Expedient Synthesis of (±) Bipinnatin J

Paul A. Roethle and Dirk Trauner

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460.

Supporting Information

General Experimental Details: All reactions were carried out under an inert N₂ atmosphere in oven-dried glassware. Flash column chromatography was carried out with EcoChrom ICN SiliTech 32-63 D 60 Å silica gel. Reactions and chromatography fractions were monitored with Merck silica gel 60 F₂₅₄ plates and visualized with potassium permanganate and ceric ammonium molybdate. Tetrahydrofuran (THF) and methylene chloride (CH₂Cl₂) were dried by passage through activated alumina columns. Benzene (PhH) and diisopropylamine (*i*-Pr₂NH) were distilled from CaH₂ prior to use. *n*-Butyllithium was titrated with diphenylacetic acid prior to use. All other reagents and solvents were used without further purification from commercial sources. Organic extracts were dried over MgSO₄ unless otherwise noted.

Instrumentation: FT-IR spectra were obtained on NaCl plates with an ATI Mattson Gemini spectrometer. Proton and carbon NMR spectra (1 H NMR and 13 C NMR) were recorded in deuterated chloroform (CDCl₃) on a Bruker DRX-500 spectrometer and calibrated to residual solvent peaks. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet. Melting points were deteremined with an electrothermal apparatus and are uncorrected.

(*Z*)-(*S*)-4-Hydroxy-7-iodo-6-methyl-hept-6-en-2-ynoic acid ethyl ester (11). To a solution of (*Z*)-4-iodo-3-methyl-but-3-en-1-ol (9) (3.18 g, 15.0 mmol) in CH₂Cl₂ (75 mL) was added NaHCO₃ (6.30 g, 75.0 mmol) followed by Dess-Martin periodinane (6.68 g, 15.8 mmol). After 15 min at rt, a 1:1:1 solution (75 mL) of saturated Na₂S₂O₃, saturated NaHCO₃, H₂O was added. The resulting biphasic solution was stirred vigorously for 20 min. The layers were separated, and the aqueous was extracted 1 x CH₂Cl₂ (50 mL). The organics were dried, filtered, and concentrated *in vacuo*. To the resulting oil was added 50 mL Et₂O. The mixture was filtered and concentrated *in vacuo*. If additional solids precipitated, the mixture was filtered and concentrated again from Et₂O. The crude aldehyde was taken up in THF (25 mL) and used without further purification. Meanwhile, to a solution of *i*-Pr₂NH (6.31 mL, 45.0 mmol) in THF (45 mL) at -78 °C was added *n*-butyllithium (2.42 M in hexanes, 18.6 mL, 45.0 mmol) dropwise over 5 min. After 20 min at 0 °C, the solution was cooled to -78 °C and ethyl propiolate (4.57 mL,

45.0 mmol) in THF (30 mL) was added via cannula over 15 min. After 1 h, the aldehyde solution at -78 °C was added via cannula to the acetylide solution at -78 °C. After 30 min, a saturated solution of NH₄Cl (30 mL) was added. Then the reaction mixture was allowed to warm to rt. The layers were separated, and the aqueous was extracted 1 x Et₂O (100 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (16% EtOAc/hexanes) to give 3.07 g (66% for 2 steps) of **11** as a colorless oil.

R_f 0.57, 30% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 6.12 (d, 1 H, J = 1.5 Hz), 4.72 (dt, 1 H, J = 8.5, 6 Hz), 4.25 (q, 2 H, J = 7 Hz), 2.80 (dd, 1 H, J = 13.5, 8.5 Hz), 2.65 (dd, 1 H, J = 13.5, 6 Hz), 2.03 (d, 1 H, J = 6 Hz), 2.00 (d, 3 H, J = 1.5 Hz), 1.32 (t, 3 H, J = 7 Hz). ¹³C (125 MHz): δ 153.2, 142.4, 86.6, 78.5, 76.9, 62.2, 60.2, 45.4, 24.6, 14.0. IR: 3406, 2981, 1711, 1251. HRMS (EI)⁺ calcd for C₁₀H₁₃O₃I (M)⁺ 307.9909, found 307.9907.

3-[(S)-5-((Z)-3-Iodo-2-methyl-allyl)-2-oxo-2,5-dihydro-furan-3-yl]-propionaldehyde (13). To a solution of 11 (1.98 g, 6.43 mmol) in THF (21 mL) and acetone (10.5 mL) was added allyl alcohol (690 μ L, 9.65 mmol), camphorsulfonic acid (373 mg, 1.61 mmol), and RuCp(MeCN)₃PF₆ (139 mg, 0.321 mmol) sequentially. After 1.5 h at 50 °C, the reaction mixture was concentrated *in vacuo*. The crude oil was purified by flash column chromatography (40% EtOAc/hexanes) to 1.08 g (52%) of 13 as a light red oil in addition to 154 mg of the regioisomeric product.

R_f 0.32, 40% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 9.80 (t, 1 H, J = 1 Hz), 7.15 (q, 1 H, J = 1.5 Hz), 6.13 (d, 1 H, J = 1.5 Hz), 5.06 (m, 1 H), 2.79 (m, 2 H), 2.65 (m, 3 H), 2.55 (dd, 1 H, J = 13.5, 7.5 Hz), 1.99 (d, 3 H, J = 1.5 Hz). ¹³C (125 MHz): δ 200.3, 172.9, 148.7, 142.2, 132.6, 79.5, 78.7, 42.3, 41.1, 24.8, 18.0. IR: 2908, 1752, 1725, 1062. HRMS (EI)⁺ calcd for C₁₁H₁₃O₃I (M)⁺ 319.9909, found 319.9905.

(E)-5-[(S)-5-((Z)-3-Iodo-2-methyl-allyl)-2-oxo-2,5-dihydro-furan-3-yl]-2-methyl-pent-2-enal (15). To a solution of **13** (560 mg, 1.75 mmol) in PhH (8.7 mL) was added **14** (1.11 g, 3.50 mmol). After heating at reflux for 12 h, additional **14** (835 mg, 2.62

mmol) was added. After heating at reflux for 5 h, the dark solution was cooled to rt. A saturated solution of NH₄Cl (10 mL) and Et₂O (10 mL) were added. The layers were separated, and the aqueous was extracted 1 x Et₂O (15 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (35-40% EtOAc/hexanes) to give 450 mg (71%) of **15** as a light red oil.

R_f 0.54, 50% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 9.41 (s, 1 H), 7.15 (d, 1 H, J = 1 Hz), 6.45 (t, 1 H, J = 7 Hz), 6.12 (d, 1 H, J = 1 Hz), 5.09 (m, 1 H), 2.66 (m, 3 H), 2.56 (m, 3 H), 1.98 (d, 3 H, J = 1 Hz), 1.76 (s, 3 H). ¹³C (125 MHz): δ 194.9, 172.9, 151.7, 148.2, 142.2, 140.4, 133.1, 79.5, 78.8, 42.3, 26.6, 24.8, 24.2, 9.4. IR: 2945, 2917, 1754, 1682, 1061. HRMS (EI)⁺ calcd for C₁₄H₁₇O₃I (M)⁺ 360.0222, found 360.0220.

(S)-3-((E)-5-Hydroxy-4-methyl-pent-3-enyl)-5-((Z)-3-iodo-2-methyl-allyl)-5H-furan-2-one (16). To a solution of 15 (225 mg, 0.625 mmol) in MeOH (6.2 mL) was added sodium borohydride (26.0 mg, 0.687 mmol). After 20 min, a saturated NH₄Cl solution (5 mL) was added carefully followed by Et₂O (5 mL). The layers were separated, and the aqueous was extracted 1 x Et₂O (10 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (50% EtOAc/hexanes) to give 224 mg (99%) of 16 as a colorless oil.

R_f 0.30, 50% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 7.10 (d, 1 H, J = 1.5 Hz), 6.11 (d, 1 H, J = 1.5 Hz), 5.40 (m, 1 H), 5.05 (ddd, 1 H, J = 7.5, 6.5, 1.5 Hz), 4.00 (s, 2 H), 2.66 (dd, 1 H, J = 13.5, 6.5 Hz), 2.54 (dd, 1 H, J = 13.5, 6.5 Hz), 2.35 (m, 4 H), 1.98 (d, 3 H, J = 1.5 Hz), 1.66 (s, 3 H), 1.54 (br s, 1 H). ¹³C (125 MHz): δ 173.4, 147.7, 142.4, 136.3, 134.0, 123.9, 79.4, 78.5, 68.5, 42.4, 25.4, 25.1, 24.8, 13.8. IR: 3356, 2917, 2859, 1749, 1060. HRMS (EI)⁺ calcd for C₁₄H₁₉O₃I (M)⁺ 362.0379, found 362.0386.

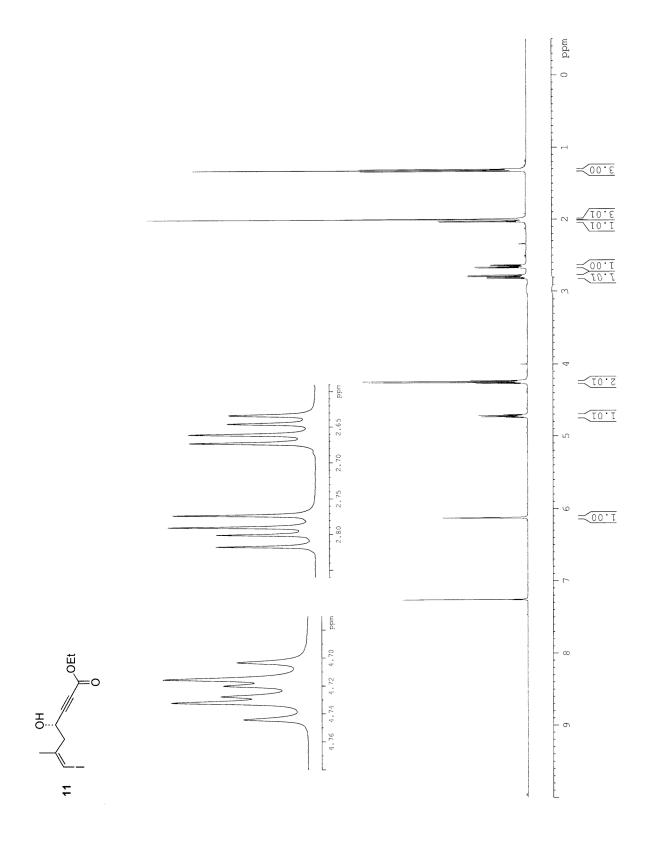
3-Methyl-5-trimethylstannanyl-furan-2-carbaldehyde (19). To a suspension of N, O-dimethylhydroxylamine hydrochloride (3.09 g, 31.1 mmol) in THF (155 mL) at -40 °C was added n-butyllithium (2.50 M in hexanes, 24.9 mL, 62.2 mmol) over 15 min while keeping the temperature below -40 °C. After 30 min, **17** (2.74 g, 24.9 mmol) in THF (22 mL) was added dropwise over 10 min. After 45 min, n-butyllithium (2.50 M in hexanes,

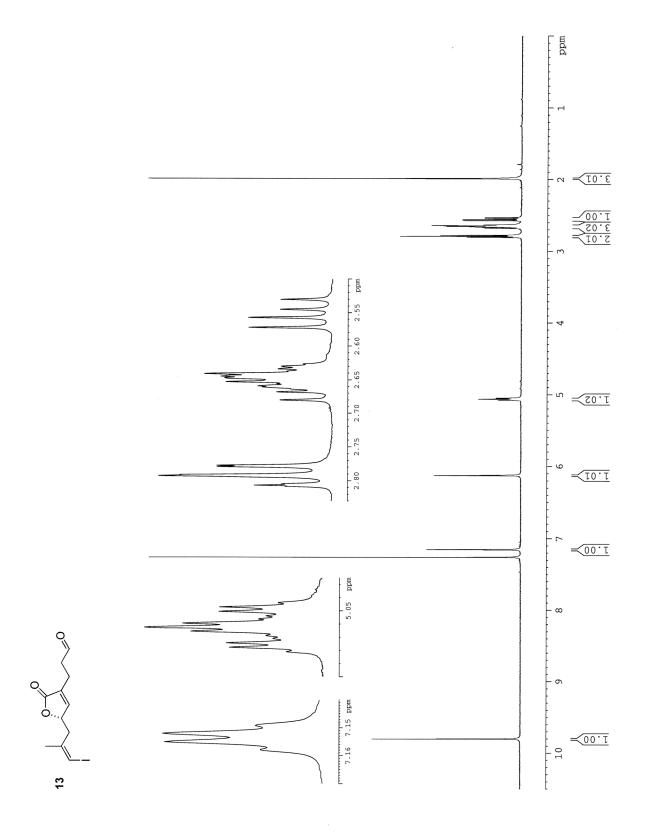
14.9 mL, 37.3 mmol) was added dropwise over 15 min, then stirred at -40 °C for 1 h. A solution of Me₃SnCl (1.0 M in THF, 29.9 mL, 29.9 mmol) was added over 5 min. The solution was allowed to warm to -10 °C over 30 min. A saturated solution of NH₄Cl (150 mL) was added. The layers were separated, and the aqueous was extracted 1 x Et₂O (100 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude oil was left under high vacuum for 12 h to remove residual Me₃SnCl and then used without further purification as a red/yellow oil, 5.77 g (85%) of **19**.

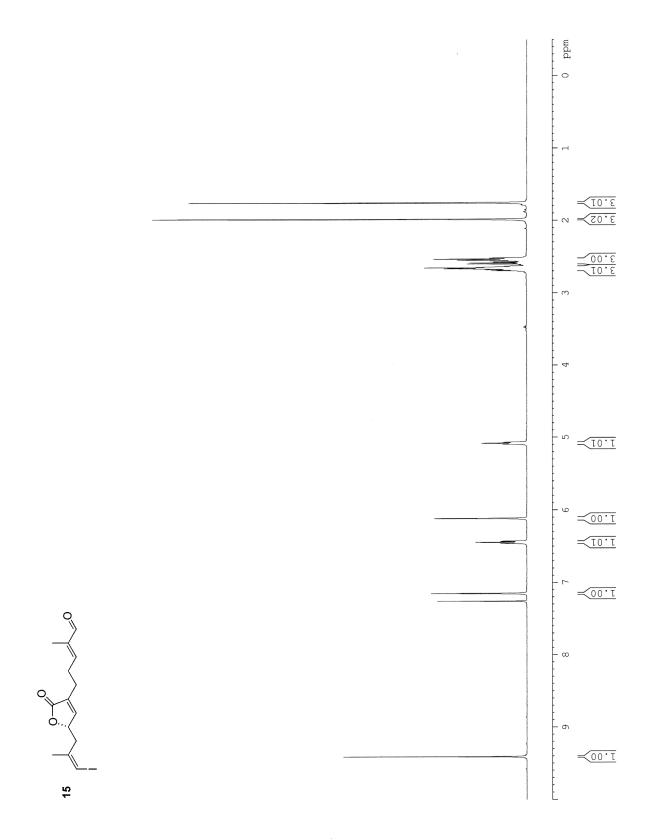
 R_f 0.50, 10% EtOAc/Hexanes. 1 H NMR (500 MHz): δ 9.75 (s, 1 H), 6.55 (s, 1 H), 2.35 (s, 3 H), 0.38 (s, 9 H). 13 C (125 MHz): δ 177.3, 170.1, 153.0, 134.7, 126.3, 10.1, -9.2. IR: 2923, 1675, 1580, 768. HRMS (EI) $^+$ calcd for $C_9H_{14}O_2Sn$ (M) $^+$ 274.0016, found 274.0015.

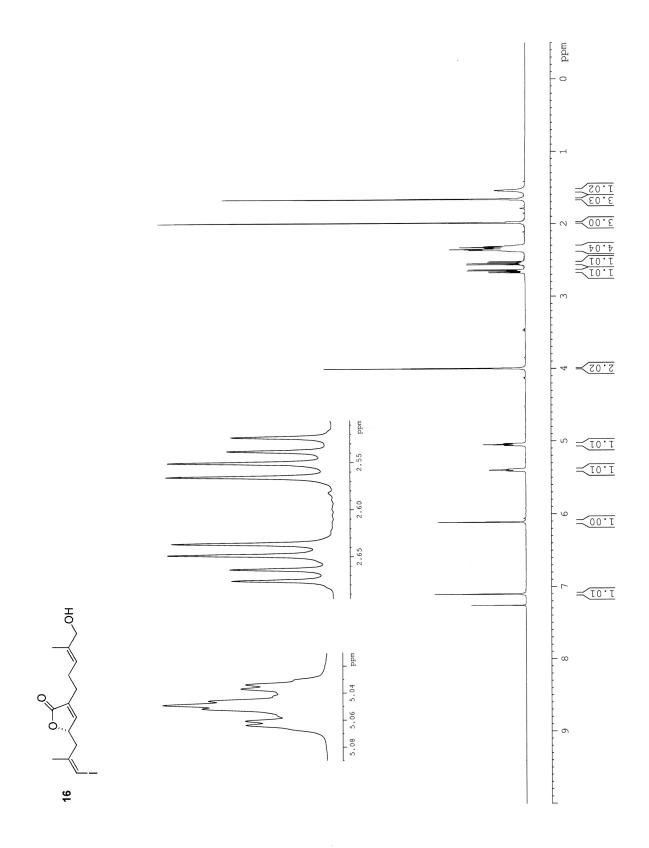
5-{(Z)-3-[(S)-4-((E)-5-Hydroxy-4-methyl-pent-3-enyl)-5-oxo-2,5-dihydro-furan-2-yl]-2-methyl-propenyl}-3-methyl-furan-2-carbaldehyde (20). To a solution of **16** (718 mg, 1.98 mmol) in DMF (13 mL) was added **19** (703 mg, 2.58 mmol) followed by Pd(PPh₃)₄ (91.6 mg, 0.0792 mmol), CuI (30.2 mg, 0.159 mmol), and CsF (602 mg, 3.96 mmol). After 20 min at rt, poured onto saturated NH₄Cl (20 mL) and Et₂O (20 mL). The layers were separated, and the aqueous washed extracted 1 x Et₂O (20 mL). The organics were then washed 1 x brine (25 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (65% EtOAc/hexanes) to give 627 mg (92%) of **20** as a yellow oil.

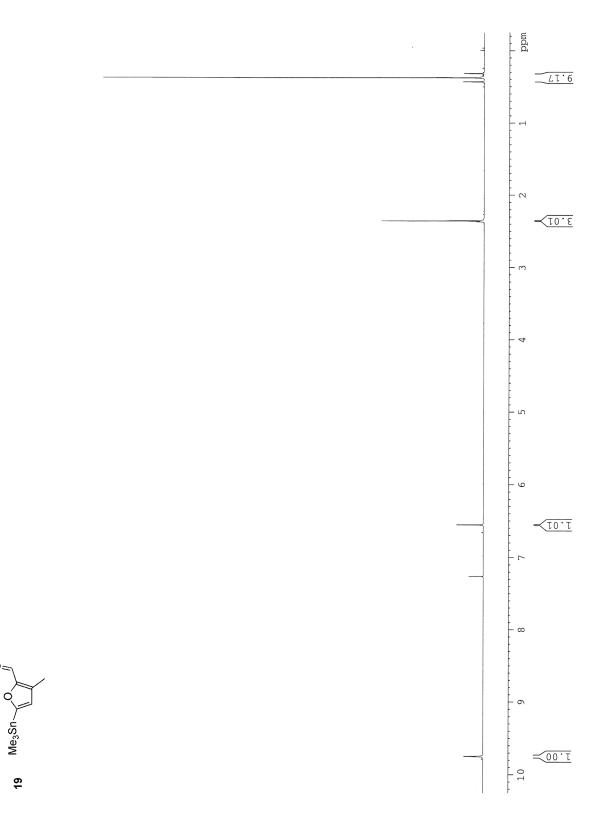
R_f 0.34, 60% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 9.61 (s, 1 H), 7.33 (br s, 1 H), 6.18 (s, 1 H), 6.17 (s, 1 H), 5.40 (m, 1 H), 5.12 (m, 1 H), 3.99 (s, 2 H), 3.23 (d, 1 H, J = 13 Hz), 2.38 (m, 3 H), 2.36 (s, 3 H), 2.30 (m, 2 H), 2.05 (s, 3 H), 2.04 (s, 1 H), 1.65 (s, 1 H). ¹³C (125 MHz): δ 175.5, 173.9, 157.0, 149.1, 147.4, 141.9, 136.7, 136.5, 133.4, 123.7, 115.4, 114.0, 81.5, 68.4, 38.2, 26.7, 25.3, 24.8, 13.7, 10.0. IR: 3443, 2923, 2854, 1751, 1658, 1499, 1064. HRMS (EI)⁺ calcd for $C_{20}H_{24}O_5$ (M)⁺ 344.1624, found 344.1630.


5-{(Z)-3-[(S)-4-((E)-5-Bromo-4-methyl-pent-3-enyl)-5-oxo-2,5-dihydro-furan-2-yl]-2-methyl-propenyl}-3-methyl-furan-2-carbaldehyde (21). To a solution of 20 (228 mg, 0.662 mmol) in CH_2Cl_2 (13 mL) at -5 °C was added PPh₃ (191 mg, 0.728 mmol) and N-bromosuccinimide (130 mg, 0.728 mmol). After 20 min, the solution was poured onto H_2O . The layers were separated, and the aqueous was extracted 1 x CH_2Cl_2 . The organics were dried, filtered, and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (35% EtOAc/hexanes) to give 233 mg (87%) of 21 as a light yellow oil.


 R_f 0.49, 40% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 9.64 (s, 1 H), 7.25 (br s, 1 H), 6.18 (s, 1 H), 6.17 (s, 1 H), 5.54 (t, 1 H, J = 7 Hz), 5.12 (m, 1 H), 3.93 (s, 2 H), 3.17 (d, 1 H, J = 13 Hz), 2.55 (m, 1 H), 2.36 (m, 2 H), 2.34 (s, 3 H), 2.29 (m, 2 H), 2.04 (s, 3 H), 1.73 (s, 3 H). ¹³C (125 MHz): δ 175.6, 173.5, 156.7, 149.0, 147.5, 141.2, 135.9, 133.5, 133.1, 129.3, 115.6, 114.0, 81.2, 41.2, 38.2, 26.7, 26.0, 24.6, 14.7, 10.1. IR: 2924, 2848, 1754, 1663, 1499. HRMS (EI)⁺ calcd for $C_{20}H_{23}O_4$ (M-Br)⁺ 327.1596, found 327.1594.


Bipinnatin J (4). To a suspension of CrCl₂ (438 mg, 3.56 mmol), NiCl₂·DME (196 mg, 0.891 mmol), and 4 Å molecular sieves (1.49 g) in THF (55 mL) was added **19** (121 mg, 0.297 mmol) in THF (5 mL) via syringe pump over 1.5 h. After 12 h at rt, H₂O (20 mL) was added. The biphasic solution was filtered and concentrated to about 30 mL. The layers were separated, and the aqueous was extracted 1 x Et₂O (25 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (30% EtOAc/hexanes) to give 57.9 mg (59%) as a white powder.


 R_f 0.33, 30% EtOAc/Hexanes. HRMS (EI) $^+$ calcd for $C_{20}H_{24}O_5$ (M) $^+$ 328.1675, found 328.1674. mp 140-142 °C.


¹ H NMR isolation	¹ H NMR current	¹³ C NMR	¹³ C NMR
		isolation	current
6.83 (br s, 1H)	6.84 (br s, 1H)	174.2	174.3
6.09 (br s, 1H)	6.10 (br s, 1H)	152.2	152.3
6.02 (s, 1H)	6.02 (s, 1H)	151.0	151.0
5.14 (br s, 1H)	5.15 (br s, 1H)	149.3	149.2
5.03 (br s, 1H)	5.05 (s, 1H)	142.2	142.1
4.96 (m, 1H)	4.98 (m, 1H)	132.6	132.5
4.49 (br d, 1H, $J = 10.8$ Hz)	4.50 (br d, 1H, $J = 11$	128.9	129.0
	Hz)		
3.18 (dd, 1H, J = 12.0, 11.7	3.19 (t, 1H, $J = 12$ Hz)	121.0	121.1
Hz)			
2.71 (dd, 1H, J = 12.0, 4.5	2.72 (dd, 1H, J = 12, 4.5	118.4	118.7
Hz)	Hz)		
2.38 (ddd, 1H, J = 14.2,	2.40 (dd, 1H, J = 14.5,	117.3	117.3
14.2, 3.0 Hz)	3.0 Hz)		
2.35 (dd, 1H, J = 10.8, 10.8	2.36 (t, 1 H, $J = 11$ Hz)	113.8	113.8
Hz)			
2.07 (m, 1H)	2.07 (m, 1H)	78.6	78.6
2.03 (s, 3H)	2.04 (s, 3H)	65.0	64.9
1.98 (br s, 3H)	1.99 (br s, 3H)	51.1	51.1
1.92 (br s (OH), 1H)	1.89 (br s (OH), 1H)	39.7	39.7
1.78 (br s, 3H)	1.79 (br s, 3H)	30.1	30.0
1.65 (dddd, 1H, $J = 13.8$,	1.66 (m, 1H)	25.7	25.8
10.8, 3.3, 3.3 Hz)			
0.88 (ddd, 1H, J = 13.8,	0.89 (td, 1H, J = 13.5, 3.5	19.6	19.6
13.8, 3.3 Hz)	Hz)		
		17.6	17.5
		9.4	9.5

