Supplementary Material

Toward an intimate understanding of the structural properties and the conformational preference of oxoesters and thioesters: gas and crystal structure and conformational analysis of Dimethyl Monothiocarbonate, CH₃OC(O)SCH₃

Mauricio F. Erben, Roland Boese, Carlos O. Della Védova, Heinz Oberhammer, and Helge Willner

Table of contents for supporting information

- S4 Table SM1. Observed and Calculated Vibrational Data for (sp,sp) and (sp,ap) conformers of CH₃OC(O)SCH₃
- **S6 Table SM2.** Interatomic Distances, Experimental and Calculated Vibrational Amplitudes and Vibrational Corrections for CH₃OC(O)SCH₃ (Without Distances Involving Hydrogens).
- **S7 Table SM3**. Crystal data and structure refinement for CH₃OC(O)SCH₃
- **S9 Table SM4**. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for CH₃OC(O)SCH₃. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.
- S10 Table SM5. Hydrogen coordinates ($x \ 10^4$) and displacement parameters (Å² $x \ 10^3$) for CH₃OC(O)SCH₃.
- **S11 Table SM6.** Anisotropic displacement parameters (Å²x 10³) for CH₃OC(O)SCH₃. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]
- **S12 Table SM7.** Electronic Energies (E), Zero Point Energies (ZPE), and Number of Imaginary Frequencies for Conformers and Transition States (TS) of CH₃OC(O)SCH₃ Calculated at different Levels of Approximation.

- **S13 Table SM8.** Cartesian Coordinates of the Optimized Structure for (sp,sp) at the MP2/6-31+G* Level of Approximation
- **S14 Table SM9.** Cartesian Coordinates of the Optimized Structure for (ap,sp) at the MP2/6-31+G* Level of Approximation
- **S15 Table SM10.** Cartesian Coordinates of the Optimized Structure for (sp,ap) at the MP2/6-31+G* Level of Approximation
- **S16 Table SM11.** Cartesian Coordinates of the Optimized Structure for (sp,sp) at the MP2/6-311++G(d,p) Level of Approximation
- **S17 Table SM12.** Cartesian Coordinates of the Optimized Structure for (ap,sp) at the MP2/6-311++G(d,p) Level of Approximation
- **S18 Table SM13.** Cartesian Coordinates of the Optimized Structure for (sp,ap) at the MP2/6-311++G(d,p) Level of Approximation
- **S19 Table SM14.** Cartesian Coordinates of the Optimized Structure for (sp,sp) at the B3LYP/6-31+G(d) Level of Approximation
- **S20 Table SM15.** Cartesian Coordinates of the Optimized Structure for (ap,sp) at the B3LYP|6-31+G(d) Level of Approximation
- **S21 Table SM16.** Cartesian Coordinates of the Optimized Structure for (sp,ap) at the B3LYP/6-31+G(d) Level of Approximation
- **S22 Table SM17.** Cartesian Coordinates of the Optimized Structure for (sp,sp) at the B3LYP|6-311++G(3df,2p) Level of Approximation

- **S23 Table SM18.** Cartesian Coordinates of the Optimized Structure for (ap,sp) at the B3LYP|6-311++G(3df,2p) Level of Approximation
- **S24 Table SM19.** Cartesian Coordinates of the Optimized Structure for (sp,ap) at the B3LYP/6-311++G(3df,2p) Level of Approximation
- **S25 Table SM20.** Cartesian Coordinates of the Optimized Structure for the Transition State TS connecting the (sp,sp) and the (ap,sp) conformers at the B3LYP/6-31+G* Level of Approximation
- **S26 Table SM21.** Cartesian Coordinates of the Optimized Structure for the Transition State TS connecting the (sp,sp) and the (ap,sp) conformers at the B3LYP/ 6-311++G(3df,2p) Level of Approximation
- **S27 Table SM22.** Cartesian Coordinates of the Optimized Structure for the Transition State TS connecting the (sp,sp) and the (sp,ap) conformers at the B3LYP/6-31+G* Level of Approximation
- **S28 Table SM23.** Cartesian Coordinates of the Optimized Structure for the Transition State TS (sp,sp) \rightarrow (sp,ap) at the B3LYP/6-311++G(3df,2p) Level of Approximation
- **S29** Figure SM1. Upper trace: IR (gas) spectrum of CH₃OC(O)SCH₃ (8.8 mbar at 200 mm optical path length and 300 K). Lower trace: Raman (liquid) spectrum of CH₃OC(O)SCH₃.
- **S30** Figure SM2. Experimental (dots) and calculated (full line) molecular intensities for long (above) and short (below) nozzle-to-plate distances and residuals for CH₃OC(O)SCH₃.

IR (gas) ^a	Raman(liq) ^b	MP2 6-311++G** ^c		B 6-311+-	3LYP +G(3df , 2p) ^d	Symmetry species/ Approximate description of mode ^e
		(sp,sp)	(sp,ap)	(sp,sp)	(sp,ap)	
		88 (<1)	56 (<1)	97 (<1)	99 (<1)	<i>a</i> "/ torsion SCH ₃
		108 (1)	132 (<1)	109 (<1)	122 (<1)	<i>a</i> "/ torsion OCH ₃
		131 (<1)	145 (<1)	126 (<1)	144 (<1)	a"/ torsion C-S
		168 (<1)	167 (<1)	159 (<1)	167 (<1)	a"/ torsión C-O
	198 w	195 (<1)	200 (<1)	184 (<1)	183 (<1)	a'/ def O–C–S
	320 m	312 (4)	316 (3)	297 (<1)	300 (3)	a'/ def antisym C–S–C
	395 s	401 (2)	425 (1)	386 (3)	411 (1)	a'/ def sym C–O–C
	502 s	520 (<1)	482 (<1)	497 (2)	460 (<1)	a'/ rock C=O
679 (2)		675(2)	671 (2)	687 (<1)	684 (<1)	a"/ def oop C=O
	723 s	763 (<1)	757 (<1)	714 (2)	705 (2)	a'/ stretch S–CH ₃
815 (5)	818 m	839 (5)	836 (5)	827 (<1)	826 (5)	<i>a</i> '/ stretch sym O–C–S
873 (3)	954 w	1003 (3)	997 (3)	973 (4)	969 (1)	a'/ stretch O–CH ₃
969 (2)	982	1004 (1)	1000 (1)	981 (1)	977 (<1)	a'/pasSCH ₃
		1031 (<1)	1034 (2)	1003 (<1)	1003 (4)	a'/ rock S–CH ₃
		1192 (<1)	1192 (<1)	1174 (<1)	1166 (100)	a"/pasOCH ₃
1151 (100)	1194 vw	1205 (100)	1193 (100)	1178 (100)	1174 (<1)	a'/ stretch antisym O– C–S
$A \begin{cases} 1188 \\ 1196 (42) \\ 1200 \end{cases}$		1233 (57)	1224 (15)	1215 (18)	1208 (7)	a'/ rock O–CH ₃
1318(3)		1399 (<1)	1403 (2)	1359 (<1)	1361 (1)	<i>a</i> ['] / def sym S–CH ₃
1436 (5)		1461 (2)	1461 (2)	1464 (1)	1468 (2)	a'/ def sym O–CH ₃
1442 (9)	1442 m,broad	1492 (1)	1491 (1)	1472 (2)	1470 (2)	<i>a</i> "/ def antisym S–CH ₃
		1495 (3)	1496 (4)	1479 (2)	1482 (4)	<i>a</i> ^{'/} def antisym S–CH ₃

Table SM1. Observed and Calculated Vibrational Data for (sp,sp) and (sp,ap) conformers of CH₃OC(O)SCH₃.

		1504 (2)	1501 (2)	1488 (2)	1486 (2)	<i>a</i> "/ def antisym O–CH ₃
		1521 (3)	1521 (3)	1501 (2)	1501 (2)	<i>a</i> ['] / def antisym O–CH ₃
$\begin{cases} 1729 \\ 1740 \end{cases} (52)$	1712 m	1768 (53)	1764 (66)	1764 (45)	1761 (68)	a'/ stretch C=O
(2842		3100 (7)	3099 (3)	3051 (5)	3054 (6)	<i>a</i> '/ sym stretch OCH ₃
$A = \begin{bmatrix} 2842 \\ 2848 (1) \\ 2852 \end{bmatrix}$		3101 (2)	3102 (6)	3056 (2)	3056 (2)	<i>a</i> '/ sym stretch SCH ₃
$ \begin{bmatrix} 2853 \\ 2940 \\ 2946 \end{bmatrix} $ $ \begin{bmatrix} 2968 \\ 2962 \end{bmatrix} $ $ \begin{bmatrix} 3005 \\ 3020 \end{bmatrix} $ (<1)	2838 s 2936 vs	3195 (3)	3189 (1)	3123 (3)	3128 (2)	<i>a</i> "/ antisym stretch OCH ₃
	2955 vs	3203 (1)	3198 (3)	3142 (<1)	3137 (2)	<i>a'/</i> antisym stretch SCH ₃
	3013 s	3211 (1)	3213 (1)	3149 (<1)	3151 (1)	<i>a</i> "/ antisym stretch SCH ₃
		3229 (2)	3227 (2)	3156 (2)	3156 (1)	<i>a</i> ^{'/} antisym stretch OCH ₃

^{*a*} In parentheses relative absorbance at band maximum. The band contour is indicated. ^{*b*} Liquid, room temperature, band intensities: vs= very strong, s= strong, m= medium, w= weak, vw= very weak. ^{*c*} In parentheses relative band strength of (sp,sp) and (sp,ap) rotamers; $100 \equiv 471$ and 501 km/mol, respectively. ^{*d*} In parentheses relative band strength of (sp,sp) and (sp,ap) rotamers; $100 \equiv 600$ and 524 km/mol, respectively. ^{*e*} (sp,sp) conformer.

Table SM2. Interatomic Distances, Experimental and Calculated Vibrational Amplitudes and Vibrational Corrections for CH₃OC(O)SCH₃ (Without Distances Involving Hydrogens).^a

	Distance	Ampl. (exp)		Ampl. (calc) ^b	$\Delta \mathbf{r} = \mathbf{r}_{h1} - \mathbf{r}_{a}$
C=0	1.20	0.036(5)	<i>l</i> 1	0.038	0.001
C1–O2	1.33	0.045 °		0.045	0.002
C2–O2	1.44	0.048 ^c		0.048	0.002
S-C	1.76 - 1.80	0.049 ^c		0.049	0.001
0102	2.26	0.051 ^c		0.051	0.004
C1 C2	2.30	0.075(8)	<i>l</i> 2	0.063	0.003
C2 O1	2.62	0.088(18)	13	0.095	-0.002
SO1	2.66	0.061(7)	<i>l</i> 4	0.056	0.004
C1C3	2.72	0.070(22)	<i>l</i> 5	0.080	0.004
C3 O1	2.89	0.093(25)	<i>l</i> 6	0.119	-0.007
SC2	3.85	0.075(8)	<i>l</i> 2	0.067	0.018
C3 O2	3.93	0.070(22)	15	0.076	0.019
C2 C3	5.02	0.088(18)	13	0.098	0.020

^a Values in Å, error limits are 3σ values. For atom numbering see Figure 4. ^bB3LYP/6-31G*. ^c Not refined.

Table SM3. Crystal data and structure refinement for $CH_3OC(O)SCH_3$

Empirical formula	$C_3 H_6 O_2 S$
Formula weight	106.14 Da
Density (calculated)	1.356 g cm ⁻³
F(000)	448
Temperature	203(2) K
Crystal size	0.3 mm
Crystal color	colorless
Crystal description	cylindric
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_{1}/n$
Unit cell dimensions	$a = 12.6406(9) \text{ Å } \alpha = 90^{\circ} b = 4.1678(3) \text{ Å } \beta = 98.1640(10)^{\circ}, c = 19.9399(14) \text{ Å}, \gamma = 90^{\circ}$
Volume	1039.86(13) Å ³
Ζ	8
Cell measurement reflections used	2640
Cell measurement theta min/max	2.44° to 28.28°
Diffractometer control software	Bruker AXS SMART Vers. 5.054 1997/98
Diffractometer measurement device	Siemens SMART CCD area detector system
Diffractometer measurement method	Omega data collection at 0.3° scan width one run with 740 frames, phi = 0°, chi = 0°
Theta range for data collection	2.05° to 28.29°
Completeness to theta = 28.29°	89.1 %
Index ranges	-7<=h<=16, -4<=k<=4, -26<=l<=26
Computing data reduction	Bruker AXS SAINT program Vers. 6.02A

Absorption coefficient	0.489 mm ⁻¹
Computing absorption correction	Bruker AXS SADABS program multiscan V2.03
Absorption correction details	R.H. Blessing, Acta Cryst. (1995) A51 33-38
Max. / min. transmission	1.00 / 0.93
R _(merg) before/after correction	0.0162 / 0.0111
Computing structure solution	Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT
Computing structure refinement	Bruker AXS SHELXTL Vers. 5.10 DOS/WIN95/NT
Refinement method	Full-matrix least-squares on F ²
Reflections collected	3850
Independent reflections	2311 [$R_{(int)} = 0.0102$]
Data / restraints / parameters	2037 / 0 / 110
Goodness-of-fit on F ²	1.025
Weighting details	w = 1/[σ^2 (Fo ²)+ (0.0489*P) ² +0.1961*P] where P = (Fo ² +2Fc ²)/3
Final R indices [I>2sigma(I)]	$R_1 = 0.0265, wR_2 = 0.0802$
R indices (all data)	$R_1 = 0.0307, wR_2 = 0.0841$
Extinction coefficient	0.018(3)
Largest diff. peak and hole	0.242 and -0.173 eÅ ⁻³

Treatment of hydrogen atoms: Riding model on idealized geometries with the 1.5 fold for methyl groups isotropic displacement parameters of the equivalent Uij of the corresponding carbon atom; Comment The crystallization was performed on the diffractometer at a temperature of 205 K with a miniature zone melting procedure using focused infrared-laser-radiation according to: R. Boese, M.Nussbaumer, "In Situ crystallisation Techniques", in: "Organic Crystal Chemistry", Ed. D.W. Jones, Oxford University Press, Oxford,England, (1994) 20-37

Table SM4. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters $(Å^2 x 10^3)$ for CH₃OC(O)SCH₃. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	X	у	Z	U(eq)
S(1)	6599(1)	5982(1)	1823(1)	48(1)
S(2)	1793(1)	4013(1)	1829(1)	44(1)
O(1)	4879(1)	3328(2)	1303(1)	47(1)
O(2)	6184(1)	2983(3)	647(1)	56(1)
O(3)	1867(1)	6699(2)	706(1)	43(1)
O(4)	230(1)	6923(3)	1026(1)	52(1)
C(1)	4164(1)	1574(4)	797(1)	55(1)
C(2)	5863(1)	3837(3)	1153(1)	39(1)
C(3)	7832(1)	6428(4)	1489(1)	58(1)
C(11)	1479(1)	8430(4)	92(1)	51(1)
C(12)	1149(1)	6134(3)	1124(1)	37(1)
C(13)	685(1)	3385(4)	2285(1)	57(1)

	X	У	Z	U(eq)	
H(1A)	4040	2826	383	83	
H(1B)	3489	1201	963	83	
H(1C)	4484	-467	706	83	
H(3A)	8137	4327	1433	87	
H(3B)	8325	7687	1801	87	
H(3C)	7703	7507	1054	87	
H(11A)	921	7190	-176	77	
H(11B)	2062	8772	-168	77	
H(11C)	1192	10486	206	77	
H(13A)	411	5442	2410	85	
H(13B)	919	2148	2691	85	
H(13C)	126	2224	2001	85	

Table SM5. Hydrogen coordinates ($x\ 10^4$) and displacement parameters (Ų $x\ 10^3$) for CH_3OC(O)SCH_3.

Table SM6. Anisotropic displacement parameters (Å²x 10³) for CH₃OC(O)SCH₃. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U11	U22	U33	U23	U13	U12	
S (1)	49(1)	55(1)	40(1)	-7(1)		11(1)	-3(1)
S(2)	38(1)	52(1)	42(1)	3(1)		5(1)	1(1)
O(1)	40(1)	55(1)	47(1)	-3(1)		11(1)	0(1)
O(2)	51(1)	76(1)	42(1)	-12(1)	14(1)	-3(1)	
O(3)	39(1)	52(1)	41(1)	1(1)		11(1)	-1(1)
O(4)	35(1)	70(1)	51(1)	8(1)		7(1)	4(1)
C(1)	43(1)	59(1)	63(1)	-3(1)		3(1)	-2(1)
C(2)	40(1)	39(1)	37(1)	5(1)		8(1)	6(1)
C(3)	46(1)	71(1)	59(1)	-7(1)		13(1)	-11(1)
C(11)	56(1)	59(1)	39(1)	1(1)		10(1)	-5(1)
C(12)	36(1)	39(1)	35(1)	-7(1)		5(1)	-4(1)
C(13)	58(1)	65(1)	51(1)	10(1)		21(1)	5(1)

Table	SM	7.	Electronic	Energies	(E),	Zero	Point	Energies	(ZPE),	and	Number	of
Imagin	ary F	Freq	uencies for	Conform	ers a	nd Tr	ansitio	n States	(TS) of	CH ₃	OC(O)S(CH_3
Calcula	ated a	t di	fferent Leve	ls of Appr	oxim	ation.						

Conformer	Method	E, hartree	ZPE, hartree	N° of imag. frequencies
(sp,sp)	MP2/6-31+G*	-665.2243288	0.093065	0
	MP2/6-311++G(d,p)	-665.410587	0.092370	0
	B3LYP/6-31+G(d)	-666.5900465	0.091450	0
	B3LYP/6-311++G(3df,2p)	-666.7158243	0.090701	0
(ap,sp)	MP2/6-31+G*	-665.2152488	0.093022	0
	MP2/6-311++G(d,p)	-665.4019399	0.092194	0
	B3LYP/6-31+G(d)	-666.5818594	0.091403	0
	B3LYP/6-311++G(3df,2p)	-666.7084075	0.090639	0
(sp,ap)	MP2/6-31+G*	-665.2209601	0.093127	0
	MP2/6-311++G(d,p)	-665.4070627	0.092270	0
	B3LYP/6-31+G(d)	-666.5867868	0.091432	0
	B3LYP/6-311++G(3df,2p)	-666.7124907	0.090689	0
TS1 ^a	B3LYP/6-31+G*	-666.5738444	0.090657	1
	B3LYP/ 6-311++G(3df,2p)	-666.7002206	0.089910	1
$TS2^b$	B3LYP/6-31+G*	-666.5743593	0.091134	1
	B3LYP/ 6-311++G(3df,2p)	-666.6995025	0.090347	1

^{*a*} TS1: rotational TS connecting the (sp,sp) and the (ap,sp) conformers, ^{*b*} TS2: rotational TS connecting the (sp,sp) and the (sp,ap) conformers.

Atom	X	Y	Ζ
0	0.359692	1.380134	-0.000036
С	0.308339	0.159301	-0.000181
0	1.380395	-0.664555	-0.000023
С	2.657430	0.019597	0.000090
S	-1.165435	-0.813104	-0.000002
С	-2.356155	0.548672	0.000074
Н	-3.346419	0.087622	0.000171
Н	-2.239951	1.165911	-0.891044
Н	-2.239801	1.165957	0.891139
Н	3.396034	-0.779192	0.000210
Н	2.749262	0.639706	0.892930
Н	2.749456	0.639619	-0.892791

Table SM8. Cartesian Coordinates of the Optimized Structure for (sp,sp) at the MP2/6-31+G* Level of Approximation

Table SM9. Cartesian Coordinates of the Optimized Structure for (ap,sp) at the MP2/6-

Atom	X	Y	Z
0	-0.299185	1.756697	0.000015
С	0.243725	0.667834	-0.000048
0	1.594680	0.568928	0.000002
С	2.225982	-0.728838	0.000014
S	-0.656125	-0.874142	-0.000007
С	-2.320627	-0.170040	0.000013
Н	-3.009429	-1.017780	0.000032
Н	-2.479385	0.437757	-0.890603
Н	-2.479357	0.437774	0.890622
Н	3.292673	-0.511641	0.000061
Н	1.957563	-1.289272	-0.898513
Н	1.957488	-1.289294	0.898505

Table SM10. Cartesian Coordinates of the Optimized Structure for (sp,ap) at the MP2/6-

31+G* Level of App	proximation
--------------------	-------------

Atom	X	Y	Z
0	1.050142	-1.536984	0.000025
С	0.367714	-0.524730	-0.000092
0	0.861602	0.738343	-0.000030
С	2.311105	0.797399	0.000028
S	-1.395906	-0.581867	0.000014
С	-1.847849	1.172520	0.000008
Н	-2.940718	1.196708	0.000071
Н	-1.477196	1.676416	-0.892529
Н	-1.477092	1.676454	0.892481
Н	2.541880	1.860826	0.000067
Н	2.703955	0.308761	-0.892478
Н	2.703888	0.308712	0.892536

Table SM11. Cartesian Coordinates of the Optimized Structure for (sp,sp) at the MP2/6-

311++G(d,p) Level of Approximation

A .	37	X7	7
Atom	X	Y	Z
0	-0.361333	1.369838	0.000000
С	-0.310696	0.160365	-0.000058
0	-1.375541	-0.663620	-0.000012
С	-2.641800	0.019897	0.000024
S	1.163748	-0.812394	0.000006
С	2.344329	0.553208	0.000012
Н	3.336131	0.097153	0.000060
Н	2.225560	1.167915	0.891630
Н	2.225623	1.167866	-0.891648
Н	-3.389892	-0.769986	0.000065
Н	-2.736731	0.642378	-0.891024
Н	-2.736664	0.642408	0.891058

Table SM12. Cartesian Coordinates of the Optimized Structure for (ap,sp) at the MP2/6-

311++G(d,p) Level of Approximation

Atom	X	Y	Z
0	0.296101	1.747315	-0.000014
С	-0.246365	0.670995	-0.000005
0	-1.592470	0.569736	0.000012
С	-2.203617	-0.726448	0.000011
S	0.651647	-0.874841	-0.000020
С	2.308457	-0.162920	0.000027
Н	3.000977	-1.006726	0.000019
Н	2.463691	0.443722	0.891096
Н	2.463724	0.443764	-0.891009
Н	-3.274942	-0.533810	0.000029
Н	-1.929832	-1.287842	0.896496
Н	-1.929860	-1.287827	-0.896492

Table SM13. Cartesian Coordinates of the Optimized Structure for (sp,ap) at the MP2/6-

311++G(d,p) Level of Approximation

Atom	X	Y	Z
0	1.050647	-1.524453	0.000000
С	0.372522	-0.522581	-0.000007
0	0.858939	0.736901	0.000000
С	2.298399	0.793217	0.000002
S	-1.392173	-0.582862	0.000002
С	-1.844799	1.167884	-0.000001
Н	-2.936940	1.188810	-0.000009
Н	-1.476795	1.671605	-0.892806
Н	-1.476807	1.671604	0.892809
Н	2.540272	1.854184	0.000003
Н	2.695813	0.304448	-0.890544
Н	2.695811	0.304447	0.890549

Atom	Х	Y	Z
0	0.367420	1.385147	0.000000
С	0.319849	0.174182	0.000002
0	1.387645	-0.645947	0.000002
С	2.676299	0.003967	-0.000001
S	-1.166752	-0.813658	-0.000001
С	-2.395596	0.538172	0.000000
Н	-3.375776	0.054060	-0.000001
Н	-2.289143	1.156955	-0.892957
Н	-2.289144	1.156953	0.892958
Н	3.402626	-0.808663	-0.000065
Н	2.787840	0.623800	0.893326
Н	2.787790	0.623899	-0.893266

Table SM14. Cartesian Coordinates of the Optimized Structure for (sp,sp) at theB3LYP/6-31+G(d) Level of Approximation

Atom	Х	Y	Z
0	-0.261185	1.762327	-0.000034
С	0.260899	0.674329	0.000109
0	1.603572	0.549860	-0.000011
С	2.238301	-0.739369	-0.000023
S	-0.674732	-0.870500	0.000008
С	-2.354980	-0.156485	-0.000020
Н	-3.043654	-1.005284	-0.000085
Н	-2.510125	0.451860	-0.892526
Н	-2.510187	0.451776	0.892532
Н	3.307825	-0.526906	-0.000092
Н	1.973668	-1.305907	-0.898454
Н	1.973778	-1.305872	0.898462

Table SM15. Cartesian Coordinates of the Optimized Structure for (ap,sp) at theB3LYP|6-31+G(d) Level of Approximation

Atom	Х	Y	Ζ
0	-1.052287	-1.539653	0.000034
С	-0.385401	-0.528842	0.000028
0	-0.882383	0.725493	-0.000014
С	-2.324924	0.816045	-0.000016
S	1.396227	-0.586074	-0.000033
С	1.892622	1.176991	0.000034
Н	2.986440	1.171840	0.000001
Н	1.532646	1.688246	0.894582
Н	1.532593	1.688329	-0.894446
Н	-2.541362	1.884377	-0.000129
Н	-2.733185	0.336346	0.892835
Н	-2.733200	0.336150	-0.892753

Table SM16. Cartesian Coordinates of the Optimized Structure for (sp,ap) at theB3LYP/6-31+G(d) Level of Approximation

Atom	X	Y	Z
0	-0.366047	1.377193	-0.000112
С	-0.317455	0.176423	-0.000271
0	-1.379331	-0.642752	-0.000020
С	-2.666020	0.000871	0.000166
S	1.161547	-0.805953	-0.000039
С	2.385641	0.531328	0.000171
Н	3.358703	0.045233	0.000316
Н	2.279392	1.145239	0.889466
Н	2.279667	1.145264	-0.889140
Н	-3.391105	-0.806327	0.000383
Н	-2.780859	0.619199	-0.887828
Н	-2.780521	0.619373	0.888082

Table SM17. Cartesian Coordinates of the Optimized Structure for (sp,sp) at theB3LYP|6-311++G(3df,2p) Level of Approximation

Atom	Х	Y	Ζ
0	0.259079	1.755067	-0.000211
С	-0.258055	0.675255	-0.000097
0	-1.595048	0.547800	0.000154
С	-2.220954	-0.740184	0.000243
S	0.669226	-0.861640	-0.000385
С	2.339978	-0.161712	0.000493
Н	3.020011	-1.010695	0.000427
Н	2.494916	0.441663	0.889497
Н	2.495568	0.442323	-0.887949
Н	-3.288295	-0.541440	0.000451
Н	-1.953773	-1.304368	0.893408
Н	-1.954110	-1.304325	-0.893050

Table SM18. Cartesian Coordinates of the Optimized Structure for (ap,sp) at theB3LYP|6-311++G(3df,2p) Level of Approximation

A /	37	X 7	7
Atom	X	Ŷ	L
0	-1.040467	-1.530997	0.000173
С	-0.383383	-0.525159	-0.000384
0	-0.882281	0.721783	-0.000193
С	-2.320957	0.808806	0.000120
S	1.388364	-0.579408	0.000015
С	1.891155	1.168009	0.000096
Н	2.979309	1.154629	0.000315
Н	1.534313	1.675154	0.890992
Н	1.534669	1.675129	-0.890957
Н	-2.544646	1.870666	0.000193
Н	-2.728000	0.329344	0.887557
Н	-2.728381	0.329380	-0.887161

Table SM19. Cartesian Coordinates of the Optimized Structure for (sp,ap) at theB3LYP/6-311++G(3df,2p) Level of Approximation

Table SM20. Cartesian Coordinates of the Optimized Structure for the Transition State TS $(sp,sp) \rightarrow (ap,sp)$ at the B3LYP/6-31+G* Level of Approximation

Atom	Х	Y	Ζ
0	0.018545	1.674247	0.046118
С	0.300492	0.525180	-0.184574
0	1.554635	0.111275	-0.534205
С	2.344754	-0.523484	0.489174
S	-0.866299	-0.826363	-0.211849
С	-2.372432	0.054635	0.330273
Н	-3.176524	-0.685789	0.339132
Н	-2.613179	0.856673	-0.369882
Н	-2.237683	0.467599	1.331969
Н	3.276866	-0.813005	0.002924
Н	1.837665	-1.411400	0.882372
Н	2.551315	0.185572	1.298531

Atom	Х	Y	Z
0	0.022364	1.665744	0.049912
С	0.296024	0.525644	-0.182422
0	1.543674	0.106704	-0.535341
С	2.335066	-0.521662	0.483771
S	-0.862306	-0.818289	-0.207758
С	-2.361626	0.050733	0.324757
Н	-3.157715	-0.690373	0.335075
Н	-2.601662	0.844039	-0.376786
Н	-2.228074	0.464878	1.319872
Н	3.257428	-0.828066	-0.000093
Н	1.825551	-1.395274	0.892056
Н	2.556268	0.189554	1.280807

Table SM21. Cartesian Coordinates of the Optimized Structure for the Transition State TS $(sp,sp) \rightarrow (ap,sp)$ at the B3LYP/ 6-311++G(3df,2p) Level of Approximation

Table SM22. Cartesian Coordinates of the Optimized Structure for the Transition State TS $(sp,sp) \rightarrow (sp,ap)$ at the B3LYP/6-31+G* Level of Approximation

Atom	X	Y	Z
0	-0.733944	1.389488	0.574205
С	-0.349641	0.420986	-0.035669
0	-1.120224	-0.630555	-0.362069
С	-2.498740	-0.553192	0.071903
S	1.356119	0.194936	-0.656641
С	2.026811	-0.692578	0.806506
Н	3.083873	-0.868842	0.590230
Н	1.526609	-1.653819	0.947819
Н	1.944816	-0.078736	1.706818
Н	-2.958931	-1.475582	-0.281820
Н	-2.983112	0.320004	-0.371971
Н	-2.548404	-0.484763	1.161637

Atom	X	Y	Z
0	-0.727872	1.384397	0.563316
С	-0.348920	0.419776	-0.035728
0	-1.116581	-0.627977	-0.356839
С	-2.491190	-0.549412	0.073965
S	1.350308	0.188364	-0.652796
С	2.021030	-0.683585	0.803682
Н	3.071564	-0.856980	0.581644
Н	1.524508	-1.639537	0.949482
Н	1.941458	-0.065178	1.694107
Н	-2.953186	-1.469338	-0.268725
Н	-2.975604	0.316085	-0.373096
Н	-2.543560	-0.470909	1.157990

Table SM23. Cartesian Coordinates of the Optimized Structure for the Transition State TS $(sp,sp) \rightarrow (sp,ap)$ at the B3LYP/6-311++G(3df,2p) Level of Approximation

Figure SM1. Upper trace: IR (gas) spectrum of CH₃OC(O)SCH₃ (8.8 mbar at 200 mm optical path length and 300 K). Lower trace: Raman (liquid) spectrum of CH₃OC(O)SCH₃.

Figure SM2. Experimental (dots) and calculated (full line) molecular intensities for long (above) and short (below) nozzle-to-plate distances and residuals for CH₃OC(O)SCH₃.