`Supporting Information

1. Strain and Biaxial Modulus of CdSe Cores in Nanocrystal Films

For a system with no shear stresses, strain is related to stress as

$$\varepsilon_{xx} = \frac{\sigma_{xx} - v(\sigma_{yy} + \sigma_{zz})}{E}$$
(1)

$$\varepsilon_{yy} = \frac{\sigma_{yy} - v(\sigma_{xx} + \sigma_{z})}{E}$$
(2)

$$\varepsilon_{zz} = \frac{\sigma_{zz} - v(\sigma_{xx} + \sigma_{yy})}{E}$$
(3)

The in-plane tensile strain for the unrelaxed film is $\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon$ and the isotropic in-plane

stress is $\sigma_{xx} = \sigma_{yy} = \sigma$. With the normal stress $\sigma_{zz} = 0$, it follows that $\varepsilon_{zz} = -\left[\frac{2v}{1-v}\right]\varepsilon$,

where v is Poisson's ratio and E is Young's modulus.

For $\{100\}$ planes the Raman shift is¹

$$\omega = \omega_0 + \frac{p\varepsilon_{zz} + q(\varepsilon_{xx} + \varepsilon_{yy})}{2\omega_0}$$
(4)

Therefore,
$$\omega = \omega_0 + \left[\frac{q - \frac{pv}{1 - v}}{\omega_0}\right] \varepsilon$$
 in the fully strained region, $\omega = \omega_0 + \left[\frac{q - \frac{pv}{1 - v}}{2\omega_0}\right] \varepsilon$ in the

partially relaxed delaminated regions near a channel crack, and ω_0 for the completely delaminated region.

We use²
$$p = -\omega_{LO}^2 = -0.454 \times 10^5 \text{ cm}^{-2}$$
, $q = -1.8\omega_{LO}^2 = -0.817 \times 10^5 \text{ cm}^{-2}$, and $\omega_0 =$

213 cm⁻¹. Consequently, Equation 4 can be written as

$$\boldsymbol{\omega} - \boldsymbol{\omega}_0 = \left[\frac{\boldsymbol{\omega}_0 \boldsymbol{v}}{1 - \boldsymbol{v}} - 1.8\boldsymbol{\omega}_0\right]\boldsymbol{\varepsilon}$$
(5)

Using the angle averaged value of v = 0.37 for CdSe, as reported previously,³ $\omega - \omega_0 = -258\varepsilon$ (in cm⁻¹), and for $\varepsilon = +1\%$, $\omega - \omega_0 = -2.58$ cm⁻¹ in the completely strained region. For our film we measure a 6.4 cm⁻¹ Raman shift ($\delta_2 = 6.4 \pm 1.5$ cm⁻¹), which corresponds to a total core strain of ~2.5%. The strain in the entire film as derived from optical microscopy is 11.7%.

The biaxial modulus for the CdSe core: $E_{CdSe}/(1-v_{CdSe}) = 41.5/(1-0.37) = 65.9$ GPa, using values of 41.5 GPa and 0.37 for *E* and *v*, respectively, for hexagonal CdSe.³ The in-plane stress is $\sigma = \varepsilon E/(1-v) = 1.6$ GPa for 2.5% strain. Thus the biaxial modulus for the film, $E_{film}/(1-v_{film}) = 0.025/0.117E_{CdSe}/(1-v_{CdSe}) = 0.21E_{CdSe}/(1-v_{CdSe}) \sim$ 13.8 GPa. For $v_{film} = 0.1-0.5$, we obtain $E_{film} = 6.8-12.4$ GPa

From the micromechanics models discussed in the next section it is reasonable to take $E_{\text{film}}/(1-v_{\text{film}}) = 2.75E_{\text{TOPO}}/(1-v_{\text{TOPO}})$. From this, $E_{\text{TOPO}}/(1-v_{\text{TOPO}}) = (0.21/2.75)E_{\text{CdSe}}/(1-v_{\text{CdSe}}) = 0.077E_{\text{CdSe}}/(1-v_{\text{CdSe}}) = 0.077 \times 65.9$ GPa = 5.1 GPa. For $v_{\text{TOPO}} = 0.1-0.5$, we see that $E_{\text{TOPO}} = 2.45-4.41$ GPa.

2. Micromechanics Models

Assuming a close-packed arrangement of spheres, the volume density of the CdSe cores in the film is assumed to be $\rho = 0.43$. We use this and assume $E_{CdSe} >> E_{TOPO}$ in each of the below micromechanics models, and find this assumption is consistent with the results.

2.1. Halpin-Tsai Model

This model predicts⁴

$$\frac{E_{film}}{E_{TOPO}} = \frac{1 + \xi \eta \rho}{1 - \eta \rho} \tag{6}$$

with $\xi = 2 + 40\rho^{10}$ for spherical particles, where ρ is the fraction of the particulate material in the matrix and

$$\eta = \frac{\frac{E_{film}}{E_{TOPO}} - 1}{\frac{E_{film}}{E_{TOPO}} + \xi}$$
(7)

E and *K* scale in the same way, $E_{\text{film}}/E_{\text{TOPO}} = K_{\text{film}}/K_{\text{TOPO}} = 3.26$. Therefore, $E_{\text{film}}/(1-v_{\text{film}})$ = $3.26E_{\text{TOPO}}/(1-v_{\text{TOPO}})$.

2.2 Cohen-Ishai Model

This model predicts⁵

$$E_{film} = E_{TOPO} \left(1 + \frac{\rho}{\frac{M}{M - 1} - \rho^{1/3}} \right)$$
(8)

where $M = E_{CdSe}/E_{TOPO}$, to give $E_{film}/E_{TOPO} = 2.75$. Using the assumptions of cubic filler in a cubic matrix implicit in this model with v = 0.33, gives $E_{film}/(1-v_{film}) = 2.75E_{TOPO}/(1-v_{TOPO})$.

2.3 Mori-Tanaka Model

This model predicts⁶

$$\frac{E_{film}}{E_{TOPO}} = 1 + \frac{\rho}{(1-\rho)} \left[1 + \frac{(9K_{TOPO} + 8E_{TOPO})}{6(K_{TOPO} + 2E_{TOPO})} \right]$$
(9)

$$\frac{K_{film}}{K_{TOPO}} = 1 + \frac{\rho}{(1-\rho)} \left[1 + \frac{4E_{TOPO}}{3K_{TOPO}} \right]$$
(10)

We examine two reasonable scenarios:

i) For $E_{TOPO} = K_{TOPO}$, we have $E_{\text{film}}/E_{TOPO} = 2.46$ and $K_{\text{film}}/K_{TOPO} = 2.76$, and therefore

 $E_{\text{film}}/(1-v_{\text{film}}) = 2.33E_{\text{TOPO}}/(1-v_{\text{TOPO}}).$

ii) For $E_m = 0.5K_m$, we have $E_{\text{film}}/E_{\text{TOPO}} = 2.57$ and $K_{\text{film}}/K_{\text{TOPO}} = 2.25$, and therefore

 $E_{\text{film}}/(1-v_{\text{film}}) = 2.65E_{\text{TOPO}}/(1-v_{\text{TOPO}}).$

2.4. Christensen-Lo Model

This model predicts⁶

$$K_{film} = K_{TOPO} + \frac{\rho(K_{CdSe} - K_{TOPO})}{1 + (1 - \rho) \frac{(K_{CdSe} - K_{TOPO})}{\left(K_{TOPO} + \frac{4}{3}E_{TOPO}\right)}}$$
(11)

i) For $E_m = 0$, we have $K_{\text{film}}/K_{\text{TOPO}} = 1.75$.

ii) For $E_m = K_m$, we have $K_{\text{film}}/K_{\text{TOPO}} = 2.76$.

2.5. New Christensen Model

This model predicts⁷

$$\frac{E_{film}}{E_{TOPO}} = \frac{1 - \frac{(1 - 5v_{TOPO})}{2(4 - 5v_{TOPO})}\rho}{1 - 2\rho}$$
(12)

$$\frac{K_{film}}{K_{TOPO}} = \frac{1 + \left(\frac{1 - 5v_{TOPO}}{1 + v_{TOPO}}\right)\rho}{1 - 2\rho}$$
(13)

i) For v = 0.1, $E_{\text{film}}/E_{\text{TOPO}} = 6.92$ and $K_{\text{film}}/K_{\text{TOPO}} = 8.5$, which gives $E_{\text{film}}/(1-v_{\text{film}}) = 3.96$ $E_{\text{TOPO}}/(1-v_{\text{TOPO}})$.

ii) For v = 0.33, $E_{\text{film}}/E_{\text{TOPO}} = 7.6$ and $K_{\text{film}}/K_{\text{TOPO}} = 5.6$, which gives $E_{\text{film}}/(1-v_{\text{film}}) =$

 $9.1E_{\text{TOPO}}/(1-v_{\text{TOPO}}).$

iii) For v = 0.5, $E_{\text{film}}/E_{\text{TOPO}} = 8.7$ and $K_{\text{film}}/K_{\text{TOPO}} = 4.1$, which gives $E_{\text{film}}/(1-v_{\text{film}}) =$

 $8.7E_{\text{TOPO}}/(1-v_{\text{TOPO}}).$

2.6. Overall Conclusions

On the basis of the first four models, we use $E_{\text{film}}/(1-v_{\text{film}}) = 2.75E_{\text{TOPO}}/(1-v_{\text{TOPO}})$.

The last model gives very different predictions because it assumes the capping ligands

are randomly distributed-which would suggest direct contact of some cores, and this is

important in this model---but the ligands are not distributed in this manner because they

are bound to the cores.

References

- 1. Anastassakis, E.; Pinczuk, A.; Burstein, E.; Pollak, F. H.; Cardona, M., *Solid State Commun.* **1970**, 8, 133.
- 2. Geurts, J., *Prog. Crystal Growth and Charact.* **1996**, 32, 185.
- 3. Simmons, G.; Wang, H., *Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook.* 2nd ed.; M.I.T Press: Cambridge, MA, 1971.
- 4. Halpin, J. C.; Kardos, J. L., *Polym. Eng. Sci.* **1976**, 16, 344.
- 5. Cohen, L. J.; Ishai, O., J. Composite Mat. 1967, 1, 390.
- 6. Christensen, R. M., J. Mech. Phys. Solids 1990, 38, 379.
- 7. Christensen, R. M., *Composites Part B: Eng.* **2004**, 35, 475.