native rat cortical membranes. The principle of the assay is similar to that reported by Takeuchi et al. (Z. Naturforsch. 2001, 57c, 348-355).

Peptidergic GPCR assay
Inhibition of an undisclosed peptidergic GPCR activity was measured in an intracellular Ca^{2+} assay using CHO cells stably expressing the target. The principle of the assay is similar to that reported by Simpson et al. (Eur. J. Pharmacol. 2000, 392, 1-9).

Figure S1

The relationship between luminescent signal measured (RLU: relative light units) and the ATP concentration in the reaction buffer. The correlation coefficient $\left(R^{2}\right)$ is 0.9997 . Serial dilutions of ATP: 0.003; 0.01; 0.03; 0.1; 0.3; $1 ; 3 \mu \mathrm{M}$. Luminescence was recorded 10 minutes $(■)$, 20 minutes (\bullet) and 100 minutes $\left(\mathbf{\Delta) ~ a f t e r ~ a d d i n g ~ t h e ~ K i n a s e - G l o ~}{ }^{\text {TM }}\right.$ reagent.

Figure S2

ATP-luminescence standard curve. Concentrations of ATP: $0.06 ; 0.1 ; 0.3 ; 0.6 ; 1 \mu \mathrm{M}$, in the excessof substrate, 20 ng GSK- 3β in final volume of $40 \mu \mathrm{l}$ ($30^{\circ} \mathrm{C}$ and 30 minutes). Control samples were measured in the same reaction mixture and under the same reaction conditions containing no GSK-3 β. Measurements in the presensce \bullet and in the abscence $■$ GSK- 3β.

Figure S3

Determining the optimal substrate concentration. Substrate concentrations: 1; 5; 25; 50;100; $200 \mu \mathrm{M}$. The blank samples contained the same amount of substrate and ATP without GSK$3 \beta . \Delta R L U=\mid R L U_{\text {enzyme- }}-$ RLU $_{\text {blank }} \mid$

Figure S4
The optimal GSK- 3β concentration was determined in the presence of $1 \mu \mathrm{M}$ ATP and $25 \mu \mathrm{M}$ substrate. The enzyme concentration was $2 ; 5 ; 10 ; 20 ; 40 \mathrm{ng}$. The blank values contain the same amount of ATP and substrate without GSK-3 $\beta . \Delta$ RLU $=\mid \operatorname{RLU}_{\text {enyyme }}-$ RLU $_{\text {blank }} \mid$

Table S1

Inhibition\% of GSK-3 β hits (as measured at concentration indicated in parenthesis) in three different assay systems

Table S2

Enrichment factors calculated at 1, 2, 5 and 10% of the ranked database for enrichment studies and virtual screening of the corporate sublibrary

Figure S1

Figure S2

Figure S3

Figure S4

Table S1

	Inhibition \%		
	Asp protease ($30 \mu \mathrm{M}$)	Glu receptor ($10 \mu \mathrm{M}$)	Peptidergic GPCR ($5 \mu \mathrm{M}$)
Compound 1	33	<30	<30
Compound 2	< 30	56	< 30
Compound 3	< 30	< 30	< 30
Compound 4	< 30	< 30	< 30
Compound 5	< 30	< 30	< 30
Compound 6	<30	<30	<30
Compound 7	< 30	<30	<30
Compound 8	<30	< 30	< 30
Compound 9	< 30	<30	< 30
Compound 10	<30	<30	<30
Compound 11	<30	<30	<30
Compound 12	<30	<30	<30
Compound 13	<30	<30	<30
Compound 14	<30	<30	<30
Compound 15	<30	<30	<30
Compound 16	<30	<30	<30
Compound 17	<30	<30	<30
Compound 18	< 30	<30	<30
Compound 19	< 30	< 30	70
Compound 20	<30	34	<30
Compound 21	< 30	< 30	< 30

Compound 22	< 30	47	< 30
Compound 23	< 30	44	< 30
Compound 24	<30	<30	<30
Compound 25	<30	< 30	<30
Compound 26	104	44	< 30
Compound 27	< 30	< 30	< 30
Compound 28	<30	<30	< 30
Compound 29	<30	< 30	< 30
Compound 30	<30	< 30	<30
Compound 31	<30	< 30	<30
Compound 32	< 30	< 30	< 30
Compound 33	< 30	< 30	< 30
Compound 34	<30	<30	<30
Compound 35	57	<30	<30
Compound 36	< 30	<30	< 30
Compound 37	<30	42	< 30
Compound 38	<30	< 30	< 30
Compound 39	< 30	< 30	< 30
Compound 40	<30	42	<30
Compound 41	<30	< 30	<30
Compound 42	<30	< 30	<30
Compound 43	<30	< 30	< 30
Compound 44	<30	< 30	< 30
Compound 45	<30	< 30	< 30
Compound 46	<30	< 30	<30

Compound 47	< 30	< 30	< 30
Compound 48	32	< 30	<30
Compound 49	< 30	32	< 30
Compound 50	<30	33	<30
Compound 51	< 30	25	< 30
Compound 52	<30	< 30	<30
Compound 53	<30	<30	<30
Compound 54	<30	< 30	<30
Compound 55	<30	< 30	< 30
Compound 56	<30	<30	<30
Compound 57	58	< 30	< 30
Compound 58	<30	60	<30
Compound 59	<30	< 30	<30
Compound 60	<30	< 30	< 30
Compound 61	<30	< 30	< 30
Compound 62	N/A	< 30	< 30
Compound 63	N/A	< 30	< 30
Compound 64	<30	< 30	< 30
Compound 65	<30	< 30	< 30
Compound 66	<30	< 30	< 30
Compound 67	<30	< 30	< 30
Compound 68	<30	< 30	77
Compound 69	<30	< 30	76
Compound 70	<30	< 30	<30
Compound 71	<30	<30	<30

Compound 72	< 30	< 30	< 30
Compound 73	N/A	< 30	< 30
Compound 74	< 30	< 30	< 30
Compound 75	< 30	<30	< 30
Compound 76	< 30	< 30	< 30
Compound 77	< 30	< 30	<30
Compound 78	< 30	< 30	< 30
Compound 79	<30	<30	<30
Compound 80	<30	<30	<30
Compound 81	<30	<30	<30
Compound 82	<30	< 30	< 30
Compound 83	<30	<30	<30
Compound 84	< 30	< 30	< 30
Compound 85	<30	< 30	< 30
Compound 86	< 30	<30	< 30
Compound 87	<30	<30	<30
Compound 88	<30	<30	<30
Compound 89	<30	<30	<30
Compound 90	<30	<30	<30

Table S2

	1UV5-FlexX		1UV5-Phram		1Q4L-FlexX	1Q4L-Pharm	
	PMF/FlexX	FlexX/PMF	PMF/FlexX	FlexX/PMF	PMF/FlexX	FlexX/PMF	PMF/FlexX
	FlexX/PMF						
1%	5	5	28	14	9	5	9
2%	11	9	10.5	14	4.5	4.5	5
5%	6	1.5	8	7.3	4	2.8	6
10%	4	3	5	5	4.5	2	4.7

	1Q3D-FlexX		1Q3D-Phram		VS-Pharm
	PMF/FlexX	FlexX/PMF	PMF/FlexX	FlexX/PMF	PMF/FlexX
1%	5	5	19	14	23
2%	9	4.5	11.5	10	11
5%	6	2.5	5	10	5
10%	4	2.2	3.6	10	3

