The Iptycene Chemistry: New Pentiptycene Building Blocks Derived from

Pentiptycene Quinones

Jye-Shane Yang*[†] and Ching-Wei Ko[‡]

[†]Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617 and

[‡]Department of Chemistry, National Central University, Chungli, Taiwan 32054

jsyang@ntu.edu.tw

Supporting Information Available. Experimental procedures and characterization data for compounds **17-24** and ¹H and ¹³C NMR spectra of **13**, **14**, and **17-24**.

Contents:

S1	Table of contents
S2	Synthesis of Compounds 17 and 18
S3	Synthesis of Compounds 19 and 20
S4	Synthesis of Compound 21
S5	Synthesis of Compounds 22 and 23
S6	Synthesis of Compound 24
S7	¹ H & ¹³ C NMR spectra of 13
S9	¹ H & ¹³ C NMR spectra of 14
S11	¹ H & ¹³ C NMR spectra of 17
S13	¹ H & ¹³ C NMR spectra of 18
S15	¹ H & ¹³ C NMR spectra of 19
S17	¹ H & ¹³ C NMR spectra of 20
S19	¹ H & ¹³ C NMR spectra of 21
S21	¹ H & ¹³ C NMR spectra of 22
S23	¹ H & ¹³ C NMR spectra of 23
S25	¹ H & ¹³ C NMR spectra of 24

Synthesis of Compound 17. A mixture of **13** (2.0 g, 4.5 mmol), K_2CO_3 (0.9 g, 6.5 mmol), KI (1.1 g, 6.6 mmol), 1-bromooctane (1.3 g, 6.7 mmol), and 100 mL of acetone in a 250-mL flask was heated to reflux for 16 h. The acetone was removed under reduced pressure and the residue was then dissolved in CH₂Cl₂ and washed with 20% HCl_(aq). The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH₂Cl₂/hexane (1:1) as eluent afforded the white solid of **17** with a yield of 91%.

M.P. 278-279 °C; ¹H-NMR (500 MHz, CDCl₃) δ : 0.98 (t, J = 6.8 Hz, 3H), 1.39-1.55 (m, 8H), 1.69 (quin, J = 7.6 Hz, 2H), 2.03 (tt, J = 6.8 and 7.6 Hz, 2 H), 3.96 (t, J = 6.8 Hz, 2H), 5.32 (s, 2H), 5.69 (s, 2H), 6.93-6.99 (m, 8H), 7.26 (s, 1H), 7.31-7.34 (m, 8H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 14.2, 22.7, 26.4, 29.4, 29.6, 30.6, 31.9, 48.1, 54.2, 76.0, 115.8, 123.4 (2C), 125.0, 125.1, 134.8, 144.3, 145.1, 145.7, 149.8 ppm; IR (KBr) 1221 cm⁻¹; FAB-HRMS calcd for C₄₂H₃₈O (M⁺) 558.2923, found 558.2927.

Synthesis of Compound 18. A mixture of 17 (0.3 g, 0.54 mmol), Ag₂SO₄ (0.8 g, 2.57 mmol), I₂(0.7 g, 2.76 mmol), and 30 mL of ethanol in a 50-mL flask was heated to reflux for 3 h. The resulting precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in CH₂Cl₂ and washed with 0.1 M Na₂SO_{3(aq)} and brine. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH₂Cl₂/hexane (1:3) as eluent afforded the white solid of 18 with a yield of 94%. M.P. 267-268 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.95 (t, *J* = 6.9 Hz, 3H), 1.38-1.51 (m, 8H), 1.66 (quin, *J* = 7.6 Hz, 2H), 2.01 (tt, *J* = 6.9 and 7.6 Hz, 2H), 3.91 (t, *J* = 6.9 Hz, 2H), 5.80 (s, 2H), 6.93-6.99 (m, 8H), 7.31-7.40 (m, 8H) ppm; ¹³C NMR (100

MHz, CDCl₃) δ : 14.2, 22.7, 26.4, 29.4, 29.6, 30.5, 31.9, 48.6, 58.6, 76.1, 88.7, 123.4, 123.9, 125.3, 125.4, 137.1, 144.9, 145.0, 147.0, 149.9 ppm; IR (KBr) 1219 cm⁻¹; FAB-HRMS calcd for C₄₂H₃₇IO (M⁺) 684.1889, found 684.1897.

Synthesis of Compound 19. A mixture of 17 (0.5 g, 0.9 mmol), NBS (0.3 g, 1.7 mmol), and 10 mL of DMF in a 25-mL flask was heated to reflux for 48 h. The DMF was removed under reduced pressure and the residue was then dissolved in CH₂Cl₂ and washed with brine. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH₂Cl₂/hexane (1:1) as eluent afforded the white solid of 19 with a yield of 90%. M.P. 271-272 °C; ¹H NMR (500 MHz, CDCl₃) δ : 0.99 (t, *J* = 6.6 Hz, 3H), 1.42-1.57 (m, 8H), 1.70 (quin, *J* = 7.4 Hz, 2H), 2.04 (tt, *J* = 6.6 and 7.4 Hz, 2H), 3.95 (t, *J* = 6.6 Hz, 2H), 5.71 (s, 2H), 5.88 (s, 2H), 6.97-7.01 (m, 8H), 7.35-7.41 (m, 8H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 14.5, 23.1, 26.7, 29.7, 29.9, 30.9, 32.3, 48.9, 54.0, 76.5, 111.8, 123.8, 124.3, 125.6, 125.7, 137.9, 143.7, 145.2, 145.3, 149.2 ppm; IR (KBr) 1221 cm⁻¹; FAB-HRMS calcd for C₄₂H₃₇BrO (M⁺) 636.2028, found 636.2040.

Synthesis of Compound 20. A mixture of 18 (0.2 g, 0.29 mmol), $Pd(PPh_3)_4$ (0.04 g, 0.03 mmol), trimethylsilyl acetylene (0.05 mL, 0.35 mmol), 3 mL of benzene, and 3 mL of diisopropylamine was heated to 90 °C for 16 h under argon. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in CH_2Cl_2 and washed with brine. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH_2Cl_2 /hexane (1:6) as eluent afforded the white solid of 20 with a

yield of 90%. M.P. 257-258 °C; ¹H NMR (400 MHz, CDCl₃) δ : 0.50 (s, 9H), 0.97 (t, J = 6.9 Hz, 3H), 1.38-1.49 (m, 8H), 1.65 (quin, J = 7.6 Hz, 2H), 2.00 (tt, J = 6.9 and 7.6 Hz, 2H), 3.95 (t, J = 6.8 Hz, 2H), 5.67 (s, 2H), 5.81 (s, 2H), 6.92-6.97 (m, 8H), 7.31-7.37 (m, 8H) ppm; ¹³C NMR (100 MHz, CDCl₃), δ : 0.4, 14.2, 22.8, 26.4, 29.4, 29.6, 30.5, 32.0, 48.2, 52.3, 76.1, 100.1, 101.0, 111.1, 123.4, 124.0, 125.2 (2C), 135.2, 145.0, 145.2, 146.1, 149.7 ppm; IR (KBr) 1264, 2147 cm⁻¹; FAB-HRMS calcd for C₄₇H₄₆OSi (M⁺) 654.3318, found 654.3337.

Synthesis of Compound 21. A mixture of **18** (0.2 g, 0.29 mmol), Pd(OAc)₂ (0.01 g, 0.04 mmol), P(*o*-tolyl)₃ (0.02 g, 0.07 mmol), styrene (0.04 mL, 0.35 mmol), 2mL of anhydrous DMF, and 2 mL of triethylamine was heated to 90 °C for 16 h under argon. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in CH₂Cl₂ and washed with brine. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH₂Cl₂/hexane (1:5) as eluent afforded the white solid of **21** with a yield of 83%. M.P. 256-257 °C; ¹H NMR (500 MHz, CDCl₃) δ : 0.96 (t, *J* = 6.7 Hz, 3H), 1.39-1.54 (m, 8H), 1.68 (quin, *J* = 7.5 Hz, 2H), 2.03 (tt, *J* = 6.7 and 7.5 Hz, 2 H), 3.95 (t, *J* = 6.7 Hz, 2H), 5.71 (s, 2H), 5.72 (s, 2H), 6.72, (d, *J* = 16.4 Hz, 1H), 6.93-6.95 (m, 8H), 7.28-7.33, (m, 8H), 7.42-7.56 (m, 4H), 7.73, (d, *J* = 7.4 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 14.2, 22.7, 26.5, 29.4, 29.6, 30.6, 32.0, 48.3, 51.1, 76.0, 123.5, 123.6, 124.1, 125.1 (2C), 126.3, 126.7, 128.1, 129.0, 135.0, 136.2, 137.3, 142.3, 145.3, 145.6, 149.0 ppm; IR (KBr) 972, 1266 cm⁻¹; FAB-HRMS calcd for C₅₀H₄₄O (M⁺) 660.3392, found 660.3394.

Synthesis of Compound 22. A mixture of **18** (0.2 g, 0.29 mmol), Pd(dba)₂ (0.02 g, 0.03 mmol), PPh₃ (0.02 g, 0.08 mmol), phenylboronic acid (0.05 g, 0.40 mmol), Cs₂CO₃ (0.4 g, 1.23 mmol), and 5 mL of anhydrous dioxane was heated to 100 °C for 16 h under argon. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in CH₂Cl₂ and washed with brine. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH₂Cl₂/hexane (1:6) as eluent afforded the white solid of **22** with a yield of 83%. M.P. 160-161 °C; ¹H NMR (500 MHz, CDCl₃ δ : 0.97 (t, *J* = 6.6 Hz, 3H), 1.40-1.56 (m, 8H), 1.71 (quin, *J* = 7.5 Hz, 2H), 2.06 (tt, *J* = 6.7 and 7.5 Hz, 2H), 3.99 (t, *J* = 6.7 Hz, 2H), 5.30 (s, 2H), 5.74 (s, 2H), 6.89-6.96 (m, 8H), 7.12-7.13 (m, 4H), 7.26-7.35 (m, 6H), 7.58-7.66 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 14.5, 23.1, 26.8, 29.8, 30.0, 31.0, 32.3, 48.6, 51.6, 76.5, 123.8, 123.9, 125.4, 125.5, 127.7, 128.9, 130.2, 130.6, 134.9, 138.6, 142.6, 145.7, 146.0, 149.5 ppm; IR (KBr) 1266 cm⁻¹; FAB-HRMS calcd for C₄₈H₄₂O (M⁺) 634.3236, found 634.3230.

Synthesis of Compound 23. A mixture of 19 (1.0 g, 1.6 mmol), CuCN (0.3 g, 3.3 mmol), and 15 mL of anhydrous NMP (*N*-methylpyrrolidone) was heated to 200 °C for 16 h under argon. After the reaction mixture was cooled to rt, CH_2Cl_2 and water were added to dissolve the solids. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH_2Cl_2 /hexane (1:1) as eluent afforded the white solid of 23 with a yield of 87%. M.P. 281-282 °C; ¹H NMR (500 MHz, CDCl₃) δ : 0.95 (t, *J* = 6.7 Hz, 3H), 1.38-1.54 (m, 8H), 1.66 (quin, *J* = 7.4 Hz, 2H), 2.01 (tt, *J* = 6.7 and 7.4 Hz, 2H), 4.00 (t, *J* = 6.7 Hz, 2H), 5.70 (s, 2H), 5.74 (s, 2H), 6.97-7.01 (m, 8H), 7.33-7.43 (m, 8H) ppm; ¹³C NMR (125 MHz, CDCl₃), δ : 14.5,

23.0, 26.6, 29.7, 29.9, 30.9, 32.3, 48.4, 52.8, 76.6, 100.6, 116.7, 123.9, 124.5, 126.0 (2C), 137.4, 144.4, 144.6, 148.3, 153.1 ppm; IR (KBr) 1260, 2224 cm⁻¹; FAB-HRMS calcd for C₄₂H₃₇NO (M⁺) 583.2875, found 583.2878.

Synthesis of Compound 24. To a solution of 23 (1.0 g, 1.7 mmol) in 20 mL of CH₂Cl₂ at -20 °C was added 3.4 mL of 1.0 M DIBAL-H (diisobutylaluminum hydride (3.4 mmol) in hexane under argon. The mixture was stirred and kept at -20 °C for 16 h. The reaction was quenched by slowly adding 2 mL of concentrated HCl_(aq). The solution was then washed with brine. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated under reduced pressure. Column chromatography with CH₂Cl₂/hexane (1:2) as eluent afforded the white solid of 24 with a yield of 91%. M.P. 253-254 °C; ¹H NMR (500 MHz, CDCl₃) δ : 0.96 (t, *J* = 6.2 Hz, 3H), 1.39-1.54 (m, 8H), 1.69 (quin, *J* = 7.4 Hz, 2H), 2.04 (tt, *J* = 6.7 and 7.4 Hz, 2H), 4.00 (t, *J* = 6.7 Hz, 2H), 5.74 (s, 2H), 6.57 (s, 2H), 6.96-6.98 (m, 8H), 7.33-7.39 (m, 8H), 10.95 (s, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 14.5, 23.1, 26.7, 29.7, 29.9, 30.9, 32.3, 48.2, 49.0, 76.3, 123.6, 123.8, 124.5, 125.8 (2C), 137.3, 145.0 (2C C), 147.9, 153.8, 190.7 ppm; IR (KBr) 1275, 1688 cm⁻¹; FAB-HRMS calcd for C₄₃H₃₈O₂ (M⁺) 586.2872, found 586.2870.

