Supporting Information
for the Communication Entitled

A Stable Neutral Stannaaromatic Compound: Synthesis, Structure and Complexation of a Kinetically Stabilized 2-Stannanaphthalene

Yoshiyuki Mizuhata, Takahiro Sasamori, Nobuhiro Takeda, and Norihiro Tokitoh* Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

General Procedure. All experiments were performed under an argon atmosphere unless otherwise noted. Solvents used for the reactions were purified by The Ultimate Solvent System (GlassContour Company). ${ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz), ${ }^{13} \mathrm{C}$ NMR (76 MHz), and ${ }^{119} \mathrm{Sn}$ NMR (111 MHz) spectra were measured in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ with a JEOL JNM-AL300 spectrometer. In ${ }^{1} \mathrm{H}$ NMR signals due to CHCl_{3} (7.25 ppm) and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}(7.15 \mathrm{ppm})$ were used as references, and those due to $\mathrm{CDCl}_{3}(77 \mathrm{ppm})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(128 \mathrm{ppm})$ were used in ${ }^{13} \mathrm{C}$ NMR. ${ }^{119} \mathrm{Sn}$ NMR was measured with NNE technique using SnMe_{4} as an external standard. Multiplicity of signals in ${ }^{13} \mathrm{C}$ NMR spectra was determined by DEPT technique. High-resolution mass spectral data were obtained on a JEOL JMS-SX102GC/MS spectrometer. WCC (wet column chromatography) was performed on Wakogel C-200. PTLC (preparative thin-layer chromatography) was performed with Merck Kieselgel 60 PF254 (Art. No. 7747). GPLC (gel permeation liquid chromatography) was performed on an LC-908 (Japan Analytical Industry Co., Ltd.) equipped with JAIGEL 1H and 2H columns (eluent: chloroform or toluene). All melting points were determined on a Yanaco micro melting point apparatus and are uncorrected. Elemental analyses were carried out at the Microanalytical Laboratory of the Institute for Chemical Research, Kyoto University. TbtSnX_{3} was prepared according to the reported procedures of $\mathrm{TbtSnCl}_{3}{ }^{2}$ and used without sublimation.

Synthesis of 4 via 3. To a THF solution (16 mL) of $2(493 \mathrm{mg}, 1.64 \mathrm{mmol})$ was added n-butyllithium (1.5 M in hexane, $2.2 \mathrm{~mL}, 3.3 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at the same temperature for 10 min , THF solution $\left(33 \mathrm{~mL}\right.$) of $\mathrm{TbtSnX}_{3}(\mathrm{X}=\mathrm{Cl}$ or Br , ca. 75% purity; 1.63 g , ca 1.6 mmol as X $=\mathrm{Cl})$ was added to the mixture. After stirring for 3 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was warmed to room temperature. After removal of the solvent, hexane was added to the residue. The resulting suspension was filtered through Celite ${ }^{\circledR}$, and the solvent was removed. The residue was separated by GPLC $\left(\mathrm{CHCl}_{3}\right)$ to afford 3-t-Bu-2-Tbt-2-X-1,2-dihydro-2-stannanaphthalene $\mathbf{A}(567 \mathrm{mg}, \mathrm{X}: \mathrm{Cl} / \mathrm{Br}=$ $7 / 3$). To a THF solution (10 mL) of A was added lithium aluminum hydride ($88.5 \mathrm{mg}, 2.33 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 1 h at the same temperature, ethyl acetate was added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$. After removal of the solvent, hexane was added to the residue. The resulting suspension was filtered through Celite ${ }^{\circledR}$, and the solvent was removed. This crude product was separated by WCC
(hexane) to afford $4\left(509 \mathrm{mg}, 0.603 \mathrm{mmol}, 37 \%\right.$, from 2). 4: colorless crystals; m.p. $179-181{ }^{\circ} \mathrm{C}(\mathrm{dec}$.$) ;$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right): \delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}), 0.137(\mathrm{~s}, 9 \mathrm{H}), 0.144(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H})$, $0.21(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58\left(\mathrm{~d},{ }^{2} J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.78$ $\left(\mathrm{dd},{ }^{2} J=15.0 \mathrm{~Hz},{ }^{3} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.95\left(\mathrm{~d},{ }^{3} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.91-7.10 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right): \delta 0.96$ (q), 1.00 (q), 1.18 (q), 17.21 (t), 30.63 (d), 32.12 (d), 32.24 (q), 32.88 (d), 37.81 (s), 122.29 (d), 125.98 (d), 127.12 (d), 127.35 (d), 132.95 (d), 133.50 (d), 135.91 (s), 135.95 (s , 139.61 (d), 143.92 (s), 151.79 ($\mathrm{s} \times 2$), 158.66 (s$) ;{ }^{119} \mathrm{Sn}$ NMR (111 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right): \delta-293.3$; High resolution FAB-MS m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{76} \mathrm{Si}_{6}{ }^{120} \mathrm{Sn}\left([\mathrm{M}]^{+}\right): 844.3585$, found: 844.3589. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{76} \mathrm{Si}_{6} \mathrm{Sn}$: C, $56.91 ; \mathrm{H}, 9.07$. Found: C, 56.93; H, 9.23.

Synthesis of 5. A benzene (50 mL) solution of $4(509 \mathrm{mg}, 0.603 \mathrm{mmol})$ and N -bromosuccinimide $(118 \mathrm{mg}, 0.663 \mathrm{mmol})$ was stirred for 1 h at room temperature. After removal of the solvent, hexane was added to the residue. The resulting suspension was filtered through Celite ${ }^{\circledR}$, and the solvent was removed to afford 5 ($509 \mathrm{mg}, 0.552 \mathrm{mmol}, 91 \%$). 5: colorless crystals; m.p. $162-165{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right): \delta-0.13(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H})$, $1.25(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.01-7.11(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right): \delta 0.96(\mathrm{q}), 0.98$ (q), 1.21 (q), 30.44 (t), 30.83 (d), 31.24 (d), 31.75 (d), 33.09 (q), 38.51 (s), 123.46 (d), 126.41 (d), 127.48 (d), 128.00 (d), 132.55 (d), 133.65 (d), 134.02 (s), 135.81 (s), 136.10 (s), 142.01 (d), 145.42 (s), 151.13 (s), 152.35 (s), $160.65(\mathrm{~s}) ;{ }^{119} \mathrm{Sn}$ NMR ($111 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}$): δ-93.0; High resolution FAB-MS m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{75}{ }^{79} \mathrm{BrSi}_{6}{ }^{120} \mathrm{Sn}\left([\mathrm{M}]^{+}\right): 922.2690$, found: 922.2695. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{75} \mathrm{BrSi}_{6} \mathrm{Sn}: \mathrm{C}$, 52.04; H, 8.19. Found: C, 52.31; H, 8.44.

Synthesis of 1a. In a glovebox filled with argon, $5(46.2 \mathrm{mg}, 0.0500 \mathrm{mmol})$ was dissolved in hexane (2 mL , dried over K mirror and distilled by trap-to-trap method), and LDA (2.0 M in heptane/THF/ethylbenzene, $0.0300 \mathrm{~mL}, 0.0600 \mathrm{mmol}$) was added to the solution at $-40{ }^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, the solvents were removed under reduced pressure and hexane
was added to the residue. The resulting suspension was filtered through Celite ${ }^{\circledR}$, and the solvent was removed. The residue was recrystallized from hexane to give $1 \mathbf{a}(26.7 \mathrm{mg}, 0.0317 \mathrm{mmol}, 63 \%)$. 1a: yellow crystals; m.p. $144-147{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}$): $\delta 0.18(\mathrm{br} \mathrm{s}, 54 \mathrm{H}), 1.06(\mathrm{~s}, 1 \mathrm{H})$, $1.53(\mathrm{~s}, 9 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05\left(\mathrm{dd},{ }^{3} J=9 \mathrm{~Hz},{ }^{3} J=7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21\left(\mathrm{dd},{ }^{3} J=9 \mathrm{~Hz},{ }^{3} J=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.65\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.68\left(\mathrm{~d},{ }^{3} J=9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.75(\mathrm{~s}$, $1 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right): \delta 0.91$ (q), 1.55 (q), 30.84 (d), 34.93 (q), 39.36 (d), 39.72 (s), 39.90 (q), 119.97 (d), 122.12 (d), 125.30 (d), 125.92 (s), 126.76 (d), 127.93 (d), 135.39 (d), 141.58 (s), 142.22 (d), 146.02 (s), 147.26 (s), 147.38 (d), 150.92 ($\mathrm{s} \times 2$), 174.03 (s$) ;{ }^{119} \mathrm{Sn}$ NMR (111 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{rt}\right): \delta 264$; High resolution FAB-MS m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{75} \mathrm{Si}_{6}{ }^{120} \mathrm{Sn}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 843.3506$, found: 843.3531. Since it was difficult to obtain the satisfactory data of the elemental analysis due to the extremely high air- and moisture-sensitivity, the purity was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum as shown below.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{1 a}$.

Crystal data for 1a. $\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{Si}_{6} \mathrm{Sn} M W=842.22$; triclinic; space group $P-1(\# 2) ; a=12.4261(3), b=$ 13.0149(3) Å, $c=17.3641(6) \AA ; \alpha=73.4934(10)^{\circ}, \beta=74.3341(12)^{\circ}, \gamma=65.548(2)^{\circ} ; V=2376.69(11)$ $\AA^{3} ; Z=2 ; D_{\text {calcd }}=1.177 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=0.713 \mathrm{~mm}^{-1} ; 2 \theta_{\max }=50^{\circ} ; T=103 \mathrm{~K} ; R_{1}(I>2 \sigma(I))=0.0655 ; w R_{2}$ (all data $)=0.1534 ; \mathrm{GOF}=1.066$ for 24587 reflections and 445 parameters.

Synthesis of 6a. In a glovebox filled with argon, $1 \mathbf{1 a}(34.2 \mathrm{mg}, 0.0406 \mathrm{mmol})$ and $\left[\mathrm{Cr}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}(\mathrm{CO})_{3}\right]^{3}(14.6 \mathrm{mg}, 0.0563 \mathrm{mmol})$ were dissolved in THF $(1 \mathrm{~mL}$, dried over K mirror and distilled by trap-to-trap method) at room temperature. After stirring for 4 h , the solvents were removed under reduced pressure and hexane was added to the residue. The resulting suspension was filtered through Celite ${ }^{\circledR}$, and the solvent was removed to give almost pure $\mathbf{6 a}(35.5 \mathrm{mg}, 0.0363 \mathrm{mmol}, 89 \%$). 6a: brown crystals; m.p. $154{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 70{ }^{\circ} \mathrm{C}$) $\delta 0.16(\mathrm{~s}, 18 \mathrm{H}), 0.18$ (s, $18 \mathrm{H}), 0.27(\mathrm{~s}, 18 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 6.90-7.01 (m, 3H), 7.38-7.41 (d, $\left.{ }^{3} \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 50{ }^{\circ} \mathrm{C}\right) \delta 0.86(\mathrm{q}), 0.95(\mathrm{q})$, 1.34 (q), 31.42 (d), 34.31 (q), 38.40 (s), 39.79 (d), 40.27 (d), 88.37 (d), 96.41 (s), 102.75 (d), 116.84 (s), 122.70 (d), 125.19 (d), 125.70 (d), 128.68 (d), 131.31 (s), 132.89 (d), 134.59 (d), 134.91 (s), $147.69(\mathrm{~s}), 151.87(\mathrm{~s} \times 2), 233.77(\mathrm{~s}, \underline{\mathrm{CO}}) ;{ }^{119} \mathrm{Sn}$ NMR ($\left.111 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 106$. High resolution FAB-MS m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{74} \mathrm{O}_{3} \mathrm{CrSi}_{6}{ }^{120} \mathrm{Sn}\left([\mathrm{M}]^{+}\right): 978.2681$, found: 978.2675 . Since it was difficult to obtain the satisfactory data of the elemental analysis due to the extremely high air- and moisture-sensitivity, the purity was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum as shown below.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 343 \mathrm{~K}$) spectrum of $\mathbf{6 a}$.

Crystal data for 6a. $\mathrm{C}_{43} \mathrm{H}_{74} \mathrm{CrO}_{3} \mathrm{Si}_{6} \mathrm{Sn} M W=978.25$; triclinic; space group $P-1$ (\#2); $a=9.5178(4)$, $b=13.1280(7) \AA, c=22.1764(8) \AA ; \alpha=79.6768(18)^{\circ}, \beta=82.5522(15)^{\circ}, \gamma=82.2722(18)^{\circ} ; V=$ $2685.5(2) \AA^{3} ; Z=2 ; D_{\text {calcd }}=1.210 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=0.833 \mathrm{~mm}^{-1} ; 2 \theta_{\max }=50^{\circ} ; T=173 \mathrm{~K} ; R_{1}(I>2 \sigma(I))=$ $0.0493 ; w R_{2}($ all data $)=0.1052 ; \mathrm{GOF}=1.107$ for 22659 reflections and 650 parameters.

References

1 Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

2 Matsuhashi, Y.; Tokitoh, N.; Okazaki, R.; Goto, M.; Nagase, S. Organometallics 1993, 12, 1351.
3 Tate, D. P.; Knipple, W. R.; Augl, J. M. Inorg. Chem. 1962, 1, 433.

Table S1. Observed and calculated bond lengths (\AA) for 2-stannanaphthalenes ${ }^{a}$

bond	1a (obsd)	1b (calcd)	1c (calcd)	1d (calcd)
C1-C8	$1.394(8)$	1.423	1.424	1.422
C1-Sn	$2.029(6)$	1.985	1.988	1.993
Sn-C2	$2.081(6)$	2.067	2.073	2.066
C2-C3	$1.372(9)$	1.374	1.374	1.380
C3-C9	$1.443(9)$	1.445	1.445	1.440
C4-C9	$1.417(9)$	1.423	1.423	1.425
C4-C5	$1.356(9)$	1.378	1.378	1.377
C5-C6	$1.415(10)$	1.411	1.411	1.413
C5-C7	$1.361(9)$	1.375	1.375	1.375
C7-C8	$1.419(9)$	1.431	1.431	1.432
C8-C9	$1.436(9)$	1.447	1.447	1.449
C2-C10	$1.522(9)$	1.535	1.535	1.541

${ }^{a}$ calculated at the B3LYP/6-31G(d) (LANL2DZ on Sn) level.

Table S2. Observed and calculated ${ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR chemical shifts (ppm) for 2-stannanaphthalenes

atom	$1 \mathrm{a}(\mathrm{obsd})^{a}$	1b (calcd) ${ }^{\text {b }}$	1c (calcd) ${ }^{\text {b }}$	1d (calcd) ${ }^{\text {c }}$
Sn	264	123	273	150
H1	9.28	9.25	8.58	8.42
H2	8.75	8.79	8.57	8.91
H3	7.65	7.88	7.71	7.80
H4	7.05	7.38	7.01	7.17
H5	7.21	7.31	7.25	7.35
H6	7.68	7.64	7.59	7.66
C1	147.4	147.9	139.4	136.5
C2	174.0	175.4	173.8	169.9
C3	142.2	143.4	143.2	149.6
C4	135.4	137.0	136.9	136.6
C5	120.0	121.9	120.4	119.4
C6	125.3	125.3	126.0	125.4
C7	128.0	129.1	128.7	128.8
C8	147.3	149.9	148.8	151.0
C9	125.9	129.2	127.1	126.9
C10	39.7	42.5	41.2	41.8

${ }^{a}$ measured in benzene- $d_{6} .{ }^{b}$ caluculated at the GIAO-B3LYP/6-311+(2d,p) (TZV on $\mathrm{Sn}) / / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d})$ (LANL2DZ on Sn) level. ${ }^{c}$ caluculated at the GIAO-B3LYP/6-311+(2d,p) (TZV on Sn)//B3LYP/6-31G(d) [TZ(2d) on Sn$]$ level.

Table S3. Coordinates $(\AA$) of the optimized structure for $\mathbf{1 b}$ calculated at the B3LYP/6-31G(d) (LANL2DZ on Sn) level.

atom	x	y	z
C	-0.981222	0.577512	-0.000107
C	0.192435	1.292341	-0.000116
C	1.581429	0.892226	-0.000074
C	2.096791	-0.459829	0.000002
H	2.133866	2.97636	-0.000114
H	0.087735	2.377432	-0.000158
C	2.521344	1.959932	-0.000069
C	3.517964	-0.623732	0.000067
H	1.818068	-2.585674	0.000083
H	-1.836094	-2.715909	-0.000014
C	4.388118	0.441133	0.000058
C	3.884472	1.759018	-0.000008
H	3.905288	-1.639758	0.000123
H	5.461114	0.266934	0.00011
H	4.56341	2.60705	-0.000006
C	-2.369454	1.23156	0.000018
C	-2.309765	2.772924	-0.001338
H	-3.326541	3.181726	-0.001485
H	-1.797459	3.160732	0.886113
H	-1.797811	3.15914	-0.889688
C	-3.149422	0.779684	-1.257582
H	-3.274201	-0.310024	-1.284747
H	-4.151277	1.226312	-1.272895
H	-2.626491	1.078806	-2.172628
C	-3.148099	0.781767	1.259208
H	-2.624223	1.082462	2.173193
H	-4.149977	1.228338	1.274814
H	-3.272695	-0.30791	1.288333
C	1.293434	-1.634449	-0.000001
Sn	-0.684417	-1.468131	-0.000028

Table S4. Coordinates (\AA) of the optimized structure for 1c calculated at the B3LYP/6-31G(d) (LANL2DZ on Sn) level.

atom	x	y	z
C	4.548815	-0.011154	0.000022
C	3.541398	-0.947476	0.000004
C	2.155213	-0.592738	-0.000036
C	1.831022	0.817508	-0.000033
C	2.907711	1.747229	-0.000004
C	4.231033	1.363573	0.000017
H	1.588741	-2.659123	0.00001
H	5.587951	-0.330967	0.000048
H	3.787294	-2.006843	0.000018
C	1.196655	-1.645157	-0.000072
C	0.509803	1.403223	-0.00002
H	2.661261	2.806962	0.000005
H	5.019401	2.110994	0.000038
C	-0.751386	0.857283	-0.000005
H	0.556606	2.492563	-0.000028
Sn	-0.744438	-1.216017	0.000016
C	-2.380452	-2.596538	-0.000017
H	-3.001025	-2.45991	-0.889127
H	-1.983962	-3.615403	-0.000145
H	-3.000939	-2.460102	0.889184
C	-2.032263	1.703962	-0.000001
C	-2.867402	1.370333	1.258672
H	-3.796222	1.954151	1.275733
H	-3.145384	0.309315	1.28835
H	-2.305089	1.593291	2.172033
C	-2.867487	1.370212	-1.258575
H	-3.145496	0.309197	-1.288127
H	-3.7963	1.954041	-1.275639
H	-2.305238	1.593066	-2.172002
C	-1.756546	3.221937	-0.000088
H	-1.195129	3.533589	0.887644
H	-1.195198	3.533495	-0.887897
H	-2.706059	3.769331	-0.000076

Table S5. Coordinates $(\AA$) of the optimized structure for $\mathbf{1 d}$ calculated at the B3LYP/6-31G(d) [TZ(2d) on Sn] level.

atom	x	y	z
C	4.831404	-2.354805	0.019996
C	5.347505	-1.039438	0.015774
C	4.473385	0.024202	0.00803
C	3.057759	-0.135506	0.004083
C	2.526892	-1.483425	0.008797
C	3.472165	-2.559769	0.016514
C	2.295739	1.08676	-0.0049
C	0.943099	1.358676	-0.012638
Sn	-0.217183	-0.350466	-0.007723
C	1.142603	-1.806975	0.007689
C	0.456482	2.820659	-0.019599
C	0.938529	3.542458	1.261802
C	1.006039	3.559693	-1.263443
C	-1.080766	2.899352	-0.061992
C	-2.343912	-0.600865	0.004351
C	-3.03748	-0.664074	1.233737
C	-4.427381	-0.842432	1.222987
C	-5.123515	-0.956557	0.022247
C	-4.436188	-0.895008	-1.187402
C	-3.046453	-0.717575	-1.215859
C	-2.340972	-0.654851	-2.554585
C	-2.322816	-0.542473	2.563562
H	5.50868	-3.205354	0.025899
H	6.420414	-0.869447	0.018437
H	4.867478	1.038356	0.004446
H	3.077452	-3.573152	0.019765
H	2.946638	1.965264	-0.005542
H	0.887554	-2.863918	0.012593
H	0.549576	3.046942	2.15902
H	0.592445	4.583903	1.270112
H	2.030982	3.552128	1.334916
H	0.674253	3.070482	-2.186538
H	2.100584	3.581788	-1.273926
H	0.651096	4.597973	-1.280755
H	-1.484452	2.426139	-0.965805
H	-1.413232	3.944137	-0.062014
H	-1.535583	2.410565	0.808527

H	-4.964465	-0.892625	2.16699
H	-6.201514	-1.095033	0.029259
H	-4.980042	-0.986002	-2.124428
H	-3.047117	-0.789879	-3.379977
H	-1.572227	-1.432378	-2.647707
H	-1.842092	0.311569	-2.706917
H	-1.545607	-1.308215	2.681042
H	-3.021647	-0.652273	3.398861
H	-1.832726	0.434064	2.674993

(c)

Figure S1. Raman spectra of 2-stannanaphthalenes measured by Prof. Furukawa at Waseda University. (a) FT-Raman spectrum of $\mathbf{1 a}$ measured with the excitation by He-Ne laser (532 nm). (b) Spectrum of 1b simulated by the theoretical calculation at the B3LYP/6-31G(d) (LANL2DZ on Sn) level. (c) Calculated vibration modes of $\mathbf{1 b}\left(1378 \mathrm{~cm}^{-1}\right.$, left) and 2-tert-butylnaphthalene ($1424 \mathrm{~cm}^{-1}$, right).

Figure S2. UV/vis spectrum of 2-stannanaphthalene 1a in hexane at room temerature.

