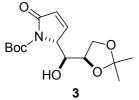

New Enantioselective Entry to Cycloheptane Amino Acid Polyols

Claudio Curti, Franca Zanardi, Lucia Battistini, Andrea Sartori, Gloria Rassu, Luciana Auzzas, Annamaria Roggio, Luigi Pinna, and Giovanni Casiraghi*

giovanni.casiraghi@unipr.it


SUPPORTING INFORMATION

Title Page and Table of Contents	S 1
General Experimental Procedures	S2
Materials	S2
Experimental Procedures and Spectroscopic data for compounds 4, 8-10, 14-19, 22-30	S2
References	S11
Copies of ¹ H NMR spectra (600 MHz, CDCl ₃ or D ₂ O) of compounds 5, 12-14, 20-21	S12

General Experimental Procedures. All organic solvents were dried and freshly distilled before use according to literature procedures. All moisture sensitive reactions were carried out under a positive pressure of nitrogen or argon. TLC analysis was performed on silica gel 60 F₂₅₄ plates with visualization under short-wavelength UV light or by dipping the plates with molybdate reagent (aqueous H₂SO₄ solution of cerium sulfate/ammonium molybdate) followed by heating. Flash chromatography was performed on 40-63 µm silica gel using the indicated solvent mixtures. Melting points were determined with an optical thermomicroscope and are uncorrected. Optical rotations were measured at ambient temperature using a 100-mm cell with a 1-mL capacity and are given in units of 10⁻¹ deg cm² g⁻¹. ¹H and ¹³C NMR spectra were recorded at 300/75 MHz or 600/150 MHz. Chemical shifts (δ) are given in parts per million (ppm) using chloroform-d (CHCl₃ $\delta_{\rm H}$ 7.26, CDCl₃ $\delta_{\rm C}$ 77.0), or deuterium oxide (DOH $\delta_{\rm H}$ 4.75) as internal references. High-resolution mass spectrometry (HRMS) measurements were performed on a mass spectrometer equipped with an external electrospray ion source.

Materials. N-(tert-Butyloxycarbonyl)-2-[(tert-butyldimethylsilyl)oxy]pyrrole (1) was prepared from pyrrole according to a described protocol.¹ 2,3-O-Isopropylidene-D-glyceraldehyde (R-2) was prepared from D-mannitol according to a recently optimized protocol.² The preparation of 2,3-Oisopropylidene-L-glyceraldehyde (S-2) was carried out starting from 5,6-O-isopropylidene-L-gulonic acid 1,4-lactone following a known protocol.³ A samarium (II) iodide solution in THF was prepared as follows: samarium metal powder (0.15 g, 1.0 mmol) freshly obtained from an ingot of 99.9% pure samarium was added under a flow of argon to an oven-dried round-bottom flask containing a magnetic stirring bar and a septum inlet. The flask and the samarium had been flame-dried and cooled under a stream of argon. Anhydrous and deoxygenated THF (10 mL) was added and the resulting heterogeneous mixture was vigorously stirred and cooled to 0 °C. Neat diiodomethane (228 mg, 0.85 mmol) was added and the resulting dark green slurry was stirred at the same temperature for 15 min, then allowed to warm to 25 °C and vigorously stirred for an additional hour. The persistent deep blue solution of SmI₂ was

titrated by a 0.1 M solution of iodine in THF and resulted to be 0.06 M.

(1'S,2R,4"R)-2-[(2,2-Dimethyl-[1,3]dioxolan-4-yl)hydroxymethyl]-5-oxo-2,5dihydro-1*H*-pyrrole-1-carboxylic Acid *tert*-Butyl Ester (3). Typical **Procedure.**⁴ To a stirring solution of silyloxypyrrole **1** (700 mg, 2.35 mmol) in anhydrous Et₂O (20 mL) under argon atmosphere at -90 °C was added an ether

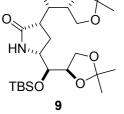
solution of aldehyde (R)-2 (367 mg, 2.82 mmol dissolved in 8 mL of Et₂O). The resulting mixture was allowed to cool to -90 °C for 10 min, then SnCl₄ (3.06 mL of a 1.0 M solution in CH₂Cl₂, 3.06 mmol) was slowly added dropwise to the mixture at the same temperature over a period of 30 min. After 3 h, the reaction mixture was quenched at -90 °C with saturated aqueous NaHCO₃ (10 mL) and solid NaHCO₃ (1.0 g) and temperature was allowed to reach ambient value (20 °C). Further portions of solid NaHCO₃ were added until neutral pH was achieved. The mixture was concentrated under vacuum to remove the ethereal phase. The water mixture was washed with hexanes (2 × 15 mL), and then extracted with EtOAc (3 × 15 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuum to give a solid crude residue which was crystallized from EtOAc/hexane to give unsaturated lactam **3** (604 mg, 82%, de> 98%) as a white solid: mp 138-140 °C; $[\alpha]_D^{20}$ +197.6 (*c* 0.8, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.43 (dd, *J* = 6.3, 2.1 Hz, 1H), 6.13 (dd, *J* = 6.3, 1.5 Hz, 1H), 4.81 (dt, *J* = 5.7, 2.4 Hz, 1H), 4.09 (ddd, *J* = 6.0, 5.7, 3.9 Hz, 1H), 4.01 (q, *J* = 6.0 Hz, 1H), 3.94 (dd, *J* = 8.1, 6.0 Hz, 1H), 3.63 (d, *J* = 3.9 Hz, 1H), 1.57 (s, 9H), 1.37 (s, 3H), 1.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 150.9, 148.2, 126.9, 109.2, 83.8, 75.6, 72.6, 66.4, 65.6, 28.0 (3C), 26.4, 25.1. Anal. Calcd for C₁₅H₂₃NO₆: C, 57.50; H, 7.40; N, 4.47. Found: C, 57.31; H, 7.35; N, 4.32.

Boc Null O TMSO 4 Uns

(1'S,2R,4"R)-2-[(2,2-Dimethyl-[1,3]dioxolan-4-

yl)(trimethylsilanyloxy)methyl]-5-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylic Acid *tert*-Butyl Ester (4). Typical Procedure. To a stirring solution of unsaturated lactam **3** (604 mg, 1.93 mmol) in pyridine (5 mL), cooled to 0 °C under argon atmosphere, trimethylsilyl chloride (TMSCl, 0.49 mL, 3.85 mmol)

was added dropwise, and the resulting mixture was allowed to reach ambient value (20 °C). After 30 min, the reaction was quenched with distilled water and extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure to leave a crude product which was purified by silica gel flash chromatography (EtOAc/hexanes 6:4). Protected lactam **4** (729 mg, 98%) was obtained as a glassy solid: $[\alpha]_D^{20}$ +168.9 (*c* 6.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.23 (dd, *J* = 6.2, 2.1 Hz, 1H), 6.12 (dd, *J* = 6.2, 1.7 Hz, 1H), 4.58 (dt, *J* = 4.8, 1.8 Hz, 1H), 4.50 (t, *J* = 5.1 Hz, 1H), 3.6-3.8 (m, 3H), 1.51 (s, 9H), 1.28 (s, 3H), 1.18 (s, 3H), 0.16 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 149.4, 147.5, 128.3, 109.2, 83.1, 74.9, 71.2, 66.2, 65.3, 28.3 (3C), 26.4, 25.1, 0.3 (3C). Anal. Calcd for C₁₈H₃₁NO₆Si: C, 56.08; H, 8.10; N, 3.63. Found: C, 56.11; H, 8.16; N, 3.53.

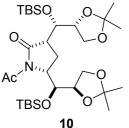

HO O Boc N''' HO O (15 8

(1'S,1^{III}S,3S,4^{II}R,4^{IV}R,5R)-3,5-Bis[(2,2-dimethyl-[1,3]dioxolan-4-

yl)hydroxymethyl]-2-oxopyrrolidine-1-carboxylic Acid *tert*-Butyl Ester (8). Typical Procedure. To a solution of lactam 7 (280 mg, 0.54 mmol) in methanol (15 mL), solid citric acid (311 mg, 1.62 mmol) was added and the resulting mixture was allowed to stir at room temperature for 6 h, while further portions of citric acid (6 × 311 mg, 9.72 mmol) were added. The reaction mixture was then diluted with water and treated with saturated aqueous NaHCO₃ solution. Extraction with EtOAc (3 × 10 mL), drying over MgSO₄ and concentration under reduced pressure afforded a crude residue which was purified by silica gel flash chromatography (EtOAc/hexanes 75:25). Pure diol **8** was obtained (228 mg, 95%) as a white solid: mp 125-130 °C; $[\alpha]_D^{20}$ +10.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 4.89 (bs, 1H, OH), 4.37 (ddd, J = 9.6, 5.0, 2.5 Hz, 1H, H5), 4.35 (bs, 1H, OH), 4.0-4.2 (m, 4H, H5^{*u*}a, H1^{*t*}, H5^{*u*}a, H5^{*t*}b), 3.99 (m, 1H, H4^{*u*}), 3.90 (m, 2H, H5^{*t*}b, H4^{*u*}), 3.73 (bt, J = 6.1 Hz, 1H, H1^{*t*}), 2.98 (ddd, J = 12.1, 4.4, 1.5 Hz, 1H, H3), 2.32 (ddd, J = 13.8, 12.4, 9.9 Hz, 1H, H4a), 2.03 (ddd, J = 13.9, 4.4, 2.8 Hz, 1H, H4b), 1.47 (s, 9H, Boc), 1.41 (s, 3H, Me), 1.39 (s, 3H, Me), 1.33 (s, 3H, Me), 1.32 (s, 3H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 177.2 (C2), 150.8 (Boc), 109.6 (CMe₂), 109.3 (CMe₂), 83.6 (Boc), 76.9, 76.4, 76.3, 70.9 (C4^{*u*}, C1^{*t*}, C4^{*u*}, C1^{*t*}), 67.5, 67.4 (C5^{*t*}, C5^{*t*}V), 58.0 (C5), 45.6 (C3), 27.8 (3C, Boc), 26.9 (Me), 26.7 (Me), 25.4 (Me), 25.3 (Me), 21.2 (C4). Anal. Calcd for C₂₁H₃₅NO₉: C, 56.62; H, 7.92; N, 3.14. Found: C, 56.74; H,

8.02; N, 2.99.

(1'S,1^{III}S,3S,4^{II}R,4^{IV}R,5R)-3,5-Bis[(tert-butyldimethylsilanyloxy)(2,2-

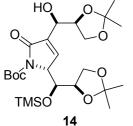


TBSO

dimethyl-[1,3]dioxolan-4-yl)methyl]pyrrolidin-2-one (9). Typical Procedure. Deprotected lactam 8 (228 mg, 0.51 mmol) was dissolved in anhydrous CH_2Cl_2 (10 mL) at ambient temperature under argon and 2,6-lutidine (365 μ L, 3.06 mmol) and *tert*-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf, 234 μ L, 1.0 mmol)

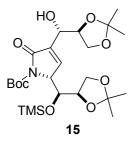
were sequentially added under stirring. After 2 h, the reaction mixture was quenched with saturated NH₄Cl solution, diluted with distilled water and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to furnish a crude product which was dissolved in 30 mL of acetonitrile, warmed to 80 °C, and the resulting mixture was treated with ammonium cerium (IV) nitrate (CAN, 56 mg, 0.10 mmol). After 3 h, the reaction was quenched with 10% aqueous Na₂S₂O₃ solution and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure furnishing a crude residue which was purified by silica gel flash chromatography (EtOAc/hexanes 1:1). *N*-deprotected lactam **9** (234 mg, 80%) was recovered as a white solid: mp 108-112 °C; $[\alpha]_{D}^{20}$ –4.8 (*c* 5.3, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 5.63 (s, 1H), 4.25 (d, *J* = 7.8 Hz, 1H), 4.09 (m, 2H), 3.92 (m, 2H), 3.83 (m, 2H), 3.70 (dd, *J* = 8.4, 3.6 Hz, 1H), 3.43 (td, *J* = 9.0, 6.6 Hz, 1H), 2.87 (dd, *J* = 10.2, 9.6 Hz, 1H), 2.11 (ddd, *J* = 12.6, 8.4, 7.2 Hz, 1H), 2.05 (td, *J* = 12.0, 10.2 Hz, 1H), 1.45 (s, 3H), 1.42 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 0.93 (s, 9H), 0.88 (s, 9H), 0.15 (s, 9H), 0.09 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.8, 109.3, 109.0, 77.3, 76.3, 76.0, 70.8, 67.9, 64.6, 55.9, 45.3, 26.7, 26.4, 26.0 (3C), 25.9 (3C), 25.4, 25.1,

23.5, 18.3, 18.4, -3.9 (2C), -4.0, -4.9. Anal. Calcd for C₂₈H₅₅NO₇Si₂: C, 58.60; H, 9.66; N, 2.44. Found: C, 58.54; H, 9.59; N, 2.35.

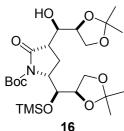

(1'S,1"'S,3S,4"R,4"VR,5R)-1-Acetyl-3,5-bis[(tert-

butyldimethylsilanyloxy)(2,2-dimethyl-[1,3]dioxolan-4-yl)methyl]pyrrolidin-

2-one (10). Typical Procedure. To a stirring solution of lactam 9 (234 mg, 0.41
mmol) in acetonitrile (20 mL) under argon, Et₃N (114 μL, 0.82 mmol), acetic anhydride (39 μL, 0.41 mmol), and 4-dimethylaminopyridine (DMAP, 100 mg,

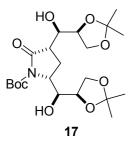

0.82 mmol) were sequentially added. The resulting mixture was warmed to 70 °C and further portions of Et₃N (3 \times 114 µL, 2.46 mmol), acetic anhydride (3 \times 39 µL, 1.23 mmol), and DMAP (3 \times 100 mg, 2.46 mmol) were added. After 24 h, the reaction mixture was quenched with saturated NH₄Cl solution, diluted with distilled water and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. After flash chromatographic purification (EtOAc/hexanes 1:4) pure acetylated lactam 10 was recovered (225 mg, 89%) as a glassy solid: ¹H NMR (600 MHz, CDCl₃) δ 4.62 (dd, J = 8.4, 4.8 Hz, 1H, H1^{III}), 4.30 (m, 2H, H1^I, H5), 4.10 (m, 2H, H5''a, H4''), 4.02 (dd, J = 9.0, 6.6 Hz, 1H, H5''a), 3.95 (dt, J = 7.8, 5.4 Hz, 1H, H4''), 3.91 (m, 2H, H5''b, $H5^{\prime\prime}b$), 2.93 (ddd, J = 11.4, 9.6, 1.2 Hz, 1H, H3), 2.47 (s, 3H, Ac), 2.16 (td, J = 12.6, 10.2 Hz, 1H, H4a), 2.02 (ddd, J = 13.8, 10.2, 8.4 Hz, 1H, H4b), 1.44 (s, 3H, Me), 1.37(s, 3H, Me), 1.31 (s, 3H, Me), 1.30 (s, 3H, Me), 1.30 (s, 3H, Me), 1.31 (s, 3H, Me), 1.31 (s, 3H, Me), 1.30 (s, 3H, Me), 1.31 (s, 3H, Me), 1.31 (s, 3H, Me), 1.30 (s, 3H, ME), 1.3H, Me), 0.93 (s, 9H, TBS), 0.91 (s, 9H, TBS), 0.21 (s, 3H, TBS), 0.19 (s, 3H, TBS), 0.18 (s, 3H, TBS), 0.08 (s, 3H, TBS); ¹³C NMR (150 MHz, CDCl₃) δ176.2 (C2), 173.0 (Ac), 109.5 (CMe₂), 109.3 (CMe₂), 76.9 (C4"), 73.8 (C4"), 70.8 (C1'), 69.8 (C1"), 67.2 (2C, C5", C5"), 57.2 (C5), 45.5 (C3), 26.8 (Me), 26.0 (Me), 25.9 (3C, TBS), 25.8 (Ac), 25.7 (3C, TBS), 25.6 (Me), 25.2 (Me), 18.3 (TBS), 17.9 (TBS), 16.4 (C4), -3.7 (TBS), -4.2 (TBS), -4.9 (TBS), -5.2 (TBS). Anal. Calcd for C₃₀H₅₇NO₈Si₂: C, 58.50; H, 9.33; N, 2.27. Found: C, 58.44; H, 9.25; N, 2.20.

(1'R,1'''S,4''S,4''R,5R)-3-[(2,2-Dimethyl-[1,3]dioxolan-4-yl)hydroxymethyl]-5-[(2,2-dimethyl-[1,3]dioxolan-4-yl)(trimethylsilanyloxy)methyl]-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylic Acid*tert*-Butyl Ester (14) and (1'S,1''S,4''S,4''R,5R)-3-[(2,2-Dimethyl-[1,3]dioxolan-4yl)hydroxymethyl]-5-[(2,2-dimethyl-[1,3]dioxolan-4-yl)(trimethylsilanyloxy)methyl]-2-oxo-2,5dihydro-1*H*-pyrrole-1-carboxylic Acid*tert*-Butyl Ester (15). The title compounds were preparedfrom butenolide 4 (364 mg, 0.94 mmol) and L-gliceraldehyde (S)-2 (245 mg, 1.88 mmol) according tothe typical procedure described for 5 and 6. After flash chromatographic purification (EtOAc/hexanes35:65), adducts 14 (300 mg, 62%) and 15 (78 mg, 16%) were recovered in 78% combined yield.



Compound 14: a colorless oil, $[\alpha]_D^{20}$ +75.3 (*c* 2.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.28 (dd, *J* = 2.4, 1.8 Hz, 1H, H4), 4.64 (ddt, *J* = 5.4, 4.2, 1.8 Hz, 1H, H1'), 4.62 (dt, *J* = 4.2, 1.8 Hz, 1H, H5), 4.58 (bq, *J* = 6.0 Hz, 1H, H4''), 4.48 (dd, *J* = 7.2, 4.2 Hz, 1H, H1''), 3.99 (dd, *J* = 7.8, 6.6 Hz, 1H, H5''a), 3.94 (dd, *J* =

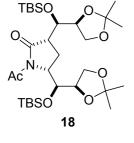
14 8.4, 6.0 Hz, 1H, H5^{*u*}b), 3.92 (dd, J = 8.4, 6.6 Hz, 1H, H5^{*u*}a), 3.75 (dd, J = 7.8, 6.0 Hz, 1H, H5^{*u*}b), 3.71 (dt, J = 7.2, 6.0 Hz, 1H, H4^{*u*}), 3.07 (d, J = 4.2 Hz, 1H, OH), 1.60 (s, 9H, Boc), 1.49 (s, 3H, Me), 1.39 (s, 3H, Me), 1.36 (s, 3H, Me), 1.27 (s, 3H, Me), 0.25 (s, 9H, TMS); ¹³C NMR (75 MHz, CDCl₃) δ 168.2 (C2), 149.4 (Boc), 142.0 (C4), 138.3 (C3), 109.7 (*C*Me₂), 109.5 (*C*Me₂), 83.2 (Boc), 75.9, 75.6 (C4^{*u*}, C4^{*u*}), 71.2 (C1^{*u*}), 67.3, 67.1 (C1^{*i*}, C5), 64.8, 64.0 (C5^{*u*}, C5^{*u*}), 28.2 (3C, Boc), 25.2 (Me), 25.1 (Me), 25.0 (Me), 24.9 (Me), 0.2 (3C, TMS). Anal. Calcd for C₂₄H₄₁NO₉Si: C, 55.90; H, 8.01; N, 2.72. Found: C, 55.78; H, 8.07; N, 2.84.


Compound 15: a colorless oil, $[\alpha]_D^{20}$ +70.8 (*c* 1.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.22 (bs, 1H), 4.58 (m, 1H), 4.46 (m, 3H), 4.0-4.2 (m, 3H), 3.92 (m, 1H), 3.71 (m, 1H), 2.98 (bs, 1H), 1.56 (s, 9H), 1.48 (s, 3H), 1.43 (s, 3H), 1.32 (s, 3H), 1.23 (s, 3H), 0.2 (s, 9H). Anal. Calcd for C₂₄H₄₁NO₉Si: C, 55.90; H, 8.01; N, 2.72. Found: C, 56.01; H, 8.05; N, 2.62.

(1'*R*,1^{*m*}*S*,3*S*,4^{*n*}*S*,4^{*n*}*R*,5*R*)-3-[(2,2-Dimethyl-[1,3]dioxolan-4yl)hydroxylmethyl]-5-[(2,2-dimethyl-[1,3]dioxolan-4-

yl)(trimethylsilanyloxy)methyl]-2-oxopyrrolidine-1-carboxylic Acid *tert*-Butyl Ester (16). The title compound was prepared from 14 (300 mg, 0.58 mmol) according to the typical procedure described for lactam 7. After flash

chromatographic purification (EtOAc/hexanes 6:4), compound **16** was obtained (294 mg, 98%) as a glassy solid: $[\alpha]_D^{20}$ +25.7 (*c* 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 4.27 (dd, *J* = 7.2, 4.2 Hz, 1H, H1^{*W*}), 4.24 (d, *J* = 3.6 Hz, 1H, OH), 4.18 (dt, *J* = 7.8, 6.0 Hz, 1H, H4^{*W*}), 4.15 (ddd, *J* = 9.0, 6.6, 4.2 Hz, 1H, H5), 4.11 (dd, *J* = 9.0, 6.0 Hz, 1H, H5^{*W*}a), 4.09 (q, *J* = 7.2 Hz, 1H, H4^{*W*}), 4.03 (dd, *J* = 7.8, 6.0 Hz, 1H, H5^{*N*}a), 4.01 (dd, *J* = 9.0, 5.4 Hz, 1H, H5^{*W*}b), 3.74 (dd, *J* = 7.8, 6.6 Hz, 1H, H5^{*N*}b), 3.69 (td, *J* = 7.2, 3.0 Hz, 1H, H1^{*I*}), 2.72 (ddd, *J* = 10.8, 9.0, 7.2 Hz, 1H, H3), 2.25 (ddd, *J* = 14.4, 11.4, 9.0 Hz, 1H, H4a), 2.02 (ddd, *J* = 14.4, 9.0, 6.6 Hz, 1H, H4b), 1.53 (s, 9H, Boc), 1.40 (s, 3H, Me), 1.34 (s, 3H, Me), 1.32 (s, 3H, Me), 1.28 (s, 3H, Me), 0.15 (s, 9H, TMS); ¹³C NMR (75 MHz, CDCl₃) δ 176.1 (C2), 149.8 (Boc), 109.5 (*C*Me₂), 109.4 (*C*Me₂), 83.2 (Boc), 77.9, 74.7, 73.6, 71.8 (C4^{*W*}, C1^{*I*}, C4^{*W*}, C1^{*M*}), 67.7, 67.2 (C5^{*W*}), 58.4 (C5), 45.0 (C3), 28.1 (3C, Boc), 26.6 (Me), 26.3 (Me), 25.3 (Me), 25.2 (Me), 20.8 (C4), 0.3 (3C, TMS). Anal. Calcd for C₂₄H₄₃NO₉Si: C, 55.68; H, 8.37; N, 2.71. Found: C, 55.83; H, 8.21; N, 2.62.



(1^{*I*}*R*,1^{*III}<i>S*,3*S*,4^{*IV*}*R*,5*R*)-3,5-Bis[(2,2-dimethyl-[1,3]dioxolan-4-</sup>

yl)hydroxymethyl]-2-oxopyrrolidine-1-carboxylic Acid *tert*-Butyl Ester (17). The title compound was prepared from lactam 16 (294 mg, 0.57 mmol) according to the procedure described for 8. After flash chromatographic purification (EtOAc/hexanes 7:3), lactam 17 was obtained (229 mg, 90%) as a light white solid: $[\alpha]_D^{20}$ +23.7 (*c* 1.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 4.2-4.4 (m, 3H),

4.0-4.2 (m, 3H), 3.9-4.0 (m, 3H), 3.78 (m, 1H), 3.70 (dd, J = 7.2, 4.8 Hz, 1H), 2.88 (dt, J = 11.1, 5.7 Hz, 1H), 2.49 (ddd, J = 14.1, 11.4, 9.3 Hz, 1H), 2.06 (ddd, J = 14.1, 6.0, 4.8 Hz, 1H), 1.54 (s, 9H), 1.41 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 151.4, 109.4, 109.3, 83.8, 76.7, 76.6, 75.6, 74.4, 67.3, 67.2, 58.6, 45.1, 27.9 (3C), 26.7, 26.5, 25.3, 25.2, 25.1. Anal. Calcd for C₂₁H₃₅NO₉: C, 56.62; H, 7.92; N, 3.14. Found: C, 56.70; H, 7.99; N, 3.02.

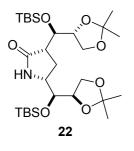
(1'R,1[#]S,3S,4[#]S,4¹VR,5R)-1-Acetyl-3,5-bis[(*tert*-

2-one (18). The title compound was prepared from **17** (229 mg, 0.51 mmol) by adopting the two-step typical procedure to **10**. After flash chromatographic purification (EtOAc/hexanes 1:4), protected lactam **18** was recovered (242 mg, 77%) as a glassy solid: $[\alpha]_{578}^{20}$ +26.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃)

butyldimethylsilanyloxy)(2,2-dimethyl-[1,3]dioxolan-4-yl)methyl|pyrrolidin-

 δ 4.63 (dd, *J* = 7.5, 4.8 Hz, 1H), 4.1-4.3 (m, 5H), 4.02 (dd, *J* = 8.3, 6.5 Hz, 1H), 3.92 (m, 1H), 3.89 (dd, *J* = 8.3, 6.6 Hz, 1H), 2.73 (ddd, *J* = 12.0, 10.2, 2.4 Hz, 1H), 2.43 (s, 3H), 2.04 (m, 2H), 1.38 (s, 3H), 1.32 (s, 6H), 1.29 (s, 3H), 0.92 (s, 9H), 0.89 (s, 9H), 0.18 (s, 3H), 0.16 (s, 3H), 0.14 (s, 3H), 0.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) *δ* 174.5, 173.1, 109.7, 109.1, 75.9, 74.1, 72.9, 70.1, 67.9, 67.0, 56.9, 47.8, 26.0, 25.9, 25.8 (2C), 25.7 (3C), 25.6 (3C), 25.1, 18.5, 18.0, 17.9, -4.3, -4.4, -4.6, -4.9. Anal.

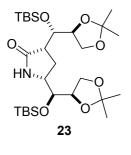
Calcd for $C_{30}H_{57}NO_8Si_2$: C, 58.50; H, 9.33; N, 2.27. Found: C, 58.37; H, 9.39; N, 2.38.


TBSO O Ac TBSO 19

(2S,2'R,2"R,4"S)-2,2'-(1-Acetyl-5-oxopyrrolidine-2,4-diyl)bis(tert-

butyldimethylsilanyloxyacetaldehyde) (19). The title compound was prepared from lactam **18** (242 mg, 0.39 mmol) according to the typical procedure described for compound **11**. Aldehyde **19** was obtained (170 mg, 94%) as a colorless oil: $[\alpha]_{578}^{20}$

+52.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.86 (s, 1H, H1), 9.52 (s, 1H, H1'), 4.27 (m, 3H, H2', H2, H2"), 3.17 (ddd, J = 12.6, 9.0, 3.5 Hz, 1H, H4"), 2.50 (s, 3H, Ac), 2.28 (ddd, J = 12.6, 9.0, 6.9 Hz, 1H, H3"a), 1.90 (td, J = 12.4, 10.2 Hz, 1H, H3"b), 0.95 (s, 9H, TBS), 0.93 (s, 9H, TBS), 0.14 (s, 3H, TBS), 0.13 (s, 3H, TBS), 0.11 (s, 6H, TBS); ¹³C NMR (75 MHz, CDCl₃) δ 203.5, 201.6, 173.4, 172.4,


75.5 (2C), 57.9, 48.2, 25.8 (3C), 25.6 (3C), 25.2, 23.6, 18.2, 17.9, -4.5, -4.7, -4.8, -4.9. Anal. Calcd for C₂₂H₄₁NO₆Si₂: C, 56.01; H, 8.76; N, 2.97. Found: C, 55.93; H, 8.65; N, 3.08.

(1'R,1^{III}S,3S,4^{II}R,4^{IV}R,5R)-3,5-Bis[(tert-butyldimethylsilanyloxy)(2,2-

dimethyl-[1,3]dioxolan-4-yl)methyl]pyrrolidin-2-one (22). The title compound was prepared from 6 (92 mg, 0.18 mmol) by adopting the three-step typical procedure described for 9. After flash chromatographic purification (EtOAc/hexanes 1:1), lactam 22 was recovered (91 mg, 88%) as a glassy solid: ¹H NMR (600 MHz, CDCl₃) δ 5.69 (bs, 1H, NH), 4.54 (dt, J = 7.8, 6.0 Hz, 1H, H4″),

4.07 (dd, J = 7.8, 6.6 Hz, 1H, H5^{*u*}a), 4.05 (m, 1H, H4^{*u*}), 3.98 (t, J = 7.2 Hz, 1H, H5^{*u*}a), 3.93 (dd, J = 5.4, 3.6 Hz, 1H, H1^{*i*}), 3.85 (t, J = 7.8 Hz, 1H, H5^{*u*}b), 3.78 (dd, J = 8.4, 4.2 Hz, 1H, H1^{*u*}), 3.68 (t, J = 7.8 Hz, 1H, H5^{*u*}b), 3.46 (q, J = 8.4 Hz, 1H, H5), 2.64 (td, J = 9.6, 3.6 Hz, 1H, H3), 2.27 (m, 1H, H4a), 2.19 (m, 1H, H4b), 1.43 (s, 6H, Me), 1.38 (s, 3H, Me), 1.36 (s, 3H, Me), 0.94 (s, 9H, TBS), 0.93 (s, 9H, TBS), 0.16 (s, 3H, TBS), 0.15 (s, 3H, TBS), 0.14 (s, 3H, TBS), 0.13 (s, 3H, TBS); ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 109.2, 109.1, 77.3, 76.6, 76.0, 71.9, 66.2, 65.4, 55.8, 46.2, 26.6, 26.5, 26.4, 26.0 (3C), 25.9 (3C), 25.8, 25.3, 18.3, 18.1, -3.9, -4.0, -4.2, -4.7. Anal. Calcd for C₂₈H₅₅NO₇Si₂: C, 58.60; H, 9.66; N, 2.44. Found: C, 58.71; H, 9.80; N, 2.31.

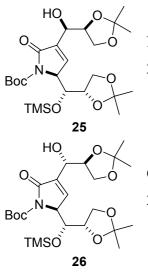
(1'S,1^{III}S,3S,4^{II}S,4^{IV}R,5R)-3,5-Bis[(tert-butyldimethylsilanyloxy)(2,2-

dimethyl-[1,3]dioxolan-4-yl)methyl]pyrrolidin-2-one (23). The title compound was prepared from 15 (78 mg, 0.15 mmol) in three steps according to the typical procedures described for 9. After flash chromatographic purification (EtOAc/hexanes 1:1), lactam 23 was obtained (77 mg, 90%) as a glassy solid: $[\alpha]_D^{20}$ –14.5 (*c* 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.66 (bs, 1H, NH), 4.33

(dd, J = 6.8, 1.2 Hz, 1H, H1^{*t*}), 4.06 (td, J = 6.2, 3.8 Hz, 1H, H4^{*t*}), 4.02 (q, J = 6.7 Hz, 1H, H4^{*t*}), 3.96 (m, 2H, H5^{*t*}a, H5^{*t*}b), 3.90 (t, J = 7.7 Hz, 1H, H5^{*t*}a), 3.71 (t, J = 7.0 Hz, 1H, H5^{*t*}b), 3.69 (dd, J = 8.9, 4.0 Hz, 1H, H1^{*t*}), 3.42 (td, J = 9.2, 6.8 Hz, 1H, H5), 2.42 (ddd, J = 10.4, 9.4, 1.0 Hz, 1H, H3), 2.0-2.2 (m, 2H, H4a, H4b), 1.45 (s, 3H, Me), 1.43 (s, 3H, Me), 1.37 (s, 6H, Me), 0.93 (s, 9H, TBS), 0.90 (s, 9H, TBS), 0.15 (s, 6H, TBS); 0.14 (s, 3H, TBS), 0.12 (s, 3H, TBS); ¹³C NMR (150 MHz, CDCl₃) δ 176.2 (C2), 109.5 (CMe₂), 109.1 (CMe₂), 78.3 (C4^{*t*}), 76.5 (C1^{*t*}), 76.2 (C4^{*t*}v), 70.5 (C1^{*t*}), 65.5 (C5^{*t*}v), 64.8 (C5^{*t*}), 56.0 (C5), 44.9 (C3), 26.5 (Me), 26.3 (Me), 26.0 (3C, TBS), 25.9 (3C, TBS), 25.3 (Me), 25.2 (Me), 23.9 (C4), 18.3 (TBS), 18.1 (TBS), -3.9 (TBS), -4.0 (TBS), -4.4 (TBS), -4.9 (TBS). Anal. Calcd for C₂₈H₅₅NO₇Si₂: C, 58.60; H, 9.66; N, 2.44. Found: C, 58.52; H, 9.55; N, 2.51.

Boc N O TMSO O

(1'R,2S,4"S)-2-[(2,2-Dimethyl-[1,3]dioxolan-4-

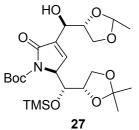

yl)(trimethylsilanyloxy)methyl]-5-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylic

Acid *tert*-Butyl Ester (24). The title compound was prepared from silyloxypyrrole 1 (700 mg, 2.35 mmol) and L-glyceraldehyde (S)-2 (367 mg, 2.82 mmol) in two steps, according to the typical procedures described for 4. Flash chromatographic purification (EtOAc/hexanes 6:4) afforded lactam 24 (721 mg, 80%) as a glassy solid: [α]_D²⁰ –171.1 (*c* 2.1, CHCl₃); ¹H and ¹³C NMR: see enantiomeric compound 4. Anal. Calcd for C₁₈H₃₁NO₆Si: C, 56.08; H, 8.10; N, 3.63. Found: C, 56.00; H, 8.18; N, 3.57.

(1'R,1"R,4"S,4"S,5S)-3-[(2,2-Dimethyl-[1,3]dioxolan-4-yl)hydroxymethyl]-5-[(2,2-dimethyl-

[1,3]dioxolan-4-yl)(trimethylsilanyloxy)methyl]-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylic Acid *tert*-Butyl Ester (25) and (1'S,1''R,4''S,4''S,5S)-3-[(2,2-Dimethyl-[1,3]dioxolan-4-yl)hydroxymethyl]-5-[(2,2-dimethyl-[1,3]dioxolan-4-yl)(trimethylsilanyloxy)methyl]-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylic Acid *tert*-Butyl Ester (26). The title compounds were prepared from lactam 24 (360 mg, 0.93 mmol) and L-glyceraldehyde (S)-2 (242 mg, 1.86 mmol) according to the typical procedure described for 5 and 6. After flash chromatographic purification (EtOAc/hexanes 35:65) adducts 25 (297 mg (29)) and 26 (86 mg 189)) methyl = 809(clabel wield

mg, 62%) and 26 (86 mg, 18%) were recovered in a 80% global yield.



Compound 25: a glassy solid, $[\alpha]_D^{20}$ –101.7 (*c* 1.4, CHCl₃); ¹H and ¹³C NMR: see enantiomer **5**. Anal. Calcd for C₂₄H₄₁NO₉Si: C, 55.90; H, 8.01; N, 2.72. Found: C, 55.83; H, 7.92; N, 2.88.

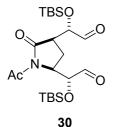
Compound 26: a glassy solid, ¹H and ¹³C NMR: see enantiomer 6. Anal. Calcd for $C_{24}H_{41}NO_9Si$: C, 55.90; H, 8.01; N, 2.72. Found: C, 56.01; H, 8.12; N, 2.64.

(1'*R*,1^{*m}</sup><i>R*,4^{*n*}*R*,4^{*n*}*S*,5*S*)-3-[(2,2-Dimethyl-[1,3]dioxolan-4-yl)hydroxymethyl]-5-[(2,2-dimethyl-[1,3]dioxolan-4-yl)(trimethylsilanyloxy)methyl]-2-oxo-2,5-dihydro-1*H*-pyrrole-1-carboxylic Acid *tert*-Butyl Ester (27) and (1'*S*,1^{*m*}*R*,4^{*n*}*R*,4^{*n*}*S*,5*S*)-3-[(2,2-Dimethyl-[1,3]dioxolan-4yl)hydroxymethyl]-5-[(2,2-dimethyl-[1,3]dioxolan-4-yl)(trimethylsilanyloxy)methyl]-2-oxo-2,5dihydro-1*H*-pyrrole-1-carboxylic Acid *tert*-Butyl Ester (28). The title compounds were prepared from unsaturated lactam 24 (360 mg, 0.93 mmol) and D-glyceraldehyde (*R*)-2 (242 mg, 1.86 mmol)</sup> according to the typical procedure described for 5 and 6. Flash chromatographic purification

(EtOAc/hexanes 35:65) of the residue furnished 67 mg of compound 27 (14%) and 302 mg of 28 (63%).

Compound 27: a colorless oil, $[\alpha]_D{}^{20}$ –67.9 (*c* 1.6, CHCl₃); ¹H NMR: see enantiomeric counterpart **15**. Anal. Calcd for C₂₄H₄₁NO₉Si: C, 55.90; H, 8.01; N, 2.72. Found: C, 55.76; H, 8.13; N, 2.78.

HO O BOC TMSO O TBSO O O


Ac

Compound 28: a colorless oil, $[\alpha]_D^{20}$ -76.2 (*c* 0.9, CHCl₃); ¹H and ¹³C NMR: see enantiomeric counterpart **14**. Anal. Calcd for C₂₄H₄₁NO₉Si: C, 55.90; H, 8.01; N, 2.72. Found: C, 55.99; H, 7.89; N, 2.84.

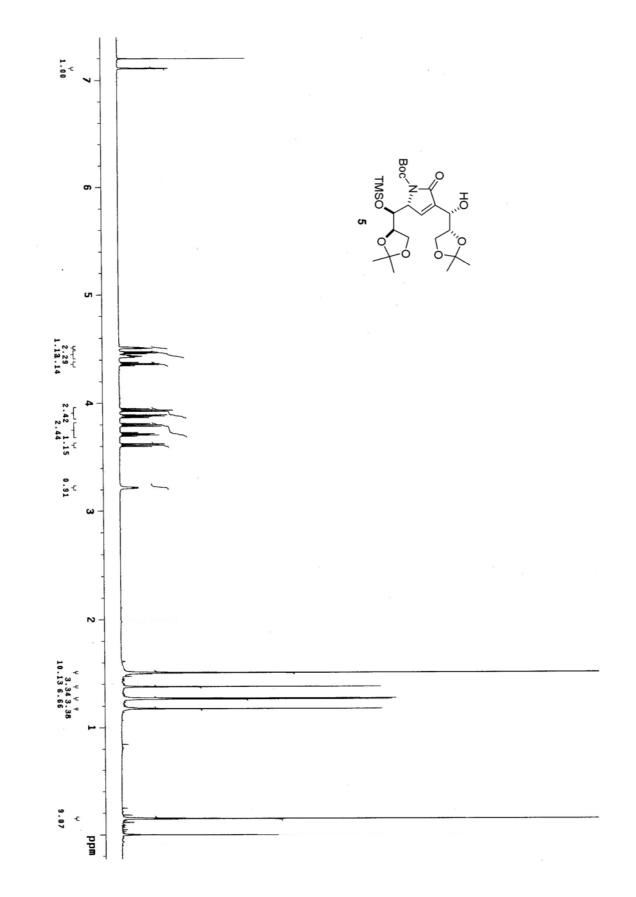
(2R,2'R,2"S,4"R)-2,2'-(1-Acetyl-5-oxopyrrolidine-2,4-diyl)bis(tert-

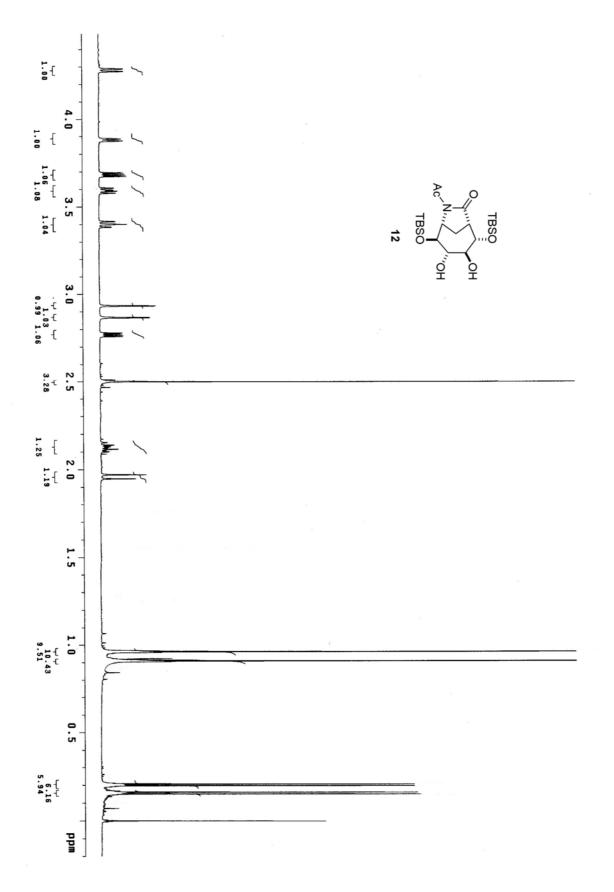
butyldimethylsilanyloxyacetaldehyde) (29). The title compound was prepared from lactam 25 (297 mg, 0.58 mmol) in five steps, according to the typical procedures described for 11. Flash chromatographic purification (EtOAc/hexanes 6:4) of the residue afforded aldehyde 29 (180 mg, 66%) as a colorless oil: $[\alpha]_D^{20}$ +54.3 (*c* 0.6, and ¹³C NMP; are anothismer 11. Anal. Calad for C. H. NO Si : C. 56 01: H. 8.76; N

CHCl₃); ¹H and ¹³C NMR: see enantiomer **11**. Anal. Calcd for $C_{22}H_{41}NO_6Si_2$: C, 56.01; H, 8.76; N, 2.97. Found: C, 56.10; H, 8.87; N, 2.82.

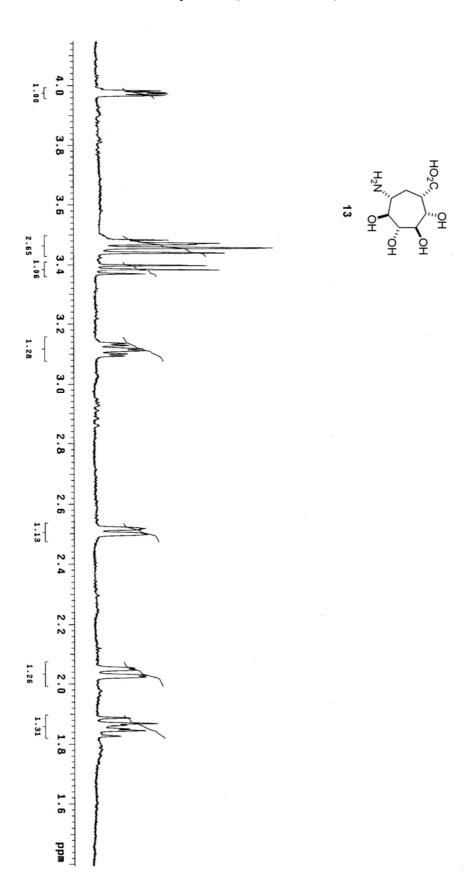
TBSŌ

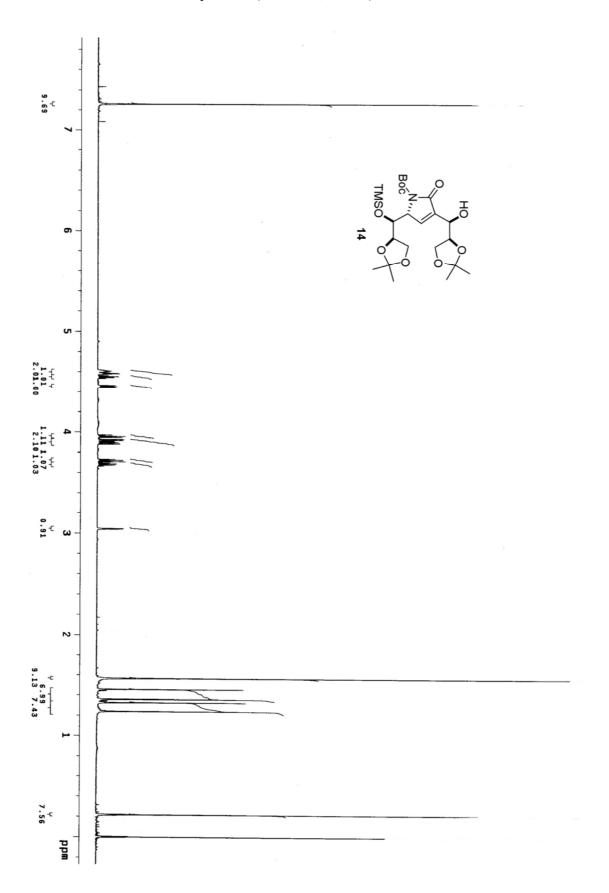
29

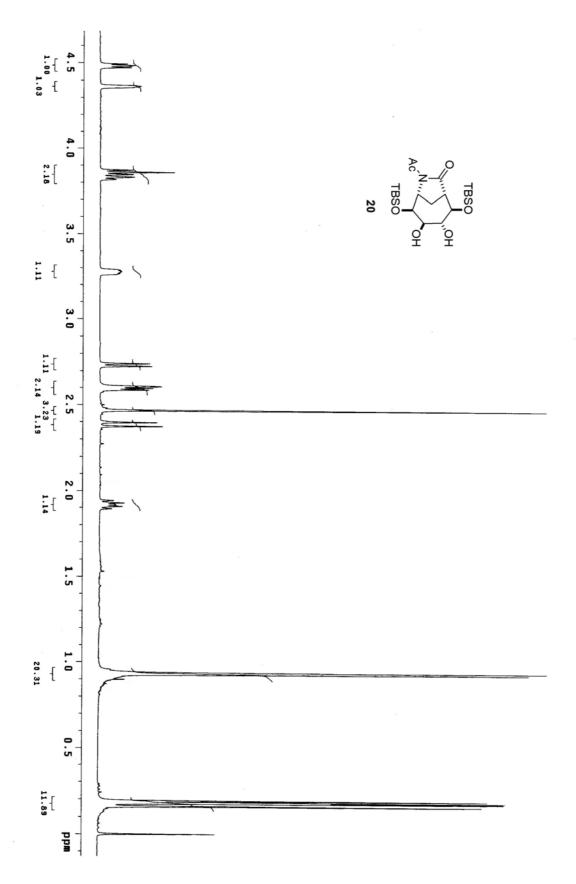

(2R,2'S,2"S,4"R)-2,2'-(1-Acetyl-5-oxopyrrolidine-2,4-diyl)bis(tert-


butyldimethylsilanyloxyacetaldehyde) (30). The title compound was prepared from lactam **28** (302 mg, 0.59 mmol) in five steps, according to the typical procedures described for **11**. Flash chromatographic purification (EtOAc/hexanes 6:4) of the

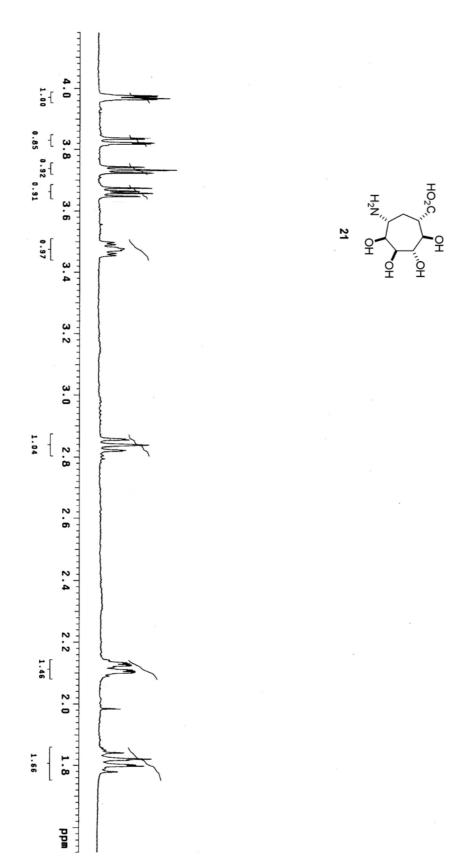
30 residue afforded aldehyde **30** (180 mg, 65%) as a colorless oil: $[\alpha]_D^{20}$ -50.9 (*c* 1.0, CHCl₃); ¹H and ¹³C NMR: see enantiomer **19**. Anal. Calcd for C₂₂H₄₁NO₆Si₂: C, 56.01; H, 8.76; N, 2.97. Found: C, 56.10; H, 8.87; N, 2.82.


References


- (1) Rassu, G.; Zanardi, F.; Battistini, L.; Gaetani, E.; Casiraghi, G. J. Med. Chem. 1997, 40, 168-180.
- (2) Zanardi, F.; Battistini, L.; Rassu, G.; Auzzas, L.; Pinna, L.; Marzocchi, L.; Acquotti, D.; Casiraghi, G. J. Org. Chem. 2000, 65, 2048-2064.
- (3) Hubschwerlen, C.; Specklin, J.-L.; Higelin, J. Org. Synth. 1995, 72, 1-5.
- (4) The experimental procedure and spectroscopic data for compound 3 have been reported before (see Ref. 10 in the text). However, they are included again here since the original experimental procedure has been optimized.



S13



S15

S16

