The Iptycene Chemistry: New Pentiptycene Building Blocks Derived from

Pentiptycene Quinones

Jye-Shane Yang* ${ }^{\dagger}$ and Ching-Wei Ko ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617 and
${ }^{\dagger}$ Department of Chemistry, National Central University, Chungli, Taiwan 32054

jsyang@ntu.edu.tw

Supporting Information Available. Experimental procedures and characterization data for compounds 17-24 and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 13,14 , and 17-24.

Contents:

S1	Table of contents
S2	Synthesis of Compounds $\mathbf{1 7}$ and $\mathbf{1 8}$
S3	Synthesis of Compounds $\mathbf{1 9}$ and $\mathbf{2 0}$
S4	Synthesis of Compound $\mathbf{2 1}$
S5	Synthesis of Compounds $\mathbf{2 2}$ and $\mathbf{2 3}$
S6	Synthesis of Compound $\mathbf{2 4}$
S7	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 3}$
S9	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4}$
S11	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 7}$
S13	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 8}$
S15	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 9}$
S17	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 0}$
S19	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 1}$
S21	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 2}$
S23	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 3}$
S25	${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 4}$

Synthesis of Compound 17. A mixture of $\mathbf{1 3}(2.0 \mathrm{~g}, 4.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.9 \mathrm{~g}, 6.5 \mathrm{mmol})$, KI ($1.1 \mathrm{~g}, 6.6 \mathrm{mmol}$), 1-bromooctane ($1.3 \mathrm{~g}, 6.7 \mathrm{mmol}$), and 100 mL of acetone in a $250-\mathrm{mL}$ flask was heated to reflux for 16 h . The acetone was removed under reduced pressure and the residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $20 \% \mathrm{HCl}_{(\mathrm{aq})}$. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:1) as eluent afforded the white solid of $\mathbf{1 7}$ with a yield of 91%.
M.P. 278-279 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.55(\mathrm{~m}$, 8 H), 1.69 (quin, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.03(\mathrm{tt}, J=6.8$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 6.93-6.99(\mathrm{~m}, 8 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta: 14.2,22.7,26.4,29.4,29.6,30.6,31.9,48.1,54.2,76.0$, 115.8, 123.4 (2C), 125.0, 125.1, 134.8, 144.3, 145.1, 145.7, 149.8 ppm ; IR (KBr) 1221 cm^{-1}; FAB-HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{O}\left(\mathrm{M}^{+}\right) 558.2923$, found 558.2927.

Synthesis of Compound 18. A mixture of $17(0.3 \mathrm{~g}, 0.54 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{SO}_{4}(0.8 \mathrm{~g}$, $2.57 \mathrm{mmol}), \mathrm{I}_{2}(0.7 \mathrm{~g}, 2.76 \mathrm{mmol})$, and 30 mL of ethanol in a $50-\mathrm{mL}$ flask was heated to reflux for 3 h . The resulting precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 0.1 $\mathrm{M} \mathrm{Na} \mathrm{NO}_{3(\mathrm{aq})}$ and brine. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:3) as eluent afforded the white solid of $\mathbf{1 8}$ with a yield of 94%. M.P. $267-268^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.51(\mathrm{~m}, 8 \mathrm{H})$, 1.66 (quin, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.01(\mathrm{tt}, J=6.9$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.67(\mathrm{~s}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 6.93-6.99(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.2,22.7,26.4,29.4,29.6,30.5,31.9,48.6,58.6,76.1,88.7,123.4$, $123.9,125.3,125.4,137.1,144.9,145.0,147.0,149.9 \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}) 1219 \mathrm{~cm}^{-1}$; FAB-HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{IO}\left(\mathrm{M}^{+}\right) 684.1889$, found 684.1897.

Synthesis of Compound 19. A mixture of $17(0.5 \mathrm{~g}, 0.9 \mathrm{mmol})$, NBS ($0.3 \mathrm{~g}, 1.7 \mathrm{mmol}$), and 10 mL of DMF in a $25-\mathrm{mL}$ flask was heated to reflux for 48 h . The DMF was removed under reduced pressure and the residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:1) as eluent afforded the white solid of $\mathbf{1 9}$ with a yield of 90%. M.P. 271-272 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.57(\mathrm{~m}, 8 \mathrm{H}), 1.70(q u i n, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{tt}, J=6.6$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 5.88$ (s, 2H), 6.97-7.01 (m, 8H), 7.35-7.41 (m, 8H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.5$, 23.1, 26.7, 29.7, 29.9, 30.9, 32.3, 48.9, 54.0, 76.5, 111.8, 123.8, 124.3, 125.6, 125.7, 137.9, 143.7, 145.2, 145.3, 149.2 ppm ; IR (KBr) $1221 \mathrm{~cm}^{-1}$; FAB-HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{BrO}\left(\mathrm{M}^{+}\right)$636.2028, found 636.2040.

Synthesis of Compound 20. A mixture of $18(0.2 \mathrm{~g}, 0.29 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.04 \mathrm{~g}, 0.03$ $\mathrm{mmol})$, trimethylsilyl acetylene ($0.05 \mathrm{~mL}, 0.35 \mathrm{mmol}$), 3 mL of benzene, and 3 mL of diisopropylamine was heated to $90^{\circ} \mathrm{C}$ for 16 h under argon. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:6) as eluent afforded the white solid of $\mathbf{2 0}$ with a
yield of 90%. M.P. $257-258{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.50(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.65(\mathrm{quin}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{tt}, J=6.9$ and 7.6 Hz , $2 \mathrm{H}), 3.95(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 6.92-6.97(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.37(\mathrm{~m}$, $8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 0.4,14.2,22.8,26.4,29.4,29.6,30.5,32.0$, $48.2,52.3,76.1,100.1,101.0,111.1,123.4,124.0,125.2$ (2C), 135.2, 145.0, 145.2, 146.1, 149.7 ppm ; IR (KBr) 1264, $2147 \mathrm{~cm}^{-1}$; FAB-HRMS calcd for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$654.3318, found 654.3337 .

Synthesis of Compound 21. A mixture of $18(0.2 \mathrm{~g}, 0.29 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{~g}, 0.04$ $\mathrm{mmol}), \mathrm{P}(o \text {-tolyl })_{3}(0.02 \mathrm{~g}, 0.07 \mathrm{mmol})$, styrene $(0.04 \mathrm{~mL}, 0.35 \mathrm{mmol}), 2 \mathrm{~mL}$ of anhydrous DMF, and 2 mL of triethylamine was heated to $90{ }^{\circ} \mathrm{C}$ for 16 h under argon. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:5) as eluent afforded the white solid of $\mathbf{2 1}$ with a yield of 83%. M.P. $256-257^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.96(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.39-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.68$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{tt}, J=6.7$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 6.72,(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.95(\mathrm{~m}, 8 \mathrm{H})$, 7.28-7.33, (m, 8H), 7.42-7.56 (m, 4H), 7.73, (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.2,22.7,26.5,29.4,29.6,30.6,32.0,48.3,51.1,76.0,123.5,123.6$, 124.1, 125.1 (2C), 126.3, 126.7, 128.1, 129.0, 135.0, 136.2, 137.3, 142.3, 145.3, 145.6, 149.0 ppm ; IR (KBr) 972, $1266 \mathrm{~cm}^{-1}$; FAB-HRMS calcd for $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{O}\left(\mathrm{M}^{+}\right) 660.3392$, found 660.3394 .

Synthesis of Compound 22. A mixture of $\mathbf{1 8}(0.2 \mathrm{~g}, 0.29 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(0.02 \mathrm{~g}, 0.03$ $\mathrm{mmol}), \mathrm{PPh}_{3}(0.02 \mathrm{~g}, 0.08 \mathrm{mmol})$, phenylboronic acid $(0.05 \mathrm{~g}, 0.40 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{~g}$, 1.23 mmol), and 5 mL of anhydrous dioxane was heated to $100^{\circ} \mathrm{C}$ for 16 h under argon. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. The residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:6) as eluent afforded the white solid of 22 with a yield of 83%. M.P. $160-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta: 0.97(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.40-1.56(\mathrm{~m}, 8 \mathrm{H}), 1.71$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{tt}, J=6.7$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.99(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 6.89-6.96(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.13(\mathrm{~m}, 4 \mathrm{H})$, 7.26-7.35 (m, 6H), 7.58-7.66 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.5,23.1$, $26.8,29.8,30.0,31.0,32.3,48.6,51.6,76.5,123.8,123.9,125.4,125.5,127.7,128.9$, $130.2,130.6,134.9,138.6,142.6,145.7,146.0,149.5 \mathrm{ppm}$; $\mathrm{IR}(\mathrm{KBr}) 1266 \mathrm{~cm}^{-1}$; FAB-HRMS calcd for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}\left(\mathrm{M}^{+}\right)$634.3236, found 634.3230.

Synthesis of Compound 23. A mixture of $\mathbf{1 9}(1.0 \mathrm{~g}, 1.6 \mathrm{mmol}), \mathrm{CuCN}(0.3 \mathrm{~g}, 3.3 \mathrm{mmol})$, and 15 mL of anhydrous NMP (N-methylpyrrolidone) was heated to $200{ }^{\circ} \mathrm{C}$ for 16 h under argon. After the reaction mixture was cooled to $\mathrm{rt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water were added to dissolve the solids. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:1) as eluent afforded the white solid of $\mathbf{2 3}$ with a yield of 87%. M.P. $281-282^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.38-1.54 (m, 8H), 1.66 (quin, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{tt}, J=6.7$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 5.74$ $(\mathrm{s}, 2 \mathrm{H}), 6.97-7.01(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 14.5$,
$23.0,26.6,29.7,29.9,30.9,32.3,48.4,52.8,76.6,100.6,116.7,123.9,124.5,126.0$ (2C), 137.4, 144.4, 144.6, 148.3, 153.1 ppm ; IR (KBr) $1260,2224 \mathrm{~cm}^{-1}$; FAB-HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{NO}\left(\mathrm{M}^{+}\right) 583.2875$, found 583.2878.

Synthesis of Compound 24. To a solution of $23(1.0 \mathrm{~g}, 1.7 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ was added 3.4 mL of 1.0 M DIBAL-H (diisobutylaluminum hydride (3.4 mmol) in hexane under argon. The mixture was stirred and kept at $-20^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched by slowly adding 2 mL of concentrated $\mathrm{HCl}_{(\mathrm{aq})}$. The solution was then washed with brine. The organic layer was dried over anhydrous MgSO_{4} and the filtrate was concentrated under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:2) as eluent afforded the white solid of $\mathbf{2 4}$ with a yield of 91%. M.P. $253-254{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.96(\mathrm{t}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.39-1.54 (m, 8 H), 1.69 (quin, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{tt}, J=6.7$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 6.57$ ($\mathrm{s}, 2 \mathrm{H}$), 6.96-6.98 (m, 8H), 7.33-7.39 (m, 8H), $10.95(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 14.5,23.1,26.7,29.7,29.9,30.9,32.3,48.2,49.0,76.3,123.6,123.8,124.5$, 125.8 (2C), 137.3, 145.0 (2C C), 147.9, 153.8, 190.7 ppm ; IR (KBr) $1275,1688 \mathrm{~cm}^{-1}$; FAB-HRMS calcd for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 586.2872$, found 586.2870.

966 ＇90—————
$95 \angle 60 —$

LOG＇ \mathcal{L}
2BE・ロट！
ロこの S己…
199 G己
して9 เЕ
681 8E
टع8 8 に
888 とロ
86てロロレー
EカのくロIー
wdd

$$
\begin{aligned}
& \varepsilon \\
& ट \\
& ट \\
& 6 \\
& \vdots \\
& L \\
& 9
\end{aligned}
$$

との「ロレ
ટしくこટ 28E 9
68E．

L8G 08

∞
$\angle 9580$ \qquad $-$

LV「9
$589 \cdot 92$
$200^{\circ} \mathrm{LL}$
LOC LL

80 L 88

EOロE6. $\varepsilon-$
ESLD6.
OOT
00196.

> LSV「レー
> こ己く こ ट2 ESD•92
> 0と9•6ट
> $\begin{aligned} & 0 \varepsilon 9 \cdot 6 ट \\ & 685 \cdot 0 \varepsilon\end{aligned}$
> 68G.0E

$970.9<$
$80<9$
100
102
$992<L$

wdd

295 9L
$901 . \angle L$
098
－I9．LL

089 005——
$50 \angle 9$ ． 9
$826 \cdot \varepsilon$ としう
$\underset{\substack{\text { EVS．} \\ \text { ILE } \\ \square 20.921}}{ }$
ロ20．92！

O8E ロロルー
899．0ロに
292＇ 8 b
Oロよとら！
wdd

958．LL
$059<L$
685° と \downarrow
0 02 とटा
$\angle 5 G \cdot \square 2$
28 \angle－ $\mathrm{SL!}$
した8•Gご
98 LEL $^{\circ}$
000° GDV
8ロO．Gロト—
G88．$\angle \square$ Iー
SOB．$\varepsilon \varsigma โ$
$699^{\circ} 06 I-$
wdd
\qquad

