## Understanding the Origin of Metal-Sulfur Vibrations in an Oxo-Molybdenum Dithiolene Complex: Relevance to Sulfite Oxidase

by

Frank E. Inscore<sup>†</sup>, Sushilla Knottenbelt<sup>‡</sup>, Nick D. Rubie<sup>‡</sup>, Hemant K. Joshi<sup>†</sup>,

Martin L. Kirk<sup> $\ddagger$ \*</sup> and John H. Enemark<sup> $\dagger$ \*</sup>

|       | Х       | У        | Z        | U(eq) |
|-------|---------|----------|----------|-------|
| Mo(1) | 5366(1) | 7476(1)  | 6983(1)  | 21(1) |
| S(2)  | 5190(1) | 5431(1)  | 7539(1)  | 25(1) |
| S(1)  | 7638(1) | 7983(1)  | 8182(1)  | 27(1) |
| O(1)  | 5863(2) | 7321(2)  | 5706(2)  | 30(1) |
| C(2)  | 6988(3) | 5416(2)  | 7914(2)  | 24(1) |
| C(1)  | 8086(3) | 6559(2)  | 8141(2)  | 25(1) |
| N(31) | 4423(2) | 7904(2)  | 8602(2)  | 23(1) |
| N(21) | 5371(2) | 9407(2)  | 6836(2)  | 23(1) |
| N(22) | 4197(2) | 9830(2)  | 6950(2)  | 22(1) |
| N(12) | 2303(2) | 7845(2)  | 6470(2)  | 22(1) |
| N(11) | 3119(2) | 7051(2)  | 6262(2)  | 22(1) |
| N(32) | 3408(2) | 8571(2)  | 8500(2)  | 25(1) |
| N(2)  | 7291(2) | 4346(2)  | 7962(2)  | 27(1) |
| N(1)  | 9438(2) | 6583(2)  | 8345(2)  | 33(1) |
| C(23) | 4417(3) | 11001(2) | 6679(2)  | 25(1) |
| C(15) | 2347(3) | 6210(2)  | 5409(2)  | 25(1) |
| C(14) | 1045(3) | 6469(3)  | 5072(2)  | 29(1) |
| C(27) | 3350(3) | 11739(3) | 6729(2)  | 33(1) |
| C(24) | 5747(3) | 11352(2) | 6378(2)  | 27(1) |
| C(26) | 7719(3) | 10232(3) | 6241(3)  | 33(1) |
| C(35) | 4658(3) | 7693(3)  | 9714(2)  | 29(1) |
| B(1)  | 2904(3) | 8984(3)  | 7343(2)  | 24(1) |
| C(13) | 1043(3) | 7491(2)  | 5758(2)  | 26(1) |
| C(36) | 5623(3) | 6951(3)  | 10204(2) | 36(1) |
| C(33) | 3038(3) | 8775(3)  | 9524(2)  | 32(1) |
| C(34) | 3831(3) | 8240(3)  | 10304(2) | 35(1) |
| C(3)  | 8695(3) | 4356(2)  | 8196(2)  | 28(1) |
| C(8)  | 9774(3) | 5477(3)  | 8361(3)  | 33(1) |
| C(25) | 6314(3) | 10339(2) | 6482(2)  | 24(1) |
| C(16) | 2875(3) | 5185(3)  | 4940(3)  | 35(1) |
| C(17) | -105(3) | 8147(3)  | 5781(3)  | 35(1) |

Table S1. Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) of (Tp\*)MoO(qdt) (4). U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor. Atomic numbering scheme is depicted in Fig. S2.

| C(4)  | 9096(3)  | 3229(3) | 8239(3) | 39(1) |
|-------|----------|---------|---------|-------|
| C(37) | 1936(4)  | 9440(3) | 9677(3) | 43(1) |
| C(7)  | 11214(3) | 5444(3) | 8536(4) | 50(1) |
| C(5)  | 10498(3) | 3230(3) | 8422(3) | 49(1) |
| C(6)  | 11560(4) | 4345(3) | 8573(4) | 57(1) |
|       |          |         |         |       |

| Table S2. Bond lengths [Å] and angles [°] of <b>4</b> . |            | C(27)-H(27C)      | 0.9800    |
|---------------------------------------------------------|------------|-------------------|-----------|
|                                                         |            | C(24)-C(25)       | 1.387(4)  |
| Mo(1)-O(1)                                              | 1.6863(18) | C(24)-H(24A)      | 0.9500    |
| Mo(1)-N(11)                                             | 2.171(2)   | C(26)-C(25)       | 1.487(4)  |
| Mo(1)-N(21)                                             | 2.184(2)   | C(26)-H(26A)      | 0.9800    |
| Mo(1)-N(31)                                             | 2.348(2)   | C(26)-H(26B)      | 0.9800    |
| Mo(1)-S(1)                                              | 2.3824(7)  | C(26)-H(26C)      | 0.9800    |
| Mo(1)-S(2)                                              | 2.3938(7)  | C(35)-C(34)       | 1.384(4)  |
| S(2)-C(2)                                               | 1.761(3)   | C(35)-C(36)       | 1.484(4)  |
| S(1)-C(1)                                               | 1.760(3)   | B(1)-H(9A)        | 1.0000    |
| C(2)-N(2)                                               | 1.309(3)   | C(13)-C(17)       | 1.496(4)  |
| C(2)-C(1)                                               | 1.444(4)   | C(36)-H(36A)      | 0.9800    |
| C(1)-N(1)                                               | 1.308(3)   | C(36)-H(36B)      | 0.9800    |
| N(31)-C(35)                                             | 1.354(3)   | C(36)-H(36C)      | 0.9800    |
| N(31)-N(32)                                             | 1.383(3)   | C(33)-C(34)       | 1.378(4)  |
| N(21)-C(25)                                             | 1.351(3)   | C(33)-C(37)       | 1.488(4)  |
| N(21)-N(22)                                             | 1.375(3)   | C(34)-H(34A)      | 0.9500    |
| N(22)-C(23)                                             | 1.344(3)   | C(3)-C(4)         | 1.416(4)  |
| N(22)-B(1)                                              | 1.542(4)   | C(3)-C(8)         | 1.417(4)  |
| N(12)-C(13)                                             | 1.348(3)   | C(8)-C(7)         | 1.409(4)  |
| N(12)-N(11)                                             | 1.377(3)   | C(16)-H(16A)      | 0.9800    |
| N(12)-B(1)                                              | 1.543(4)   | C(16)-H(16B)      | 0.9800    |
| N(11)-C(15)                                             | 1.350(3)   | C(16)-H(16C)      | 0.9800    |
| N(32)-C(33)                                             | 1.354(3)   | C(17)-H(17A)      | 0.9800    |
| N(32)-B(1)                                              | 1.527(4)   | C(17)-H(17B)      | 0.9800    |
| N(2)-C(3)                                               | 1.364(3)   | C(17)-H(17C)      | 0.9800    |
| N(1)-C(8)                                               | 1.361(4)   | C(4)-C(5)         | 1.363(4)  |
| C(23)-C(24)                                             | 1.381(4)   | C(4)-H(4A)        | 0.9500    |
| C(23)-C(27)                                             | 1.495(4)   | C(37)-H(37A)      | 0.9800    |
| C(15)-C(14)                                             | 1.385(4)   | C(37)-H(37B)      | 0.9800    |
| C(15)-C(16)                                             | 1.493(4)   | C(37)-H(37C)      | 0.9800    |
| C(14)-C(13)                                             | 1.379(4)   | C(7)-C(6)         | 1.360(5)  |
| C(14)-H(14A)                                            | 0.9500     | C(7)-H(7A)        | 0.9500    |
| C(27)-H(27A)                                            | 0.9800     | C(5)-C(6)         | 1.404(5)  |
| C(27)-H(27B)                                            | 0.9800     | C(5)-H(5A)        | 0.9500    |
| C(6)-H(6A)                                              | 0.9500     | O(1)-Mo(1)-N(21)  | 93.00(8)  |
|                                                         |            | N(11)-Mo(1)-N(21) | 86.30(8)  |
| O(1)-Mo(1)-N(11)                                        | 93.49(9)   | O(1)-Mo(1)-N(31)  | 169.85(8) |

| N(11)-Mo(1)-N(31) | 79.68(8)   | N(12)-N(11)-Mo(1)   | 121.13(16) |
|-------------------|------------|---------------------|------------|
| N(21)-Mo(1)-N(31) | 79.16(7)   | C(33)-N(32)-N(31)   | 110.3(2)   |
| O(1)-Mo(1)-S(1)   | 99.82(7)   | C(33)-N(32)-B(1)    | 130.0(2)   |
| N(11)-Mo(1)-S(1)  | 166.68(6)  | N(31)-N(32)-B(1)    | 119.7(2)   |
| N(21)-Mo(1)-S(1)  | 93.06(6)   | C(2)-N(2)-C(3)      | 117.0(2)   |
| N(31)-Mo(1)-S(1)  | 87.13(6)   | C(1)-N(1)-C(8)      | 117.2(2)   |
| O(1)-Mo(1)-S(2)   | 99.75(7)   | N(22)-C(23)-C(24)   | 108.3(2)   |
| N(11)-Mo(1)-S(2)  | 92.55(6)   | N(22)-C(23)-C(27)   | 123.0(2)   |
| N(21)-Mo(1)-S(2)  | 167.25(6)  | C(24)-C(23)-C(27)   | 128.7(2)   |
| N(31)-Mo(1)-S(2)  | 88.13(5)   | N(11)-C(15)-C(14)   | 109.1(2)   |
| S(1)-Mo(1)-S(2)   | 85.14(2)   | N(11)-C(15)-C(16)   | 123.1(2)   |
| C(2)-S(2)-Mo(1)   | 102.38(9)  | C(14)-C(15)-C(16)   | 127.8(2)   |
| C(1)-S(1)-Mo(1)   | 101.69(9)  | C(13)-C(14)-C(15)   | 106.5(2)   |
| N(2)-C(2)-C(1)    | 121.6(2)   | C(13)-C(14)-H(14A)  | 126.8      |
| N(2)-C(2)-S(2)    | 118.1(2)   | C(15)-C(14)-H(14A)  | 126.8      |
| C(1)-C(2)-S(2)    | 120.29(19) | C(23)-C(27)-H(27A)  | 109.5      |
| N(1)-C(1)-C(2)    | 122.0(2)   | C(23)-C(27)-H(27B)  | 109.5      |
| N(1)-C(1)-S(1)    | 117.5(2)   | H(27A)-C(27)-H(27B) | 109.5      |
| C(2)-C(1)-S(1)    | 120.53(19) | C(23)-C(27)-H(27C)  | 109.5      |
| C(35)-N(31)-N(32) | 105.8(2)   | H(27A)-C(27)-H(27C) | 109.5      |
| C(35)-N(31)-Mo(1) | 135.59(18) | H(27B)-C(27)-H(27C) | 109.5      |
| N(32)-N(31)-Mo(1) | 118.59(15) | C(23)-C(24)-C(25)   | 106.1(2)   |
| C(25)-N(21)-N(22) | 106.83(19) | C(23)-C(24)-H(24A)  | 126.9      |
| C(25)-N(21)-Mo(1) | 131.00(17) | C(25)-C(24)-H(24A)  | 126.9      |
| N(22)-N(21)-Mo(1) | 121.54(15) | C(25)-C(26)-H(26A)  | 109.5      |
| C(23)-N(22)-N(21) | 109.4(2)   | C(25)-C(26)-H(26B)  | 109.5      |
| C(23)-N(22)-B(1)  | 130.3(2)   | H(26A)-C(26)-H(26B) | 109.5      |
| N(21)-N(22)-B(1)  | 120.30(19) | C(25)-C(26)-H(26C)  | 109.5      |
| C(13)-N(12)-N(11) | 109.0(2)   | H(26A)-C(26)-H(26C) | 109.5      |
| C(13)-N(12)-B(1)  | 129.8(2)   | H(26B)-C(26)-H(26C) | 109.5      |
| N(11)-N(12)-B(1)  | 121.0(2)   | N(31)-C(35)-C(34)   | 109.7(2)   |
| C(15)-N(11)-N(12) | 107.1(2)   | N(31)-C(35)-C(36)   | 124.5(2)   |
| C(15)-N(11)-Mo(1) | 130.31(17) | C(34)-C(35)-C(36)   | 125.7(2)   |
| N(32)-B(1)-N(22)  | 108.3(2)   | N(12)-B(1)-H(9A)    | 110.2      |
| N(32)-B(1)-N(12)  | 109.4(2)   | N(12)-C(13)-C(14)   | 108.3(2)   |
| N(22)-B(1)-N(12)  | 108.7(2)   | N(12)-C(13)-C(17)   | 122.6(2)   |
| N(32)-B(1)-H(9A)  | 110.2      | C(14)-C(13)-C(17)   | 129.2(3)   |
| N(22)-B(1)-H(9A)  | 110.2      | C(35)-C(36)-H(36A)  | 109.5      |

| C(35)-C(36)-H(36B)  | 109.5    |
|---------------------|----------|
| H(36A)-C(36)-H(36B) | 109.5    |
| C(35)-C(36)-H(36C)  | 109.5    |
| H(36A)-C(36)-H(36C) | 109.5    |
| H(36B)-C(36)-H(36C) | 109.5    |
| N(32)-C(33)-C(34)   | 107.1(2) |
| N(32)-C(33)-C(37)   | 122.7(3) |
| C(34)-C(33)-C(37)   | 130.1(3) |
| C(33)-C(34)-C(35)   | 107.0(2) |
| C(33)-C(34)-H(34A)  | 126.5    |
| C(35)-C(34)-H(34A)  | 126.5    |
| N(2)-C(3)-C(4)      | 119.8(3) |
| N(2)-C(3)-C(8)      | 121.3(2) |
| C(4)-C(3)-C(8)      | 118.8(2) |
| N(1)-C(8)-C(7)      | 119.7(3) |
| N(1)-C(8)-C(3)      | 120.9(2) |
| C(7)-C(8)-C(3)      | 119.5(3) |
| N(21)-C(25)-C(24)   | 109.4(2) |
| N(21)-C(25)-C(26)   | 123.1(2) |
| C(24)-C(25)-C(26)   | 127.6(2) |
| С(15)-С(16)-Н(16А)  | 109.5    |
| С(15)-С(16)-Н(16В)  | 109.5    |
| H(16A)-C(16)-H(16B) | 109.5    |
| C(15)-C(16)-H(16C)  | 109.5    |
| H(16A)-C(16)-H(16C) | 109.5    |
| H(16B)-C(16)-H(16C) | 109.5    |
| С(13)-С(17)-Н(17А)  | 109.5    |
| С(13)-С(17)-Н(17В)  | 109.5    |
| H(17A)-C(17)-H(17B) | 109.5    |
| С(13)-С(17)-Н(17С)  | 109.5    |
| H(17A)-C(17)-H(17C) | 109.5    |
| H(17B)-C(17)-H(17C) | 109.5    |
| C(5)-C(4)-C(3)      | 120.2(3) |
| C(5)-C(4)-H(4A)     | 119.9    |
| C(3)-C(4)-H(4A)     | 119.9    |
| С(33)-С(37)-Н(37А)  | 109.5    |
| С(33)-С(37)-Н(37В)  | 109.5    |
| H(37A)-C(37)-H(37B) | 109.5    |
|                     |          |

| C(33)-C(37)-H(37C)  | 109.5    |
|---------------------|----------|
| H(37A)-C(37)-H(37C) | 109.5    |
| H(37B)-C(37)-H(37C) | 109.5    |
| C(6)-C(7)-C(8)      | 120.1(3) |
| C(6)-C(7)-H(7A)     | 120.0    |
| C(8)-C(7)-H(7A)     | 120.0    |
| C(4)-C(5)-C(6)      | 120.5(3) |
| C(4)-C(5)-H(5A)     | 119.7    |
| C(6)-C(5)-H(5A)     | 119.7    |
| C(7)-C(6)-C(5)      | 120.8(3) |
| C(7)-C(6)-H(6A)     | 119.6    |
| C(5)-C(6)-H(6A)     | 119.6    |
|                     |          |

Symmetry transformations used to generate equivalent atoms

|              | $U^{11}$ | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |  |
|--------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Mo(1)        | 21(1)    | 19(1)           | 25(1)           | 5(1)            | 6(1)            | 8(1)            |  |
| S(2)         | 20(1)    | 20(1)           | 36(1)           | 8(1)            | 3(1)            | 5(1)            |  |
| <b>S</b> (1) | 24(1)    | 19(1)           | 36(1)           | 4(1)            | 3(1)            | 5(1)            |  |
| O(1)         | 36(1)    | 29(1)           | 30(1)           | 5(1)            | 11(1)           | 13(1)           |  |
| C(2)         | 22(1)    | 24(1)           | 25(1)           | 6(1)            | 5(1)            | 6(1)            |  |
| C(1)         | 26(1)    | 23(1)           | 27(1)           | 7(1)            | 4(1)            | 7(1)            |  |
| N(31)        | 25(1)    | 24(1)           | 23(1)           | 6(1)            | 6(1)            | 8(1)            |  |
| N(21)        | 25(1)    | 20(1)           | 26(1)           | 6(1)            | 8(1)            | 8(1)            |  |
| N(22)        | 26(1)    | 20(1)           | 25(1)           | 5(1)            | 5(1)            | 11(1)           |  |
| N(12)        | 23(1)    | 21(1)           | 27(1)           | 5(1)            | 6(1)            | 10(1)           |  |
| N(11)        | 24(1)    | 22(1)           | 24(1)           | 4(1)            | 6(1)            | 11(1)           |  |
| N(32)        | 30(1)    | 22(1)           | 27(1)           | 2(1)            | 10(1)           | 8(1)            |  |
| N(2)         | 23(1)    | 23(1)           | 37(1)           | 9(1)            | 5(1)            | 7(1)            |  |
| N(1)         | 23(1)    | 26(1)           | 48(1)           | 8(1)            | 3(1)            | 5(1)            |  |
| C(23)        | 35(1)    | 20(1)           | 21(1)           | 4(1)            | 2(1)            | 10(1)           |  |
| C(15)        | 26(1)    | 23(1)           | 25(1)           | 5(1)            | 3(1)            | 6(1)            |  |
| C(14)        | 25(1)    | 30(1)           | 30(1)           | 5(1)            | 1(1)            | 5(1)            |  |
| C(27)        | 44(2)    | 25(1)           | 34(1)           | 5(1)            | 7(1)            | 17(1)           |  |
| C(24)        | 34(1)    | 20(1)           | 27(1)           | 7(1)            | 5(1)            | 6(1)            |  |
| C(26)        | 33(2)    | 27(1)           | 41(2)           | 10(1)           | 16(1)           | 7(1)            |  |
| C(35)        | 31(1)    | 29(1)           | 24(1)           | 5(1)            | 5(1)            | 2(1)            |  |
| B(1)         | 23(1)    | 23(1)           | 28(1)           | 3(1)            | 6(1)            | 10(1)           |  |
| C(13)        | 23(1)    | 26(1)           | 30(1)           | 10(1)           | 5(1)            | 7(1)            |  |
| C(36)        | 41(2)    | 42(2)           | 25(1)           | 12(1)           | 4(1)            | 12(1)           |  |
| C(33)        | 36(2)    | 28(1)           | 31(1)           | 0(1)            | 15(1)           | 4(1)            |  |
| C(34)        | 39(2)    | 41(2)           | 22(1)           | 3(1)            | 8(1)            | 4(1)            |  |
| C(3)         | 24(1)    | 26(1)           | 35(1)           | 8(1)            | 4(1)            | 9(1)            |  |
| C(8)         | 24(1)    | 29(1)           | 47(2)           | 10(1)           | 5(1)            | 9(1)            |  |
| C(25)        | 28(1)    | 20(1)           | 25(1)           | 6(1)            | 6(1)            | 6(1)            |  |
| C(16)        | 39(2)    | 29(2)           | 35(2)           | -5(1)           | 3(1)            | 12(1)           |  |
| C(17)        | 23(1)    | 35(2)           | 51(2)           | 8(1)            | 2(1)            | 14(1)           |  |
| C(4)         | 33(2)    | 29(2)           | 58(2)           | 13(1)           | 10(1)           | 11(1)           |  |
|              |          |                 |                 |                 |                 |                 |  |

Table S3. Anisotropic displacement parameters  $(Å^2 x \ 10^3)$  of **4**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$ ]

| C(37) | 56(2) | 38(2) | 42(2)  | -2(1) | 24(2) | 17(2) |
|-------|-------|-------|--------|-------|-------|-------|
| C(7)  | 23(2) | 36(2) | 93(3)  | 18(2) | 7(2)  | 9(1)  |
| C(5)  | 34(2) | 37(2) | 84(3)  | 21(2) | 11(2) | 22(1) |
| C(6)  | 26(2) | 47(2) | 105(3) | 27(2) | 13(2) | 17(2) |
|       |       |       |        |       |       |       |

Table S4. Torsion angles [°] of 4.

| O(1)-Mo(1)-S(2)-C(2) 74.61(11)    |
|-----------------------------------|
| N(11)-Mo(1)-S(2)-C(2) 168.60(10)  |
| N(21)-Mo(1)-S(2)-C(2) -106.9(3)   |
| N(31)-Mo(1)-S(2)-C(2) -111.82(10) |
| S(1)-Mo(1)-S(2)-C(2) -24.55(9)    |
| O(1)-Mo(1)-S(1)-C(1) -72.27(11)   |
| N(11)-Mo(1)-S(1)-C(1) 107.3(3)    |
| N(21)-Mo(1)-S(1)-C(1) -165.85(10) |
| N(31)-Mo(1)-S(1)-C(1) 115.17(10)  |
| S(2)-Mo(1)-S(1)-C(1) 26.80(9)     |
| Mo(1)-S(2)-C(2)-N(2) -161.58(19)  |
| Mo(1)-S(2)-C(2)-C(1) 17.4(2)      |
| N(2)-C(2)-C(1)-N(1) 3.7(4)        |
| S(2)-C(2)-C(1)-N(1) -175.2(2)     |
| N(2)-C(2)-C(1)-S(1) -174.9(2)     |
| S(2)-C(2)-C(1)-S(1) 6.2(3)        |
| Mo(1)-S(1)-C(1)-N(1) 155.2(2)     |
| Mo(1)-S(1)-C(1)-C(2) -26.1(2)     |
| O(1)-Mo(1)-N(31)-C(35)-173.5(4)   |
| N(11)-Mo(1)-N(31)-C(35)138.3(3)   |
| N(21)-Mo(1)-N(31)-C(35)-133.5(3)  |
| S(1)-Mo(1)-N(31)-C(35) -39.9(2)   |
| S(2)-Mo(1)-N(31)-C(35) 45.3(2)    |
| O(1)-Mo(1)-N(31)-N(32) 3.5(6)     |
| N(11)-Mo(1)-N(31)-N(32)-44.75(17) |
| N(21)-Mo(1)-N(31)-N(32)43.42(17)  |
| S(1)-Mo(1)-N(31)-N(32)137.09(17)  |
| S(2)-Mo(1)-N(31)-N(32)-137.68(17) |
| O(1)-Mo(1)-N(21)-C(25) -44.0(2)   |
| N(11)-Mo(1)-N(21)-C(25)-137.3(2)  |
| N(31)-Mo(1)-N(21)-C(25)142.5(2)   |
| S(1)-Mo(1)-N(21)-C(25) 56.0(2)    |
| S(2)-Mo(1)-N(21)-C(25) 137.5(2)   |
| O(1)-Mo(1)-N(21)-N(22)125.56(18)  |
| N(12)-N(11)-C(15)-C(16)-179.8(2)  |
| Mo(1)-N(11)-C(15)-C(16)13.9(4)    |

N(11)-Mo(1)-N(21)-N(22)32.25(18) N(31)-Mo(1)-N(21)-N(22)-47.94(17) S(1)-Mo(1)-N(21)-N(22)-134.42(17) S(2)-Mo(1)-N(21)-N(22) -52.9(4) C(25)-N(21)-N(22)-C(23) -0.4(3)Mo(1)-N(21)-N(22)-C(23)-172.18(16) C(25)-N(21)-N(22)-B(1) 179.8(2) Mo(1)-N(21)-N(22)-B(1) 8.0(3) C(13)-N(12)-N(11)-C(15) 0.3(3)B(1)-N(12)-N(11)-C(15) -175.6(2) C(13)-N(12)-N(11)-Mo(1)168.12(16) B(1)-N(12)-N(11)-Mo(1) -7.8(3) O(1)-Mo(1)-N(11)-C(15) 39.6(2) N(21)-Mo(1)-N(11)-C(15)132.4(2) N(31)-Mo(1)-N(11)-C(15)-148.0(2) S(1)-Mo(1)-N(11)-C(15) -140.0(2) S(2)-Mo(1)-N(11)-C(15) -60.3(2)O(1)-Mo(1)-N(11)-N(12)-125.02(18) N(21)-Mo(1)-N(11)-N(12)-32.23(17) N(31)-Mo(1)-N(11)-N(12)47.41(17) S(1)-Mo(1)-N(11)-N(12) 55.4(3) S(2)-Mo(1)-N(11)-N(12)135.05(17) C(35)-N(31)-N(32)-C(33) 0.6(3) Mo(1)-N(31)-N(32)-C(33)-177.21(17) C(35)-N(31)-N(32)-B(1) 179.2(2) Mo(1)-N(31)-N(32)-B(1) 1.4(3) C(1)-C(2)-N(2)-C(3)-2.3(4)176.69(19) S(2)-C(2)-N(2)-C(3)C(2)-C(1)-N(1)-C(8)-1.5(4)S(1)-C(1)-N(1)-C(8)177.2(2) N(21)-N(22)-C(23)-C(24) 0.2(3) B(1)-N(22)-C(23)-C(24) -180.0(2) N(21)-N(22)-C(23)-C(27)-179.2(2) B(1)-N(22)-C(23)-C(27) = 0.6(4)N(12)-N(11)-C(15)-C(14) 0.2(3) Mo(1)-N(11)-C(15)-C(14)-166.08(17) N(11)-C(15)-C(14)-C(13) -0.6(3) C(16)-C(15)-C(14)-C(13) 179.4(3)

N(22)-C(23)-C(24)-C(25) 0.0(3) C(27)-C(23)-C(24)-C(25) 179.4(3) N(32)-N(31)-C(35)-C(34) -1.3(3) Mo(1)-N(31)-C(35)-C(34)175.93(19) N(32)-N(31)-C(35)-C(36)176.8(3) Mo(1)-N(31)-C(35)-C(36) -5.9(4) C(33)-N(32)-B(1)-N(22) 117.6(3) N(31)-N(32)-B(1)-N(22) -60.7(3) C(33)-N(32)-B(1)-N(12) -124.2(3) N(31)-N(32)-B(1)-N(12) 57.6(3) C(23)-N(22)-B(1)-N(32) -121.9(3) N(21)-N(22)-B(1)-N(32) 57.8(3) C(23)-N(22)-B(1)-N(12) 119.4(3) N(21)-N(22)-B(1)-N(12) -60.9(3)C(13)-N(12)-B(1)-N(32) 128.1(3) N(11)-N(12)-B(1)-N(32) -56.9(3) C(13)-N(12)-B(1)-N(22) -113.8(3) N(11)-N(12)-B(1)-N(22) 61.1(3) N(11)-N(12)-C(13)-C(14) -0.7(3) B(1)-N(12)-C(13)-C(14) 174.7(2) N(11)-N(12)-C(13)-C(17)178.7(2) B(1)-N(12)-C(13)-C(17) -5.9(4)C(15)-C(14)-C(13)-N(12) 0.8(3)C(15)-C(14)-C(13)-C(17)-178.5(3) N(31)-N(32)-C(33)-C(34) 0.4(3) B(1)-N(32)-C(33)-C(34) -178.0(3) N(31)-N(32)-C(33)-C(37)-178.2(3) B(1)-N(32)-C(33)-C(37) 3.4(5) N(32)-C(33)-C(34)-C(35) -1.1(3) C(37)-C(33)-C(34)-C(35) 177.3(3) N(31)-C(35)-C(34)-C(33) 1.6(3) C(36)-C(35)-C(34)-C(33)-176.6(3)C(2)-N(2)-C(3)-C(4)-178.8(3)C(2)-N(2)-C(3)-C(8)-1.0(4)C(1)-N(1)-C(8)-C(7)177.7(3) C(1)-N(1)-C(8)-C(3)-1.8(4)3.2(4) N(2)-C(3)-C(8)-N(1)C(4)-C(3)-C(8)-N(1)-179.0(3)

N(2)-C(3)-C(8)-C(7)-176.3(3)C(4)-C(3)-C(8)-C(7)1.5(5)N(22)-N(21)-C(25)-C(24) 0.4(3) Mo(1)-N(21)-C(25)-C(24)171.11(17) N(22)-N(21)-C(25)-C(26)-178.9(2) Mo(1)-N(21)-C(25)-C(26)-8.2(4) C(23)-C(24)-C(25)-N(21) -0.2(3) C(23)-C(24)-C(25)-C(26) 179.0(3) N(2)-C(3)-C(4)-C(5)177.0(3) C(8)-C(3)-C(4)-C(5)-0.8(5)N(1)-C(8)-C(7)-C(6) 178.9(4) C(3)-C(8)-C(7)-C(6)-1.5(6)0.2(6) C(3)-C(4)-C(5)-C(6)C(8)-C(7)-C(6)-C(5)0.9(7) C(4)-C(5)-C(6)-C(7)-0.2(7)Mo(1)-S(1)-S(2)-C(2) 151.91(10)

Symmetry transformations used to generate equivalent atoms:

|        | х     | У     | Z     | U(eq) |
|--------|-------|-------|-------|-------|
|        |       |       |       |       |
| H(14A) | 301   | 6028  | 4485  | 35    |
| H(27A) | 3076  | 11726 | 7484  | 49    |
| H(27B) | 2507  | 11384 | 6149  | 49    |
| H(27C) | 3767  | 12592 | 6586  | 49    |
| H(24A) | 6186  | 12131 | 6147  | 33    |
| H(26A) | 7583  | 9506  | 5706  | 49    |
| H(26B) | 8322  | 10145 | 6951  | 49    |
| H(26C) | 8178  | 10973 | 5907  | 49    |
| H(9A)  | 2159  | 9438  | 7403  | 29    |
| H(36A) | 5449  | 6183  | 9717  | 54    |
| H(36B) | 5444  | 6759  | 10968 | 54    |
| H(36C) | 6613  | 7421  | 10250 | 54    |
| H(34A) | 3815  | 8245  | 11098 | 42    |
| H(16A) | 3752  | 5529  | 4648  | 52    |
| H(16B) | 2152  | 4696  | 4321  | 52    |
| H(16C) | 3066  | 4657  | 5544  | 52    |
| H(17A) | 258   | 9013  | 5649  | 53    |
| H(17B) | -409  | 8100  | 6524  | 53    |
| H(17C) | -917  | 7758  | 5183  | 53    |
| H(4A)  | 8386  | 2470  | 8140  | 47    |
| H(37A) | 2190  | 10255 | 9393  | 64    |
| H(37B) | 1879  | 9535  | 10487 | 64    |
| H(37C) | 1011  | 8967  | 9253  | 64    |
| H(7A)  | 11943 | 6191  | 8628  | 60    |
| H(5A)  | 10759 | 2470  | 8447  | 59    |
| H(6A)  | 12533 | 4331  | 8702  | 69    |

Table S5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) of **4**.

**Figure S1.** Projection view of (Tp\*)MoO(qdt) (4) along *a* showing the solid-state packing in the triclinic unit cell.



**Figure S2.** ORTEP views of (Tp\*)MoO(qdt) (4) with 50% probability displacement ellipsoids. H-atoms arbitrarily drawn small for clarity. (a-e) show different orientations.



(a). Top View along O≡Mo bond.

(b). Bottom View along N31-Mo bond.

