Supporting Information

Synthesis and Ring Size Effect of Macrocyclic Ethynylhelicene Oligomers

Yusuke Takahira, Hiroki Sugiura, and Masahiko Yamaguchi ${ }^{*}, \dagger$
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
${ }^{\dagger}$ Tohoku University 21 st Century COE Program CRESCENDO, Sendai, Japan E-mail: yama@mail.pharm.tohoku.ac.jp

Table of Contents

General experimental methods Page S2
Characterization data for compounds $\mathbf{1 b} \mathbf{- 1 d}$, and $\mathbf{2 f}$ Page S3-S4
Variable-concentration ${ }^{1} \mathrm{H}$ NMR data of $[n+n]$ cycloalkynes $(n=4-7)$ Page S5
Variable-temperature CD data of $[n+n]$ cycloalkynes ($n=4-8$) Page S6
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Page S7-S12

General experimental methods

Reagents were purchased from commercial suppliers, and were used without further purification. Solvents were purchased from commercial suppliers, and were purified as follows before use: Dry N, N-dimethylformamide was purchased, and was used without further purification. Triethylamine was distilled from calcium hydride. Toluene was distilled from calcium hydride, and stored over $4 \AA$ molecular sieves. Tetrahydrofuran was freshly distilled from sodium/benzophenone ketyl prior to use. ${ }^{1} \mathrm{H}$ NMR spectra taken in CDCl_{3} were referenced to tetramethylsilane ($\delta 0.00$) as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra taken in CDCl_{3} were referenced to the residual solvent ($\delta 77.0$). MALDI-TOF mass spectra were recorded using α-cyano-4-hydroxycinnamic acid as a matrix. Vapor pressure osmometry (VPO) was conducted using benzil as a standard.

Characterization data for compounds $\mathbf{1 b} \mathbf{- 1 d}$, and $\mathbf{2 f}$

[4+4]Cycloalkyne 1b. The compound ($23.8 \mathrm{mg}, 0.0106 \mathrm{mmol}, 42 \%$) was prepared from desilylated acyclic tetramer $\mathbf{2 b}^{4}(50 \mathrm{mg}, 0.0251 \mathrm{mmol}): \mathrm{mp} 192-194^{\circ} \mathrm{C}$ (toluene-methanol); $[\alpha]^{22}{ }_{\mathrm{D}}$ -995 (c 0.10, CHCl_{3}); MALDI-TOF MS m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+} 2252.0$, found 2251.8 ; VPO $\left(\mathrm{CHCl}_{3}\right.$, $\left.5.4 \mathrm{mM}, 35{ }^{\circ} \mathrm{C}\right) 2150 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; UV-vis $\left(\mathrm{CHCl}_{3}, 1 \mu \mathrm{M}, 25{ }^{\circ} \mathrm{C}\right) \lambda_{\text {max }}(\varepsilon) 335 \mathrm{~nm}\left(3.2 \times 10^{5}\right) ; \mathrm{CD}$ $\left(\mathrm{CHCl}_{3}, 5 \mu \mathrm{M}, 25^{\circ} \mathrm{C}\right) \lambda(\Delta \varepsilon) 266 \mathrm{~nm}(191), 290 \mathrm{~nm}(-13), 331 \mathrm{~nm}(324), 354 \mathrm{~nm}(-305), 389 \mathrm{~nm}$ (-273); IR (KBr) 2204, $1724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) $\delta 0.84(12 \mathrm{H}, \mathrm{t}, J=$ $6.8 \mathrm{~Hz}), 1.19-1.43(48 \mathrm{H}, \mathrm{m}), 1.43-1.52(8 \mathrm{H}, \mathrm{m}), 1.84(8 \mathrm{H}, \mathrm{tt}, J=8.7,6.7 \mathrm{~Hz}), 1.95(24 \mathrm{H}, \mathrm{s}), 4.41$ ($8 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}$), $7.45(8 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.67(8 \mathrm{H}, \mathrm{dd}, J=8.2,7.0 \mathrm{~Hz}), 8.05(8 \mathrm{H}, \mathrm{s}), 8.10(4 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}), 8.31(8 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 8.47(8 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}\right.$, $\left.25{ }^{\circ} \mathrm{C}\right) \delta 14.2,22.8,23.3,26.2,28.9,29.41,29.44,29.7,32.0,65.9,89.2,92.8,119.7,123.5,124.1$, 126.7, 126.9, 129.1, 129.7, 130.8, 130.9, 131.3, 132.0, 132.3, 136.8, 138.3, 165.2. Anal. $\left(\mathrm{C}_{164} \mathrm{H}_{152} \mathrm{O}_{8}\right)$ Calcd: C, $87.51 ; \mathrm{H}, 6.81$. Found: C, $87.81 ; \mathrm{H}, 6.89$.
[5+5]Cycloalkyne 1c. The compound ($23.0 \mathrm{mg}, 0.00818 \mathrm{mmol}, 42 \%$) was prepared from desilylated acyclic pentamer $\mathbf{2 c}{ }^{4}$ ($50 \mathrm{mg}, 0.0196 \mathrm{mmol}$): mp 212-214 ${ }^{\circ} \mathrm{C}$ (toluene-methanol); $[\alpha]^{22}{ }_{\mathrm{D}}$ -768 (c 0.10, CHCl_{3}); MALDI-TOF MS m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+} 2814.7$, found 2814.6; VPO $\left(\mathrm{CHCl}_{3}\right.$, $\left.5.3 \mathrm{mM}, 35{ }^{\circ} \mathrm{C}\right) 2780 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; UV-vis $\left(\mathrm{CHCl}_{3}, 1 \mu \mathrm{M}, 25{ }^{\circ} \mathrm{C}\right) \lambda_{\text {max }}(\varepsilon) 341 \mathrm{~nm}\left(3.9 \times 10^{5}\right) ; \mathrm{CD}$ $\left(\mathrm{CHCl}_{3}, 5 \mu \mathrm{M}, 25^{\circ} \mathrm{C}\right) \lambda(\Delta \varepsilon) 266 \mathrm{~nm}(303), 297 \mathrm{~nm}(-28), 335 \mathrm{~nm}(281), 390 \mathrm{~nm}(-320) ;$ IR (KBr) $2204,1723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) $\delta 0.85(15 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 1.20-1.43$ $(60 \mathrm{H}, \mathrm{m}), 1.43-1.52(10 \mathrm{H}, \mathrm{m}), 1.83(10 \mathrm{H}, \mathrm{tt}, J=7.8,6.8 \mathrm{~Hz}), 1.96(30 \mathrm{H}, \mathrm{s}), 4.38(10 \mathrm{H}, \mathrm{t}, J=6.8$ $\mathrm{Hz}), 7.47(10 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.70(10 \mathrm{H}, \mathrm{dd}, J=8.2,7.0 \mathrm{~Hz}), 8.10(10 \mathrm{H}, \mathrm{s}), 8.15(5 \mathrm{H}, \mathrm{d}, J=1.5$ $\mathrm{Hz}), 8.27(10 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 8.48(10 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}\right.$, $\left.25{ }^{\circ} \mathrm{C}\right) \delta 14.3,22.8,23.4,26.2,28.9,29.4,29.5,29.7,32.0,65.8,89.3,93.0,119.8,123.5,124.1$, $126.7,126.9,129.2,129.8,130.8,131.0,131.20,131.25,132.0,136.8,138.3,165.2$. Anal. $\left(\mathrm{C}_{205} \mathrm{H}_{190} \mathrm{O}_{10}\right)$ Calcd: C, 87.51 ; H, 6.81. Found: C, 87.33; H, 6.89.
[6+6]Cycloalkyne 1d. The compound ($21.4 \mathrm{mg}, 0.00634 \mathrm{mmol}, 40 \%$) was prepared from desilylated acyclic hexamer $\mathbf{2 d}{ }^{4}(50 \mathrm{mg}, 0.0160 \mathrm{mmol}): \mathrm{mp} 206-208^{\circ} \mathrm{C}$ (toluene-methanol); $[\alpha]^{22}{ }_{\mathrm{D}}$ $-872\left(c \quad 0.10, \mathrm{CHCl}_{3}\right)$; MALDI-TOF MS m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+} 3377.4$, found: 3377.7 ; VPO $\left(\mathrm{CHCl}_{3}\right.$, $\left.5.3 \mathrm{mM}, 35{ }^{\circ} \mathrm{C}\right) 3300 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; UV-vis $\left(\mathrm{CHCl}_{3}, 1 \mu \mathrm{M}, 25{ }^{\circ} \mathrm{C}\right) \lambda_{\text {max }}(\varepsilon) 340 \mathrm{~nm}\left(4.4 \times 10^{5}\right) ; \mathrm{CD}$ $\left(\mathrm{CHCl}_{3}, 5 \mu \mathrm{M}, 25^{\circ} \mathrm{C}\right) \lambda(\Delta \varepsilon) 267 \mathrm{~nm}(318), 288 \mathrm{~nm}(94), 332 \mathrm{~nm}(382), 392 \mathrm{~nm}(-448) ; \mathrm{IR}(\mathrm{KBr})$

2204, $1723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) $\delta 0.85(18 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.18-1.49$ $(84 \mathrm{H}, \mathrm{m}), 1.77-1.88(12 \mathrm{H}, \mathrm{m}), 1.88(36 \mathrm{H}, \mathrm{s}), 4.30-4.41(12 \mathrm{H}, \mathrm{m}), 7.45(12 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.68$ $(12 \mathrm{H}, \mathrm{dd}, J=7.5,7.0 \mathrm{~Hz}), 8.08(12 \mathrm{H}, \mathrm{s}), 8.14(6 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 8.26(12 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 8.45$ $(12 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) $\delta 14.3,22.8,23.3,26.2,28.9,29.4$, 29.5, 29.7, 32.0, 65.8, 89.4, 93.1, 119.7, 123.5, 124.1, 126.6, 126.8, 129.1, 129.9, 130.7, 130.9, 131.2, 131.9, 132.1, 136.7, 138.1, 165.2. Anal. $\left(\mathrm{C}_{246} \mathrm{H}_{228} \mathrm{O}_{12}\right)$ Calcd: C, 87.51; H, 6.81. Found: C, 87.32; H, 6.89.

Desilylated acyclic octamer 2f. To a solution of bis(trimethylsilyl)-protected acyclic octamer ${ }^{4}$ (90 $\mathrm{mg}, 0.0205 \mathrm{mmol}$) in tetrahydrofuran (3.0 mL) was added 1.0 M tetrabutylammonium fluoride (3.0 equiv, $0.0615 \mathrm{mmol}, 0.0615 \mathrm{~mL}$) in tetrahydrofuran at $0^{\circ} \mathrm{C}$. After being stirred for 10 min at that temperature, saturated aqueous ammonium chloride was added. The organic materials were extracted with toluene. The organic layer was washed with brine, and dried over anhydrous magnesium sulfate. The solvents were evaporated under reduced pressure, and silica gel flash column chromatography $\left(\mathrm{CHCl}_{3}\right)$ gave $2 \mathrm{f}(83.5 \mathrm{mg}, 0.0197 \mathrm{mmol}, 96 \%): \mathrm{mp}>155{ }^{\circ} \mathrm{C}$ dec (toluene-methanol); $[\alpha]^{22}{ }_{\mathrm{D}}+4974$ (c 0.10, α, α, α-trifluoromethylbenzene, within 30 min after dissolution); MALDI-TOF MS m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}$4244.6, found 4244.8; UV-vis (α, α, α-trifluoromethylbenzene, $1 \mu \mathrm{M}$, within 10 min after dissolution, $25^{\circ} \mathrm{C}$) $\lambda_{\max }(\varepsilon) 323 \mathrm{~nm}(3.0$ $\times 10^{5}$); IR (KBr) $3306,2205,1722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \mathrm{mM}$, observed at $60{ }^{\circ} \mathrm{C}$ after being heated at $60^{\circ} \mathrm{C}$ for 3 h$) \delta 0.85(21 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.20-1.46(84 \mathrm{H}, \mathrm{m}), 1.46-1.54(14 \mathrm{H}$, $\mathrm{m}), 1.81-1.88(14 \mathrm{H}, \mathrm{m}), 1.94(6 \mathrm{H}, \mathrm{s}), 1.95(6 \mathrm{H}, \mathrm{s}), 1.98(36 \mathrm{H}, \mathrm{s}), 3.52(2 \mathrm{H}, \mathrm{s}), 4.39-4.43(14 \mathrm{H}, \mathrm{m})$, $7.43(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.44-7.50(14 \mathrm{H}, \mathrm{m}), 7.63(2 \mathrm{H}, \mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}), 7.67-7.73(14 \mathrm{H}, \mathrm{m})$, $8.04(2 \mathrm{H}, \mathrm{s}), 8.07(2 \mathrm{H}, \mathrm{s}), 8.11(4 \mathrm{H}, \mathrm{s}), 8.12(8 \mathrm{H}, \mathrm{s}), 8.15-8.17(2 \mathrm{H}, \mathrm{m}), 8.17-8.19(5 \mathrm{H}, \mathrm{m})$, 8.31-8.33 ($2 \mathrm{H}, \mathrm{m}$), 8.33-8.36 ($12 \mathrm{H}, \mathrm{m}$), $8.43(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.50-8.56(14 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \mathrm{mM}\right.$, observed at $60^{\circ} \mathrm{C}$ after being heated at $60^{\circ} \mathrm{C}$ for 3 h$) \delta 14.0,22.7,23.08$, 23.13, 26.1, 28.9, 29.30, 29.34, 29.6, 31.9, 65.8, 89.5, 93.1, 120.1, 123.7, 124.5, 126.96, 127.03, 127.1, 129.3, 130.0, 130.5, 131.0, 131.16, 131.22, 131.8, 132.4, 137.1, 138.3, 165.5. Anal. $\left(\mathrm{C}_{311} \mathrm{H}_{282} \mathrm{O}_{14}\right)$ Calcd: C, 88.02; H, 6.70. Found: C, 87.91 ; H, 6.73.

Figure S1. Concentration dependences $(0.1-5.0 \mathrm{mM})$ of chemical shifts for aromatic protons of $[n+n]$ cycloalkynes $(n=4-8)$ measured by ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$. a) $\left.\mathbf{1 b}, \mathrm{b}\right) \mathbf{1 c}$ c c) $\mathbf{1 d}$, d) $\mathbf{1 e}$, and e) $\mathbf{1 f}$.

Figure S2. CD spectra $\left(\mathrm{CHCl}_{3}, 5 \mu \mathrm{M}\right)$ of $[n+n]$ cycloalkynes $(n=4-7)$ observed at $60^{\circ} \mathrm{C}$ (red line), $25^{\circ} \mathrm{C}$ (orange line), and $5^{\circ} \mathrm{C}$ (light green line). a) $\mathbf{1 b}$, b) $\mathbf{1 c}$, c) $\mathbf{1 d}$, and d) $\mathbf{1 e}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) spectrum of $\mathbf{1 b}$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) spectrum of $\mathbf{1 b}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) spectrum of $\mathbf{1 c}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathbf{1 c}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.5 \mathrm{mM}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathbf{1 d}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathbf{1 d}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) spectrum of $\mathbf{1 e}$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) spectrum of $\mathbf{1 e}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 0.5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) spectrum of $\mathbf{1 f}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 5 \mathrm{mM}, 25^{\circ} \mathrm{C}$) spectrum of $\mathbf{1 f}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \mathrm{mM}\right.$, observed at $60^{\circ} \mathrm{C}$ after being heated at $60^{\circ} \mathrm{C}$ for 3 h) spectrum of $\mathbf{2 f}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1 \mathrm{mM}$, observed at $60^{\circ} \mathrm{C}$ after being heated at $60{ }^{\circ} \mathrm{C}$ for $3 \mathrm{~h})$ spectrum of $\mathbf{2 f}$.

