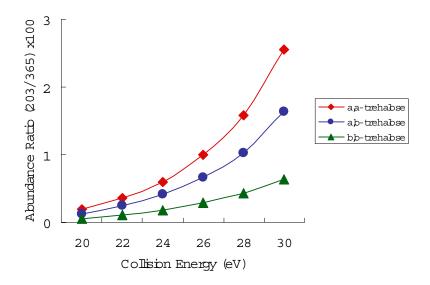
Supporting Informations

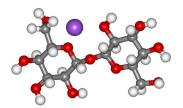
Analysis of glycosyl bond cleavage and there related isotope effects in collision-induced dissociation quadrupole/time-of-flight mass Spectrometry of isomeric trehaloses

Tohru Yamagaki,*1 Kazuhiko Fukui,2 Kazuo Tachibana,1

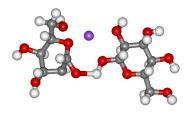

¹Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 Japan

²Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-41-6 Aomi, Koutou, Tokyo 135-0064 Japan

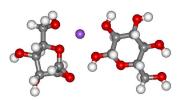
Corresponding Author:


Tohru Yamagaki, Department of Chemistry, University of Tokyo

E-mail: yamagaki@chem.s.u-tokyo.ac.jp

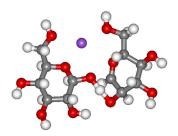


SI-1. Abundance ratio of ion m/z 203/365. Red diamond plots $- \bullet -$ are the data of α, α -trehalose, blue circle plots $- \bullet -$ are that of α, β -trehalose, and green square plots $- \bullet -$ are that of β, β -trehalose.


(a)

(b)

(c)



SI-2. Optimized structures of $[\beta,\beta$ -trehalose + Na]⁺ (a), the transition state (b) and the intermediate (c) product of reaction path (B) in Figure 6-b.


(a)

(b)

(c)

SI-3. Optimized structures of $[\alpha,\beta$ -trehalose + Na]⁺ (a), the transition state (b) and the intermediate (c) product of reaction path (B) in Figure 6-c.