Supporting information for: Sulfur Radical Cations. Kinetic and Products Study of the Photo-Induced Fragmentation Reactions of (Phenylsulfanylalkyl)trimethylsilanes and Phenylsulfanylacetic Acids Radical Cations. Enrico Baciocchi, * Tiziana Del Giacco, * Fausto Elisei, Andrea Lapi, ## **Table of contents:** system in N₂-saturated CH₃CN. Preparation and characterization of **2** and **4**. S2 **Table S1.** Absorption maxima and transients produced by LFP of NMQ $^+$ /toluene/PhSCH(R)X in N₂-saturated CH₃CN. S3 **Figure S1.** Observed rate constant (k_{obs}) vs [4-CN-pyridine] and 1/ k_{obs} vs 1/[4-CN-pyridine] for the decay of $3^{+\bullet}$ in CH₃CN. S4 **Figure S2.** Time-resolved absorption spectra of the 1,4-dicyanonaphthalene/PhSCH(Ph)CO₂NMe₄ S4 ## Preparation and characterization of 2 and 4. Phenyl(phenylsulfanyl)acetic acid (4). S1 Butyllithium, (1.6 M in hexane, 6.4 mL, 10 mmol) was slowly added in a 50 mL three necked round bottom flask containing a stirred solution of benzyl phenyl sulfide (2 g, 10 mmol) in 30 mL of anhydrous THF at 0 °C under Ar atmosphere. The mixture was allowed to react for 1 h after which a slurry of diethyl ether and crunched solid CO₂ was slowly added. After the removal of CO₂ water was added and the aqueous layer was separated, filtered and acidified with diluted HCl. The obtained white solid was then filtrated, treated with dilute aqueous Na₂CO₃. Filtration and acidification of the aqueous solution gave 1.7 g (70 % yield) of a white solid. m. p. 101-103 °C (lit. 102-103 °C)^{S1} ¹H-NMR (300 MHz, CDCl₃): δ: 7.2-7.5 (m, 10 H), 4.9 (s, 1 H). S2 [Phenyl(phenylsulfanyl)methyl]trimethylsilane (2). S3 Butyllithium, (1.6 M in hexane, 6.4 mL, 10 mmol) was slowly added in a 50 mL three necked round bottom flask containing a stirred solution of benzyl phenyl sulfide (2 g, 10 mmol) in 30 mL of anhydrous THF at 0 °C under Ar atmosphere. The mixture was allowed to react for 1 h after which trimethylsilyl chloride (1.4 mL, 10 mmol) was slowly added. The mixture was stirred 30 min at room temperature, poured in a saturated NH₄Cl aqueous solution (40 mL) and extracted three times with diethyl ether. The recombined organic layers were dried over anhydrous Na₂SO₄ and evaporated. After silica gel chromatography purification (eluant: hexane/ethyl acetate 9:1) 2.6 g of a colorless oil were obtained (96 % yield). ¹H-NMR (300 MHz, CDCl₃): δ: 7.0-7.4 (m, 10 H), 3.8 (s, 1 H), 0.1 (s, 9 H). S3 EI-MS (70 V): 73(100 %) [*SiMe₃], 272 (50 %) [M*], 199 (23 %), 195 (27 %), 167 (27 %), 135 (28 %), 122 (22 %). ⁽S1) Lehto, S.; Shirley, D. A. J. Org. Chem. 1957, 22, 989. ⁽S2) Ogura, K.; Itoh, H.; Morita, T.; Sanada, K.; Iida, H. Bull. Chem. Soc. Jpn. 1982, 55, 1216. ⁽S2) Ager, D. J. J. Chem. Soc., Perkin Trans. I 1986, 195. $\label{eq:continuous_produced_produced} \textbf{Table S1.} \ Absorption \ maxima \ and \ transients \ produced \ by \ LFP \ of \ NMQ^+/toluene/sulfide \ in \ N_2\text{-saturated CH}_3CN.$ | compd | R | X | $\lambda_{max}\left(nm\right)$ | transient | |-------|-------------------------------|-----------------------------------|--------------------------------|--| | 1 | Н | Si(CH ₃) ₃ | 330-340 | 1 ^{+•} ; C ₆ H ₅ SCH ₂ • | | | | | 400 | NMQ^{\bullet} | | | | | 540-560 | 1 ⁺ •, NMQ• | | | | | >700 | $1_2^{+\bullet}$ | | | | | 330,550 ^a | 1+• | | 2 | C ₆ H ₅ | Si(CH ₃) ₃ | 330-360 | $2^{+\bullet}$; $C_6H_5SC(C_6H_5)H^{\bullet}$ | | | | | 400 | NMQ^{\bullet} | | | | | 540 | 2 ^{+•} , NMQ [•] | | | | | >700 | $2_2^{+\bullet}$ | | | | | <350, 530 ^a | 2^{+ullet} | | 3 | Н | СООН | 325-340 | 3 ^{+•} ; C ₆ H ₅ SCH ₂ • | | | | | 400 | NMQ^{\bullet} | | | | | 540 | 3 ^{+•} , NMQ [•] | | | | | > 700 | $3_2^{+\bullet}$ | | | | | 325, 530 ^a | 3 ^{+•} | | 4 | C ₆ H ₅ | СООН | 330-360 | $4^{+\bullet}$; $C_6H_5SC(C_6H_5)H^{\bullet}$ | | | | | 400 | NMQ^{\bullet} | | | | | 520 | 4 ⁺ •, NMQ• | | | | | >700 | ${4_2}^{+ullet}$ | | | | | 530 ^a | $4^{+\bullet}$ | ^a In O₂-saturated CH₃CN. **Figure S1.** Observed rate constant (k_{obs}) vs [4-CN-pyridine] (a) and $1/k_{obs}$ vs 1/[4-CN-pyridine] (b) for the decay of $3^{+\bullet}$ in CH₃CN. Figure S2. Time-resolved absorption spectra of the 1,4-dicyanonaphthalene $(1.0 \times 10^{-4} \, \text{M})/$ PhSCH(Ph)CO₂NMe₄ (0.01 M) system in N₂-saturated MeCN recorded 0.14 (\triangle), 0.18 (\blacktriangle), 0.33 (o) and 3.2 (\bullet) μ s after the laser pulse. λ_{ecc} =355 nm.