Supporting Information

We note that in order to obtain the sub-cooled liquid vapor pressures used in Figure 9, the solid vapor pressure of a compound, found in the literature, can be converted to that of the sub-cooled liquid from the following equation (39).

$$
\begin{equation*}
\ln \frac{\mathrm{P}_{\mathrm{s}}^{\circ}}{\mathrm{P}_{\mathrm{L}}^{\circ}}=-\frac{\Delta \mathrm{S}_{\mathrm{fus}}\left(\mathrm{~T}_{\mathrm{M}}\right)}{\mathrm{R}}\left[\frac{\mathrm{~T}_{\mathrm{M}}}{\mathrm{~T}}-1\right] \tag{11}
\end{equation*}
$$

where $\mathrm{P}_{\mathrm{s}}^{\circ}$ is the solid vapor pressure, $\mathrm{P}^{\circ}{ }_{\mathrm{L}}$ sub-cooled liquid vapor pressure, T_{m} is the melting point, T is the temperature of interest and $\Delta_{\text {fus }} \mathrm{S}$ is the entropy of fusion.

The derivation of equation (8) from equation (6), when $\mathrm{P} \ll \mathrm{P}^{\circ}$ and $\mathrm{C}_{\mathrm{BET}} \gg 1$, is as follows

$$
\begin{equation*}
\frac{\mathrm{n}}{\mathrm{n}_{\mathrm{m}}}=\frac{\mathrm{C}_{\mathrm{BET}} \mathrm{x}}{(1-\mathrm{x})\left(1+\left(\mathrm{C}_{\mathrm{BET}}-1\right) \mathrm{x}\right)}, \mathrm{x}=\frac{\mathrm{P}}{\mathrm{P}^{\circ}} \tag{6}
\end{equation*}
$$

Equation (6) simplifies to the following

$$
\begin{equation*}
\frac{\mathrm{n}}{\mathrm{n}_{\mathrm{m}}} \cong \frac{\mathrm{C}_{\mathrm{BET}} \mathrm{X}}{1+\mathrm{C}_{\mathrm{BET}} \mathrm{X}} \tag{12}
\end{equation*}
$$

since $1-\mathrm{x} \approx 1$ and $\mathrm{C}_{\text {BET }}-1 \approx \mathrm{C}_{\text {BET }}$. Equation (12) can be reformulated as follows

$$
\begin{equation*}
\frac{\mathrm{n}}{\mathrm{n}_{\mathrm{m}}} \cong \frac{\mathrm{C}_{\mathrm{BET}} \frac{\mathrm{P}}{\mathrm{P}^{\circ}}}{1+\mathrm{C}_{\mathrm{BET}} \frac{\mathrm{P}}{\mathrm{P}^{\circ}}} \times \frac{\mathrm{P}^{\circ}}{\mathrm{P}^{\circ}} \cong \frac{\mathrm{C}_{\mathrm{BET}} \mathrm{P}}{\mathrm{P}^{\circ}+\mathrm{C}_{\mathrm{BET}} \mathrm{P}} \tag{13}
\end{equation*}
$$

and since $\frac{\mathrm{n}}{\mathrm{n}_{\mathrm{m}}}=\frac{\theta}{\theta_{\mathrm{m}}}$ we can equate (13) to the Langmuir isotherm (1) as follows

$$
\begin{equation*}
\frac{\mathrm{C}_{\mathrm{BET}} \mathrm{P}}{\mathrm{P}^{\circ}+\mathrm{C}_{\mathrm{BET}} \mathrm{P}} \cong \frac{\mathrm{KP}}{1+\mathrm{KP}} \tag{14}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
\mathrm{K} \cong \frac{\mathrm{C}_{\mathrm{BET}}}{\mathrm{P}^{\circ}} \tag{8}
\end{equation*}
$$

(39) Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry; 2 ed.; Wiley-Interscience: Hoboken, 2003.

