SUPPORTING INFORMATION

Enantioselective Synthesis of Vicinal Halohydrins *via* Dynamic Kinetic Resolution

Abel Ros, Antonio Magriz, Hansjörg Dietrich, Rosario Fernández, Eleuterio Alvarez, and José M. Lassaletta

General experimental methods. Solvents were purified and dried by standard procedures. Flash chromatography was carried out on silica-gel (0.040-0.063 mm or 0.015-0.040 mm). Melting points were recorded in a metal block and are uncorrected. ¹H NMR spectra were recorded at 300 MHz, 400 MHz or 500 MHz; ¹³C NMR spectra were recorded at 75 MHz, 100 MHz or 125 MHz with the solvent peak used as the internal reference; ¹⁹F NMR{¹H} spectra were recorded at 377 MHz with CF₃CO₂H as external reference. The diastereomeric excesses (de) of the products were determined by ¹H NMR and ¹⁹F NMR and the enantiomeric excesses (ee) by HPLC on chiral stationary phases with ¹PrOH/hexane mixtures as the eluent. Mixtures of enantiomers required as references were prepared by mixing products obtained independently with (*R*,*R*)-I and (*S*,*S*)-I. The catalysts were synthesized according to described procedures.¹

Transfer Hydrogenation of α -Halo Ketones.

Method A. To a solution of catalyst (*R*,*R*)-I or (*S*,*S*)-I (0.01 mmol) in HCO₂H/Et₃N mixture was added the α -haloketone (2 mmol) and the mixture was stirred at room temperature until

^{(1) (}a) A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, *J. Am. Chem. Soc.* **1996**, *118*, 2521-2522. (b) K. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori, *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 285-288.

completion. The reaction mixture was then diluted with CH_2CI_2 (20 mL) and washed with a satd. solution of $HNaCO_3$ (2 × 15 mL). The organic layer was dried and concentrated, and the residue was purified by flash chromatography

Method B. To a solution of the catalyst (*R*,*R*)-I or (*S*,*S*)-I (0.004-0.02 mmol), HCO₂Na (1.36 g, 20 mmol) and Bu₄NBr (2-30%) in a 1:1 H₂O/CH₂Cl₂ mixture (4-8 mL) was added the α -halo ketone (4 mmol) and the mixture was stirred at room temperature for 4-6 days. The reaction was then diluted with CH₂Cl₂ (10 mL), and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layer was dried and concentrated, and the residue was purified by flash chromatography.

Starting material, method used for the synthesis, catalyst, eluants, yields and spectral and analytical data for compounds **6-9**, **12**, **13**, and **18-21** are as follows:

(1*R*,2*S*)-2-Bromoindan-1-ol (6).

From 2-bromoindan-1-one $\mathbf{1}^2$ (845 mg, 4 mmol) and following the method **B** with (*S*,*S*)-**I** as the catalyst; flash chromatography (1:8 EtOAc-hexane) gave 715 mg (84%) of **6** (>98% de, 99% ee) as a white solid: M.p. = 109-111 °C. $[\alpha]^{20}_{D}$ +59.4 (*c* 0.8, CHCl₃) [Lit.³: (1*S*,2*R*)-**6**: $[\alpha]^{25}_{D}$ -61.0 (*c* 0.62, CHCl₃)]. ¹H NMR (400 MHz, CDCl₃) δ 2.45 (d, 1H, *J* = 9.6 Hz), 3.35 (dd, 1H, *J* = 16.8, 3.2 Hz), 3.33 (dd, 1H, *J* = 16.8, 5.2 Hz), 4.90 (m, 1H), 4.96 (dd, 1H, *J* = 9.6, 4.8 Hz), 7.23-7.45 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 40.5, 61.1, 76.6, 124.9, 125.3, 127.8, 129.0, 139.5, 141.9; mass spectrum (EI) *m/z* (rel intensity) 214 (M⁺, 5), 212 (M⁺, 5),

⁽²⁾ H. M. Meshram, P. N. Reddy, K. Sadashiv, J. S. Yaday, *Tetrahedron Lett.* 2005, 46, 623-626.

⁽³⁾ Bowers, N. I.; Boyd, D. R.; Sharma, N. D.; Goodrich, P. A.; Groocock, M. R.; Blacker, A. J.; Goode, P.; Dalton, H. *J. Chem. Soc., Perkins Trans 1*, **1999**, 1453-1461.

195 (17), 133 (100). HRMS calcd for C_9H_9OBr 213.9816 and 211.9837, found 213.9815 and 211.9832.

HPLC (Chiracel OB, 2-propanol/hexane 8:92, flow = 1 mL/min, T = 40 °C): t_R (1*S*,2*R*)-6, 7.17 min; (1*R*,2*S*)-6, 8.79 min.

(1*S*,2*R*)-2-Chloroindan-1-ol (7).

From 2-chloroindan-1-one **2** (330 mg, 2 mmol) and following the method **A** with 2:1 HCO_2H/Et_3N mixture and (*R*,*R*)-I as the catalyst; flash chromatography (1:8 EtOAc-hexane) gave 282 mg (83%) of **7** (>98% de, 99% ee) as a white solid: M.p. = 110-112 °C. $[\alpha]^{20}_D$ -51.5 (*c* 0.9, CHCl₃) [Lit.³ $[\alpha]^{25}_D$ -52.0 (*c* 0.6, CHCl₃)]. ¹H NMR (500 MHz, CDCl₃) δ 2.52 (d, 1H, *J* = 9.5 Hz), 3.25 (dd, 1H, *J* = 17.0, 3.5 Hz), 3.33 (dd, 1H, *J* = 17.0, 5.5 Hz), 4.79 (td, 1H, *J* = 5.5, 3.5 Hz), 5.14 (dd, 1H, *J* = 9.5, 5.5 Hz), 7.23-7.45 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 39.7, 66.0, 76.4, 124.7, 125.1, 127.5, 128.8, 138.9, 141.5; mass spectrum (EI) *m/z* (rel intensity) 170 (M⁺, 10), 168 (M⁺, 40), 169 (35), 167 (100). HRMS calcd for C₉H₉OCI 168.0342, found 168.0344.

HPLC (Chiracel OB, 2-propanol/hexane 10:90, flow 1 mL/min, T = 30 °C): t_R (1*S*,2*R*)-7, 7.50 min; (1*R*,2*S*)-6, 9.88 min.

(1*R*,2*S*)-2-Bromo-1,2,3,4-tetrahydro-naphthalen-1-ol (8).

From 2-bromotetral-1-one **3** (900 mg, 4 mmol) and following the modified method **B** (using 384 mg, 30% mol of Bu₄NBr) with (*S*,*S*)-I as the catalyst; flash chromatography (1:10 EtOAc-hexane) gave 580 mg (64%) of **8** (>98% de, 96% ee) as a white solid: M. p. = 98-100 °C. $[\alpha]^{20}_{D}$ +7.25 (*c* 0.8, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 2.28 (m, 1H), 2.39 (d, 1H, J = 8.0 Hz), 2.50 (m, 1H), 2.85 (dt, 1H, J = 17.2, 6.8 Hz), 3.09 (dt, 1H, J = 17.2, 6.8 Hz), 4.69 (dt, 1H, J = 8.4, 3.2 Hz), 4.78 (d, 1H, J = 8.0 Hz), 7.09-7.47 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 27.8, 28.6, 58.8, 70.4, 126.8, 128.5, 128.8, 128.9, 134.9, 136.3; mass spectrum (EI) *m/z* (rel intensity) 228 (M⁺, 4), 226 (M⁺, 4) (100), 147 (100), 129 (77). HRMS calcd for C₁₀H₁₁OBr 227.9973 and 225.9993, found 227.9966 and 225.9995.

HPLC (Chiracel OB, 2-propanol/hexane 1:99, flow 1 mL/min, T = 30 °C): t_R (1*R*,2*S*)-**8**, 23.74 min; (1*S*,2*R*)-**8** 29.46 min.

The opposite (1S,2R)-**8** enantiomer, obtained as above but using (R,R)-**I** as the catalyst, was crystallized from CH₂Cl₂-hexane and its absolute configuration was determined by single-crystal X-ray diffractometry.

(1S,2R)-2-Chloro-1,2,3,4-tetrahydro-naphthalen-1-ol (9).

From 2-chlorotetral-1-one $\mathbf{4}^2$ (360 mg, 2 mmol) and following the method **A** with 1.2:1 HCO₂H/Et₃N mixture and (*R*,*R*)-I as the catalyst; flash chromatography (1:14 EtOAc-hexane) gave 258 mg (71%) of **9** (>98% de, 99% ee) as a white solid: M. p. = 90-92 °C. $[\alpha]^{20}_{D}$ -8.2 (*c* 0.8, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.18 (dtd, 1H, *J* = 14.0, 7.0, 3.0 Hz), 2.37-2.44 (m, 2H), 2.82 (dt, 1H, *J* = 17.5, 7.0 Hz), 3.09 (dt, 1H, *J* = 17.0, 7.0 Hz), 4.53 (d, 1H, *J* = 9.0, 3.0 Hz), 4.83 (d, 1H, *J* = 3.0 Hz), 7.10-7.48 (m, 4H); ¹³C NMR (125 MHz, 125 MHz).

CDCl₃) δ 26.7, 27.6, 63.3, 70.1, 126.5, 128.2, 128.6, 128.9, 134.9, 135.8; mass spectrum (EI) *m/z* (rel intensity) 184 (M⁺, 10), 182 (M⁺, 36) (100), 167 (14), 165 (50), 129 (100). HRMS calcd for C₁₀H₁₁OCl 182.0498, found 182.0496.

HPLC (Chiracel OB, 2-propanol/hexane 10:90, flow 1 mL/min, T = 30 °C): t_R (1*S*,2*R*)-**9**, 7.60 min; (1*R*,2*S*)-**9**, 10.09 min.

(1S,2R)-2-Fluoroindan-1-ol (12).

From 2-fluoroindan-1-one **10**⁴ (300 mg, 2 mmol) and following the method **A** with 1.2:1 HCO₂H/Et₃N mixture and (*R*,*R*)-I as the catalyst; flash chromatography (1:8 EtOAc-hexane) gave 280 mg (92%) of **12** (>98% de, 92% ee) as a white solid: M.p. = 98-100 °C. $[\alpha]^{20}_{D}$ -67.4 (*c* 0.8, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.42 (d, 1H, *J* = 9.5 Hz), 3.09 (ddd, 1H, *J*_{H,F} = 34.5 Hz, *J* = 17.0, 4.5 Hz), 3.21 (dd, 1H, *J*_{H,F} = 22.5 Hz, *J* = 17.0 Hz), 5.10 (ddd, 1H, *J*_{H,F} = 18.5 Hz, *J* = 9.5, 4.5 Hz), 5.29 (dtd, 1H, *J*_{H,F} = 54.0 Hz, *J* = 4.5, 1.5 Hz), 7.23-7.47 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 36.7 (d, *J*_{C,F} = 22.0 Hz), 76.4 (*J*_{C,F} = 18.0 Hz), 94.4 (*J*_{C,F} = 180.0 Hz), 124.6, 125.2, 127.5, 128.8, 138.4, 141.6; ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -125.1; mass spectrum (EI) *m/z* (rel intensity) 152 (M⁺, 37), 151 (13), 135 (100), 91 (16). HRMS calcd for C₉H₉OF 152.0637, found 152.0632.

HPLC (Chiracel OB, 2-propanol/hexane 10:90, flow 1 mL/min, T = 30 °C): t_R (1*S*,2*R*)-**12** 8.42 min; (1*R*,2*S*)-**8**, 11.63 min.

⁽⁴⁾ S. Stayber, M. Zupan, Tetrahedron Lett. 1996, 37, 3591-3594.

(1S,2R)-2-Fluoro-1,2,3,4-tetrahydro-naphthalen-1-ol (13).

From 2-fluorotetral-1-one **11**⁴ (328 mg, 2 mmol) and following the modified method **A** with in 4 mL 1.2:1 HCO₂H/Et₃N mixture and (*R*,*R*)-I as the catalyst; flash chromatography (1:7 EtOAc-hexane) gave 325 mg (98%) of **13** (94% de, 97% ee) as a white solid: $[\alpha]^{20}_{D}$ –32.8 (*c* 1.16, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.99 (m, 1H), 2.30-2.40 (m, 2H), 2.78 (dt, 1H, *J* = 17.0, 7.5 Hz), 3.03 (dtd, 1H, *J* = 17.0, 7.5, 2.0 Hz), 4.79 (d, 1H, *J*_{H,F} = 17.5 Hz), 4.98 (ddt, 1H, *J*_{H,F} = 50.0 Hz, *J* = 9.0, 3.0 Hz), 7.09-7.52 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 24.4 (d, *J*_{C,F} = 19.9 Hz), 25.6 (d, *J*_{C,F} = 8.9 Hz), 69.0 (*J*_{C,F} = 19.0 Hz), 91.1 (*J*_{C,F} = 172.5 Hz), 126.6, 128.2, 128.4, 129.2, 135.5, 135.7; ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –121.5; mass spectrum (EI) *m/z* (rel intensity) 166 (M⁺, 14), 149 (100), 147 (45). HRMS calcd for C₁₀H₁₁OF 166.0794, found 166.0801.

HPLC (Chiracel OB, 2-propanol/hexane 10:90, flow 1 mL/min, T = 30 °C): t_R trans isomers, 6.83 min, (1*S*,2*R*)-**13** 7.66 min; (1*R*,2*S*)-**13**, 15.95 min.

(1S,2R)-2-Bromocyclopentan1-ol (18).

From 2-bromocyclopentanone $\mathbf{14}^{[2]}$ (492.0 mg, 3 mmol) and following the method **B** with (*S*,*S*)-**I** as the catalyst; flash chromatography (1:6 EtOAc-hexane) gave 400 mg (80%) of (1*S*,2*R*)-**18** (>98% de, 45% ee) as a colorless oil: $[\alpha]^{20}_{D}$ +3.9 (*c* 0.88, CHCl₃) (>98% de, 45% ee); ¹H NMR (300 MHz, CDCl₃): 1.50-2.25 (m, 7H), 3.99 (td, 1H, *J* = 3.9, 6.2 Hz), 4.28

(td, 1H, J = 3.9, 6.2 Hz).; ¹³C NMR (75 MHz, CDCl₃): 20.6, 30.5, 32.9, 60.1, 74.7; mass spectrum (CI) *m/z* (rel intensity) 166 (M⁺, 9), 164 (M⁺, 9), 149 (4), 147 (4), 85 (100). HRMS calcd for C₅H₉BrO 165.9814 and 163,9833, found 165.9816 and 163.9837.

(1S,2R)-2-clorocyclohexanol (19).

From 2-chlorocyclopentanone **15** (484 mg, 4mmol) and following the method **A** with 1.2:1 HCO_2H/Et_3N mixture and (*S*,*S*)-**I** as the catalyst; flash chromatography (1:6 EtOAc-hexane) gave 410 mg (80%) of (1*S*,2*R*)-**19** (>98% de, 60% ee) as a light brown oil: ¹H NMR (400 MHz, CDCl₃) δ 1.49-2.42 (m, 7H), 4.05-4.13 (m, 1H), 4.13-4.22 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 19.9, 30.2, 32.0, 65.7, 74.4. This compound was fully characterized as its benzoate.

(1S,2R)-2-chlorocyclopentyl benzoate [(1S,2R)-22].

To a solution of **19** (120.5 mg, 1 mmol) in CH₂Cl₂ (1 mL) was added pyridine (0.2 mL, 2.40 mmol) and benzoyl chloride (0.14 mL, 1.20 mmol). The mixture was stirred at rt for 2 h, diluted with CH₂Cl₂ (10 mL) and washed with H₂O (2 x 10 mL). The organic layer was dried, concentrated, an purified by flash chromatography (1:8 EtOAc:Hexane) to yield (1*S*,2*R*)-**22** (190 mg, 80%) as a colorless oil. $[\alpha]^{20}_{D}$ + 9.2 (*c* 1.0, CHCl₃) (>98% de, 60% ee); ¹H-RMN (300 MHz, CDCl₃): 1.60-1.80 (m, 1H), 1.95-2.32 (m, 5H), 4.40-4.55 (m, 1H), 5.25-5.40 (m, 1H), 7.43 (t, 2H, *J* = 7.5 Hz), 7.55 (t, 1H, *J* = 7.5 Hz), 8.07 (d, 2H, *J* = 7.5 Hz); ¹³C-RMN (75

MHz, CDCl₃): 21.8, 22.4, 27.8, 32.7, 60.9, 73.3, 128.7, 130.0, 130.5, 133.3, 166.0; mass spectrum (EI) m/z (rel intensity) 227 (M^+ +1, 18), 225 (58), 123 (57), 105 (100). HRMS calcd for C₁₂H₁₄CIO 225.0680, found 225.0682.

(1S,2R)-2-Bromo-ciclohexanol (20).

From 2-bromocyclohexanone **16**^[2] (531 mg, 3 mmol) and following the method **B** with (*S*,*S*)-**I** as the catalyst; flash chromatography (1:6 EtOAc-hexane) gave 450 mg (84%) of (1*S*,2*R*)-**20** (70% de, 80% ee) as a light brown oil: $[\alpha]^{20}_{D}$ –7.0 (*c* 0.5, CHCl₃) (70% de, 80% ee); ¹H NMR (400 MHz, CDCl₃): 1.22-1.42 (m, 2H), 1.55-2.00 (m, 5H), 2.05-2.25 (m, 2H), 3.60-3.75 (m, 1H), 4.40-4.55 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃): 21.6, 23.1, 31.2, 32.5, 62.2, 70.5, mass spectrum (CI) m/z (rel intensity) 179 (M⁺, 30), 177 (M⁺, 30), 161 (12), 159 (12), 99 (51), 97 (100). HRMS calcd for C₆H₁₀BrO 178,9887 and 176.9923, found 178.9894 and 176.9915.

(1S,2R)-2-bromocyclohexyl benzoate [(1S,2R)-23].

(1S,2R)-**20** (44.6 mg, 0.25 mmol) was benzoylated as described for **22** and the mixture was purified by flash chromatography (1:8 EtOAc:hexane) to yield (1S,2R)-**23** (60 mg, 85%) as a colorless oil: $[\alpha]^{20}_{D}$ –5.8 (*c* 0.4, CHCl₃) (92% de, 80% ee); ¹H NMR (400 MHz, CDCl₃): 1.40-1.60 (m, 2H), 1.68-1.90 (m, 3H),1.98-2.15 (m, 2H), 2.17-2.32 (m, 1H), 4.50-4.60 (m, 1H), 5.05-5.15 (m, 1H), 7.44 (t, 2H, *J* = 7.4 Hz), 7.56 (t, 1H, *J* = 7.4 Hz), 8.08 (d, 2H, *J* = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃): 22.2, 22.5, 28.3, 33.1, 54.5, 73.0, 128.4, 129.8, 130.2,

133.1, 165.7; mass spectrum (CI) m/z (rel intensity) 286 (M⁺+1, 16), 285 (93), 284 (18), 283 (93), 203 (19), 123 (100). HRMS calcd for C₁₃H₁₆BrO 285.0293, found 285.0313.

HPLC (Chiralcel OJ, 2-propanol/hexane 1:99, flow 0.5 mL/min, T = 30 °C): $t_R (1S, 2R)$ -23, 16.38 min; (1*R*,2*S*)-23, 19.86.

(1R,2S)-2-chloro-cyclohexanol [(1R,2S)-21].

From 2-chlorocyclohexanone **17** (535 mg, 4 mmol) and following the method **A** with 1.2:1 HCO_2H/Et_3N mixture and (*R*,*R*)-I as the catalyst; flash chromatography (1:6 EtOAc-hexane) gave 431 mg (79%) of (1*R*,2*S*)-**21** (78% de, 90% ee) as a light brown oil: $[\alpha]^{20}_D$ +4.5 (*c* 0.2, CHCI₃) (86% de, 90% ee); ¹H NMR (500 MHz, CDCI₃): 1.22-1.42 (m, 2H), 1.55-1.83 (m, 5H), 1.97-2.08 (m, 1H), 3.75-3.83 (m, 1H), 4.22-4.31 (m, 1H); ¹³C NMR (125 MHz, CDCI₃): 21.7, 22.4, 30.8, 32.0, 66.2, 70.7. HRMS calcd for C₆H₁₁CIO 134.0497, found 134.0498.

(1R,2S)-2-chlorocyclohexyl benzoate [(1R,2S)-24].

(1R,2S)-**21** (134.5 mg, 1 mmol) was benzoylated as described for **22** and the mixture was purified by flash chromatography (1:8 EtOAc:hexane) to yield (1R,2S)-**24** (190 mg, 79.7%) as a colorless oil: $[\alpha]^{20}_{D}$ + 6.0 (*c* 0.5, CHCl₃) (86% de, 90% ee); ¹H NMr (300 MHz, CDCl₃): 1.45-1.60 (m, 2H), 1.61-2.20 (m, 6H), 4.34-4.47 (m, 1H), 5.16-5.30 (m, 1H), 7.46 (t, 2H, *J* = 7.4 Hz), 7.55 (t, 1H, *J* = 7.4 Hz), 8.07 (d, 2H, *J* = 7.4 Hz); ¹³C NMR (75 MHz, CDCl₃): 21.8, 22.4, 27.8, 32.7, 60.9, 73.3, 128.7, 130.0, 130.5, 133.3, 166.0; mass spectrum (CI) m/z (rel

intensity) 239.(M^+ +1, 3), 203 (4), 225 (58), 123 (58), 105 (100). HRMS calcd for C₁₃H₁₆ClO₂ 239.0817, found 239.0838.

HPLC (Chiralcel OJ, 2-propanol/hexane 0.5:99.5, flow 0.5 mL/ min, T = 30 °C): t_R (1*S*,2*R*)-**24**, 18.45 min; (1*R*,2*S*)-**24**, 21.77 min.