Supporting Information

Unsymmetrical Ferrocenylethylamine-Derived Monophosphoramidites: Highly Efficient Chiral Ligands for Rh-Catalyzed Enantioselective Hydrogenation of Enamides and α-Dehydroamino Acid Derivatives

Qing-Heng Zeng, Xiang-Ping Hu, Zheng-Chao Duan, Xin-Miao Liang and Zhuo Zheng*
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

Table of Contents

General Information S2
General Procedure for the Synthesis of Chiral Ferrocenylethylamine-DerivedMonophosphoramiditesS2
General procedure for Asymmetric Hydrogenation S5
Determination of Enantiomeric Excesses for N-Acetyl-1-Arylalkylamine 8a-8i S5
Determination of Enantiomeric Excesses for α-Amino Acid Esters 10a-10f S6
References S7
Copies of ${ }^{1} \mathbf{H},{ }^{13} \mathbf{C}$ and ${ }^{31} \mathbf{P}$ NMR Spectra for All New Compounds S8

General Information: All reactions were conducted under a nitrogen or argon atmosphere unless otherwise noted. Anhydrous procedures were conducted using oven dried or flame dried glassware and standard syringe and cannula transfer techniques. Hydrogenation was performed in a stainless steel autoclave. Solvents were of reagent grade, dried and distilled before use following standard procedures. $\left(S_{c}, S_{a}\right)$-2b and $\left(S_{c}, R_{a}\right)$-2c were prepared from the corresponding (S)- N-methyl-1-phenylethylamine and chiral BINOL according a modified procedure. ${ }^{1}$ BINOL-based chlorophosphite 6 was synthesized according to the literature method. ${ }^{2}$ Enamides $\mathbf{7 a}-\mathbf{i}^{3}$ and α-dehydroamino acid esters $\mathbf{9 a}-\mathbf{f}^{4}$ were known compounds which was synthesized according to the literature procedure. All other chemicals were obtained commercially. Optical rotations were recorded on a polarimeter at ambient temperature $(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a 400 MHz instrument using CDCl_{3} as the solvent. Enantiomeric excesses were determined by capillary GC analysis with a chiral column.

General Procedure for the Synthesis of Chiral Ferrocenylethylamine-Derived

 Monophosphoramidites. To a solution of ferrocenylethylamine (5a-d) (10 mmol) and triethylamine (50 mmol) in 100 mL of toluene was added dropwise a solution of BINOL-based chlorophosphite ($3.8 \mathrm{~g}, 11 \mathrm{mmol}$) in 30 mL of toluene at $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere during 30 minutes. The resulting mixture was standing at room temperature overnight. The precipitation was filtrated; the filtrate was collected and concentrated under reduced pressure. The residue was purified by column chromatography to give the crude product, which can be further purified by crystallizing from hexane/dichloromethane.N-methyl- N-[(R)-1-ferrocenylethyl]-(S)-1,1'-bi-2-naphthyl phosphoramidite
$\left(\boldsymbol{R}_{\boldsymbol{c}}, \boldsymbol{S}_{\boldsymbol{a}}\right)$-3a: orange solid; $[\alpha]^{20}{ }_{\mathrm{D}}+17.5\left(c 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47$
$(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 4 \mathrm{H}), 4.13-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H})$, $4.52(\mathrm{~s}, 1 \mathrm{H}), 4.69-4.73(\mathrm{q}, 1 \mathrm{H}), 7.13-7.97(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 18.4,26.7,52.2,52.6$, $67.7,67.9,68.8,69.4,69.8,77.4,77.7,78.0,89.9,122.7,123.1,124.6,125.2,125.4$, 126.7, 127.5, 127.7, 128.8, 129.0, 130.4, 130.9, 131.2, 132.0, 133.2, 133.5, 150.2, 150.9; ${ }^{31} \mathrm{P}$ NMR δ 148.0; HRMS (m/z) calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{FeNO}_{2} \mathrm{P}+\mathrm{H}: 558.1279$, found 558.1254. N-methyl- N-[(R)-1-ferrocenylethyl]-(R)-1,1'-bi-2-naphthyl phosphoramidite $\left(\boldsymbol{R}_{\boldsymbol{c}}, \boldsymbol{R}_{\boldsymbol{a}}\right)$-3b: orange solid; $[\alpha]^{20}{ }_{\mathrm{D}}-128.3\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.63 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.10-4.14(\mathrm{~m}, 7 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H})$, 4.80-4.85 (q, 1H), 7.22-7.97 (m, 12H); ${ }^{13} \mathrm{C}$ NMR $\delta 19.4,26.6,53.0,53.5,67.7,67.8,68.9$, $69.0,69.5,77.4,77.7,78.0,90.3,122.7,122.8,123.3,124.6,125.2,125.4,126.7,127.6$, $127.7,128.9,129.0,130.6,130.9,131.3,132.0,133.3,133.5,150.3,150.8 ;{ }^{31} \mathrm{P}$ NMR δ 149.0; HRMS (m/z) calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{FeNO}_{2} \mathrm{P}+\mathrm{H}$: 558.1279, found 558.1250.
N-ethyl- N-[(R)-1-ferrocenylethyl]-(S)-1,1'-bi-2-naphthyl phosphoramidite $\left(\boldsymbol{R}_{\boldsymbol{c}}, \boldsymbol{S}_{\boldsymbol{a}}\right)$-3c: yellow solid; $[\alpha]^{20}{ }_{\mathrm{D}}-32.2\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.87-0.91(\mathrm{t}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.61-2.77(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 4.00-4.11(\mathrm{t}$, $3 \mathrm{H}), 4.48-4.50(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.97(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 19.3,20.7,37.9,38.0,51.5,51.8$, $67.6,68.9,69.3,70.4,77.5,77.8,78.1,90.9,122.9,125.3,125.4,127.6,127.7,128.9$, 129.0, 130.2, 130.9, 131.2, 132.1, 133.4, 133.6, 150.4, 150.4; ${ }^{31}$ P NMR $\delta 149.9$; HRMS $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{FeNO}_{2} \mathrm{P}+\mathrm{H}: 572.1436$, found 572.1457.

N-benzyl- N-[(R)-1-ferrocenylethyl]-(S)-1,1'-bi-2-naphthyl phosphoramidite

 $\left(\boldsymbol{R}_{c}, \boldsymbol{S}_{\boldsymbol{a}}\right)$-3d: yellow solid; $[\alpha]^{20}{ }_{\mathrm{D}}$-32.2 (c $\left.0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20$ $(\mathrm{d}, 3 \mathrm{H}), 1.27-1.30(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}$, $1 \mathrm{H}), 4.53-4.57(\mathrm{q}, 1 \mathrm{H}), 7.18-8.00(\mathrm{~m}, 17 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.9,21.2,23.4,32.3,47.0,47.1$,$52.6,52.9,67.9,68.2,69.0,69.3,70.2,77.4,77.7,78.1,89.8,122.6,122.9,125.3,125.5$, $126.8,127.3,127.6,127.7,128.5,128.7,128.8,129.0,130.5,130.9,131.3,132.1,133.3$, 133.5, 142.1, 150.1, $150.7 ;{ }^{31} \mathrm{P}$ NMR δ 146.5; HRMS (m/z) calcd. for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{FeNO}_{2} \mathrm{P}+\mathrm{H}$: 634.1593, found 634.1578.

N-methyl- N - $\{(\boldsymbol{R})$-1-[(R)-2-methylferrocenyl]ethyl $\}$-(S)-1,1'-bi-2-naphthyl

phosphoramidite $\left(\boldsymbol{R}_{c}, \boldsymbol{R}_{p}, \boldsymbol{S}_{a}\right)$-3e: orange solid; $[\alpha]^{20}{ }_{\mathrm{D}}+44.8\left(c \quad 0.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, 4.06-4.10 (m, 7H), 4,81-4.89 (m, 1H), 6.90-7.96 (m, 12H); ${ }^{13} \mathrm{C}$ NMR 814.7, 19.3, 26.4, $51.4,51.9,66.0,67.4,70.1,70.8,77.4,77.7,78.2,83.7,122.7,123.1,125.1,125.4,126.6$, $127.6,127.7,128.8,129.0,130.5,130.9,131.2,132.0,133.1,133.5,150.3,150.4 ;{ }^{31} \mathrm{P}$ NMR δ 149.5; $\mathrm{HRMS}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{FeNO}_{2} \mathrm{P}+\mathrm{H}: 572.1436$, found 572.1407.

N-methyl- N-\{(R)-1-[(R)-2-methylferrocenyl]ethyl $\}-(\boldsymbol{R})$-1,1’-bi-2-naphthyl

 phosphoramidite $\left(\boldsymbol{R}_{c}, \boldsymbol{R}_{p}, \boldsymbol{R}_{a}\right)$-3f: orange power; $[\alpha]^{20}{ }_{\mathrm{D}}-291\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 3.95-4.07 (m, 7H), 4.93-5.01(m, 1H), 7.21-7.45(m, 8H), 7.87-7.95 (m, 4H); ${ }^{13} \mathrm{C}$ NMR δ $14.5,19.2,25.9,52.0,52.5,65.8,67.5,70.0,71.0,77.4,77.7,78.0,84.1,87.2,122.6$, 122.7, 125.2, 125.4, 126.7, 127.6, 127.7, 128.9, 129.0, 130.6, 130.8, 131.3, 132.0, 133.3, 133.5, 150.2, 150.4; ${ }^{31} \mathrm{P}$ NMR δ 149.9; HRMS (m/z) calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{FeNO}_{2} \mathrm{P}+\mathrm{H}$: 572.1436, found 572.1445.General Procedure for Asymmetric Hydrogenation. In a nitrogen-filled glovebox, a stainless steel autoclave was charged with $\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{BF}_{4}\left(2.0 \mathrm{mg}, 0.5 \times 10^{-2} \mathrm{mmol}\right)$ and monophosphoramidite ligand $3\left(1.1 \times 10^{-2} \mathrm{mmol}\right)$ in 1.5 mL of a degassed solvent. After stirring for 10 min at room temperature. A substrate $(0.5 \mathrm{mmol})$ in 1.5 mL of same
solvents was added to the reaction mixture, and then the hydrogenation was performed at room temperature under 10 bar of H_{2} pressure for 20 hours. The reaction mixture was passed through a short silica gel column to remove the catalyst. After evaporation of the solvent, the crude reaction mixture was subjected for GC to determine the conversion and enantiomeric excesses.

Determination of Enantiomeric Excesses for N-Acetyl-1-Arylalkylamine 8a-8i:

 Chiral Capillary GC Column. Chiral Select-1000 column (dimensions $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ (i.d.)). Carrier gas: N_{2}. The racemic products were obtained by hydrogenation of substrates with an achiral catalyst prepared from PPh_{3} and $\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{BF}_{4} .{ }^{5}$ The following are the retention times for the racemic products.N-Acetyl-1-phenylethylamine (8a): (capillary GC, Chiral Select-1000 column, $130^{\circ} \mathrm{C}$, $15 \mathrm{psi})(S) \mathrm{t}_{1}=16.74,(R) \mathrm{t}_{2}=17.64 ; N$-Acetyl-1-[(4-trifluoromethyl)phenyl]ethylamine (8b): (capillary GC, Chiral Select-1000 column, $\left.150^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=9.50$, $(R) \mathrm{t}_{2}=10.27 ; N$-Acetyl-1-(4-chlorophenyl)ethylamine (8c): (capillary GC, Chiral Select-1000 column, $\left.150^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=24.18,(R) \mathrm{t}_{2}=24.82 ; N$-Acetyl-1-(4-bromophenyl)ethylamine (8d): (capillary GC, Chiral Select-1000 column, $150^{\circ} \mathrm{C}, 15$ $\mathrm{psi})(S) \mathrm{t}_{1}=41.87,(R) \mathrm{t}_{2}=44.35 ; N$-Acetyl-1-(4-methylphenyl)ethylamine (8e): (capillary GC, Chiral Select-1000 column, $\left.130^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=28.49,(R) \mathrm{t}_{2}=30.86$; N-Acetyl-1-(4-methoxyphenyl)ethylamine (8f): (capillary GC, Chiral Select-1000 column, $\left.140^{\circ} \mathrm{C}, \quad 15 \mathrm{psi}\right) \quad(S) \quad \mathrm{t}_{1}=44.16, \quad(R) \quad \mathrm{t}_{2} \quad=25.73$; N-Acetyl-1-(3-methoxyphenyl)ethylamine (8g): (capillary GC, Chiral Select-1000 column, $\left.140^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=34.85,(R) \mathrm{t}_{2}=37.23 ; N$-Acetyl-1-phenylpropylamine (8h): (capillary GC, Chiral Select- 1000 column, $\left.130^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=20.74,(R) \mathrm{t}_{2}=$
23.05; N-Acetyl-1-phenylbuthylamine (8i): (capillary GC, Chiral Select-1000 column, $\left.110^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(S) \mathrm{t}_{1}=138.11,(R) \mathrm{t}_{2}=147.24$.

Determination of Enantiomeric Excesses for α-Amino Acid Esters 10a-10f: Chiral Capillary GC Column. CP-Chiralsil-L-Val column ($25 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.12 \mu \mathrm{~m}$). Carrier gas: N_{2}. The racemic products were obtained by hydrogenation of substrates with an achiral catalyst prepared from PPh_{3} and $\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{BF}_{4}{ }^{6}$ The following are the retention times for the racemic products.

Methyl 2-Acetamido-3-phenylpropanoate (10a): (capillary GC, CP-Chiralsil-L-Val column, $\left.\quad 160^{\circ} \mathrm{C}, \quad 15 \mathrm{psi}\right) \quad(R) \quad \mathrm{t}_{1}=7.23, \quad(S) \quad \mathrm{t}_{2}=8.43 ; \quad$ Methyl 2-Acetamido-3-(4-methoxyphenyl)propanoate (10b): (capillary GC, CP-Chiralsil-L-Val column, $\left.160^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(R) \mathrm{t}_{1}=21.23$, (S) $\mathrm{t}_{2}=23.48$; Methyl 2-Acetamido-3-(2-methoxyphenyl)propanoate (10c): (capillary GC, CP-Chiralsil-L-Val column, $\left.160^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(R) \mathrm{t}_{1}=15.95$, $(S) \mathrm{t}_{2}=17.65$; Methyl 2-Acetamido-3-(4-chlorophenyl)propanoate (10d): (capillary GC, CP-Chiralsil-L-Val column, $\left.\quad 160^{\circ} \mathrm{C}, \quad 15 \mathrm{psi}\right) \quad(R) \quad \mathrm{t}_{1}=18.23, \quad(S) \quad \mathrm{t}_{2}=20.09 ; \quad$ Methyl 2-Acetamido-3-(2-chlorophenyl)propanoate (10e): (capillary GC, CP-Chiralsil-L-Val column, $\left.\quad 160^{\circ} \mathrm{C}, \quad 15 \mathrm{psi}\right) \quad(R) \quad \mathrm{t}_{1}=15.34, \quad(S) \quad \mathrm{t}_{2}=17.05 ; \quad$ Ethyl

2-Acetamido-3-phenylpropanoate (10f): (capillary GC, CP-Chiralsil-L-Val column, $\left.160^{\circ} \mathrm{C}, 15 \mathrm{psi}\right)(R) \mathrm{t}_{1}=21.08,(S) \mathrm{t}_{2}=24.49$.

References

1. Peña, D.; Minnaard, A. J.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 14552.
2. Franciò, G.; Arena, C. G.; Faraone, F.; Graiff, C.; Lanfranchi, M.; Tiripicchio, A. Eur. J. Inorg. Chem. 1999, 1219.
3. (a) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539. (b) Burk, M. J.; Casy, G.; Johnson, N. B. J. Org. Chem. 1998, 63, 6084.
4. Blott, A. H. Org. Syn., coll. Vol. 1950, 1.
5. Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.
6. Burk, M. J.; Wang, Y. M.; Lee, J. R. J. Am. Chem. Soc. 1996, 118, 5142.
31P NMR CENG-3 In CDCL3 2004/08/23

S12
31P NMR ZENG-4 IN CDCL3 04/08/26

$\stackrel{m}{6}$

タッロ 边
920 $0 \times$

69\％的
$890^{\circ} 69-69$
ser 0
$\cos 24$

13 C NM ZENG－30 IN COCL 3 O5／05／25
1950
$02625-$
cte $52:-$

92－ge！
62． 235 ，
ges 8 5－
（180 621 —
En oct－／／／
cater

sese

40

S15

E

S22

zzs

