Title: Contrasting Melting Behavior of Zinc Stearate and Zinc Oleate

Authors: S.Barman and S.Vasudevan

Supporting Information

- (a) X-ray diffraction patterns of saturated fatty acid Zn soaps as function of chain length and (b) Plot of interlayer spacing vs. number of methylene units in the chains.
- 2. X-ray diffraction patterns of Zn-Stearate at different temperatures.
- 3. X-ray diffraction patterns of Zn–Oleate at different temperatures.
- 4. Methylene stretching modes in the infrared spectrum of Zn-Stearate at different temperatures.
- 5. Table of frequencies and assignments of the infrared progression bands of Zn-Stearate and Zn-Oleate

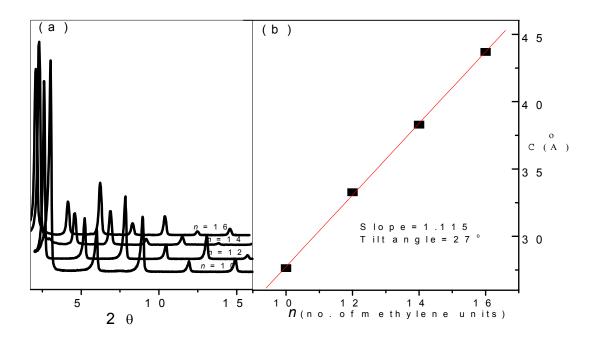


Figure: (a) X-ray diffraction patterns of saturated fatty acid Zn-soaps as function of chain length (n = number of methylene units) and (b) Plot of interlayer spacing, c, vs. number of methylene units in the chains.

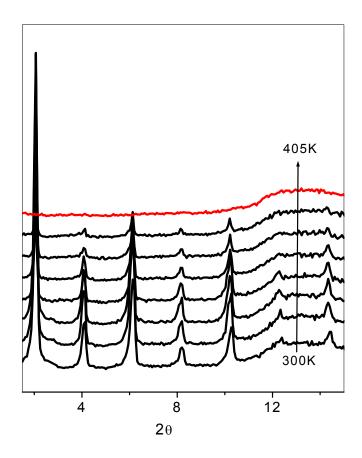


Figure: X-ray diffraction patterns of Zn-Stearate at different temperatures. The pattern at melt is shown in red.

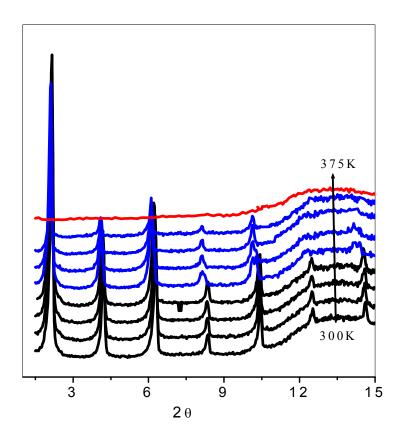


Figure: X-ray diffraction patterns of Zn–Oleate at different temperatures. The pattern above the transition at 357K is shown in blue. The pattern at melt is shown in red.

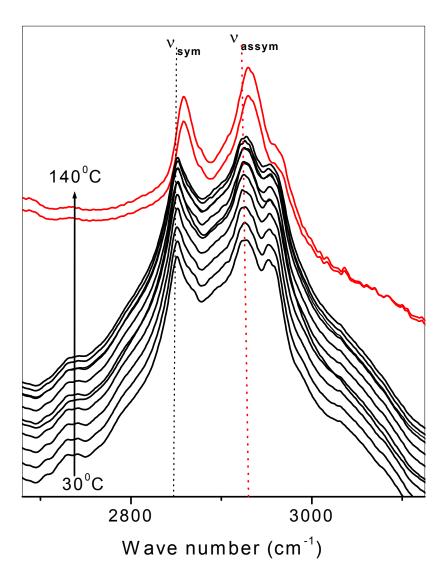


Figure . Methylene stretching modes of Zn-stearate at different temperatures. The spectra after melt is shown in red.

Table of frequencies and assignments of the methylene wagging (W_k) , twisting-rocking (T_k) , rocking-twisting (R_k) and C-C stretch (S_k) progression bands in the infrared spectrum of Zn-stearate and Zn-oleate. (n is the number of coupled trans methylene units considered in the assignment)

Zn-Oleate		Zn-Stearate		
n = 7		<i>n</i> = 16		
$v_{(cm}^{-1})$	Assignment	$v_{(cm)}^{-1}$	Assignment	
1352	W_5	1360	W_{10}	
1323	W_4	1339	W_9	
1304	T_4	1324	W_8	
1280	W_3	1306	W_7	
1258	T_3	1286	W_6	
1237	W_2	1266	W_5	
1214	T_2	1247	W_4	
1200	W_1	1228	W_3	
1192	T_1	1208	W_2	
1094	S_1	1188	W_1	
1066	S_6	1105	S_1	
1049	S_5	1075	S_2	
1028	S_2	1064	S_{12}	
1010	S_4	1053	S_{11}	
984	S_3	1041	S_{10}	
953	R_1	1032	S_9	
933	R_2	1016	S_8	
889	R_3	990	S_7	
849	R_4	970	S_6	
826	R_5	911	R_5	
781	R_6	874	R_6	
721	R_7	840	R_7	
		808	R_8	
		780	R_9	
		758	R_{10}	
		745	R_{11}	
		720	R_{12} - R_{16}	