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Theoretical and experimental investigation of the 
linear relationship between baseline vs. peak 
intensity in Kubelka-Munk scale and effect of 

baseline on the reflection scale 
 

Abstract 

 Both theoretical and experimental investigations were performed to elucidate the 

linear relationship between baseline vs. peak height in Kubelka-Munk units and baseline 

offset in reflection log(1/R).  The investigations revealed that the baseline offset in 

log(1/R) space results in the observed linear relationship between baseline and peak 

height in Kubelka-Munk units. 

Introduction 

 Prof. Griffiths suggested that the linear relationship we observed in Kubelka-

Munk (K-M) units between the baseline position vs. peak intensity may actually be an 

artifact that results when the log(1/R) spectra are converted into K-M units.   We 

undertook the following theoretical and experimental investigations to verify his 

hypothesis. 

 

Theoretical Study and discussion 

 A spectrum of three Lorentzian bands was synthesized in log(1/R) scale using 

Galactic Grams/32 AI to simulate a condensed phase IR absorption feature.  As indicated 



in Figure S-1a, the spectral region considered was from 0 to 3000 cm-1.  The three 

synthesized bands are located at 1000, 1500 and 2000 cm-1 with bandwidth 10, 20 and 6 

cm-1, and band intensity 0.5, 0.8 and 0.3 absorption units on the log(1/R) scale.  The 

spectral data interval was 0.2 cm-1/data point.  The synthesized bands were created such 

that there was a data point located at exact peak maximum, and this constraint was 

preserved through all later data processing. 

 Six baseline offsets were then added into the synthesized spectrum in order to 

create six new reflection spectra as shown in Figure S-1b.  The offset values were 

0.1234487, 0.6834487, 0.8834487, 0.4274487, 0.1974487 and 0.000487 units on the 

log(1/R) scale.  Finally those log(1/R) spectra with baseline were converted into 

Kubelka-Munk units (see Figure S-1c). 

 The baseline offset values (Bj) were obtained at 0 cm-1 from each of converted 

Kubelka-Munk spectra.  After subtraction of each Bj from its spectrum, f(R∞,ν)j the value 

at each peak maximum was extracted for all peaks in the spectra.  Figure S-2 shows the 

plot of f0(R∞,ν)j against Bj.  The least square linear fit was performed on all three peaks in 

this plot.  Fitting results, R values, indicate that there is indeed a linear relationship 

between f0(R∞,ν)j and the left baseline of peak just as was observed in the experimental 

data (Figure 1 of the parent article).    It is based on this linear relationship that we 

developed our Kubelka-Munk Correction (KMC) approach, the combination of MSC 

(multiplicative scatter correction) and BPC (baseline peak correction in the Kubelka-

Munk scale) as is given in Eq. 4 of the parent article.  Careful observation reveals that it 

is better to use a nonlinear fit to describe the relationship when Bj approaches 0 value. 



 We believe that our theoretical investigation demonstrates that Prof. Griffiths’ 

statement is true.  That is to say, the linear relationship between baseline offset and peak 

intensity in Kubelka-Munk units could be the result of the addition of baseline offset in 

log(1/R) space followed by conversion using the Kubelka-Munk relationship.   

 

Experimental investigation and discussion 

 A different approach was taken for the experimental study.  We corrected the 

spectra in both log(1/R) space and Kubelka-Munk space, then compared the results in 

Kubelka-Munk space.  MSC was applied in both cases to correct for random scatter 

spread in the raw data. 

  We selected seven measurements of caffeine in KBr at a concentration of 10.34 

mg/g and six measurements of EMPA in soil/KBr at a concentration of 0.797 mg/g for 

this work.  The instrumental conditions used to acquire these spectra were the same as 

described in the parent article.  The single beam spectra of the sample and reference were 

ratioed to obtain both log(1/R) and Kubelka-Munk spectra separately using the Thermo-

Nicolet OMNIC software version 7.0.   

 The MSC algorithm was applied to log(1/R) spectra first.  The baseline offset for 

each spectrum was obtained by averaging from 4840 to 5000 cm-1 for caffeine and from 

4670 to 4840 for EMPA.  Then each baseline offset was subtracted from its spectrum.  

Finally those log(1/R) spectra were converted into Kubelka-Munk.  It is important to 

apply MSC first and then baseline offset subtraction to the log(1/R) spectrum.  This is 

because MSC is not a baseline correction algorithm, and if the order is reversed the 



‘minor’ baseline offset it leaves out will further contribute to the baseline position and to 

the peak height in the converted Kubelka-Munk spectra as described before. 

 The KMC algorithm was applied separately to the original MSC corrected 

log(1/R) spectra followed by conversion to KM units, and to the Kubelka-Munk MSC 

corrected spectra.  The standard deviation as a function of wavenumber was calculated on 

those multiple measurements of the same sample for both original log(1/R) and converted 

Kubelka-Munk spectra (see Figures S-3 and S-4).  Close examination reveals that 

converted Kubelka-Munk spectra have slightly higher spectral intensities relative to those 

of the original log(1/R) spectra.  The reason for this difference is unknown. 

 Comparison of original and converted Kubelka-Munk spectra and their standard 

deviations for both the caffeine and the EMPA data demonstrates that there is no 

significant difference between those two kinds of spectra. 

 

Conclusion 

 Both theoretical and experimental studies have proved that our KMC correction in 

Kubelka-Munk space is equivalent to applying MSC first, then subtracting the baseline 

offset in log(1/R) space. Our KMC correction has some practical advantages over the 

corrections in log(1/R) by virtue of (1) the existence of a linear relationship between 

Kubelka-Munk and sample concentration and (2) the ease with which MSC and BPC  

(Eq. 4) can be implemented since they are both matrix operations applied to every 

wavenumber component over the entire spectral range. 



Supporting information figure captions: 

 

Figure S-1 Synthesized spectrum study with baseline addition and conversion from 

log(1/R) into Kubelka-Munk units.  Figure S-1a shows three bands located at 1000, 1500 

and 2000 cm-1 from right to left.  Six baseline offsets added result in six new reflection 

spectra in Figure S-1b.  Conversion from log(1/R) into Kubelka-Munk produces the 

spectra in Figure S-1c. 

Figure S-2 Peak intensity vs. baseline offset plot for all three synthesized bands in 

Kubelka-Munk space.  The least square linear fitting results of three bands are displayed 

in the legend of the plot. 

Figure S-3 The original and converted caffeine Kubelka-Munk spectra after applying 

suitable corrections in Kubelka-Munk and log(1/R) spaces separately.  Figure S-3a is the 

KMC-corrected data in log(1/R) space converted into Kubelka-Munk units.  Figure S-3b 

is the KMC-corrected data in Kubelka-Munk space. Figure S-3c and d are the standard 

deviation spectra corresponding to Figure S-3a and b.  

  

Figure S-4 The overlaid and standard deviation of original and converted EMPA/soil 

Kubelka-Munk spectra after applying suitable corrections in Kubelka-Munk and log(1/R) 

spaces separately.  Figure S-4a is the KMC-corrected data in log(1/R) space converted 

into Kubelka-Munk units.  Figure S-4b is the KMC-corrected data in Kubelka-Munk 

space.  Figure S-4c and d are the standard deviation spectra corresponding to Figure S-4a 

and b.  
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