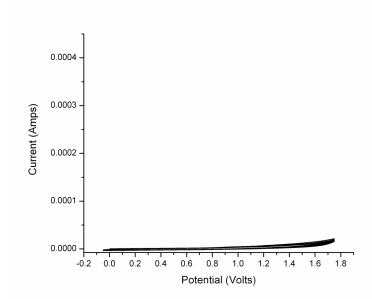
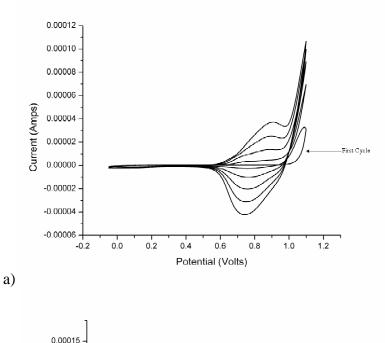
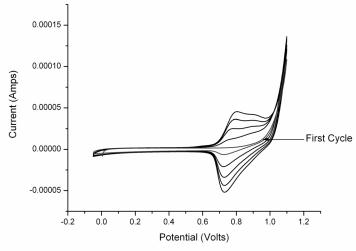
Supporting Information.


Conjugated Polyphenylacetylene Films Crosslinked with Electropolymerized Polycarbazole Precursors

Timothy Fulghum¹, S. M. Abdul Karim², Akira Baba¹, Prasad Taranekar¹, Takafumi Nakai²,


Toshio Masuda²*, and Rigoberto C. Advincula¹*


Department of Chemistry, University of Houston, Houston, TX 77204-5003 USA

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, JAPAN

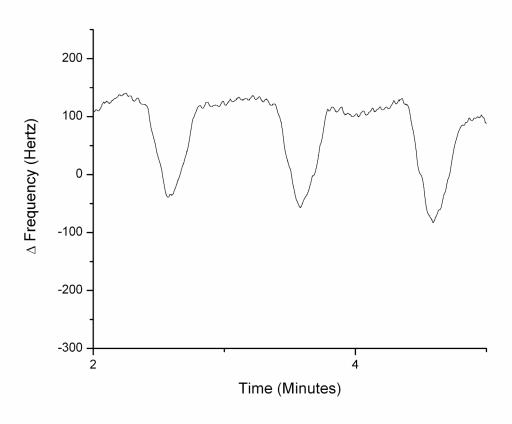


Figure 1. CV scan of PPA control to determine the degradation of the C=C double bond in the polymer backbone. The CV of the polyphenylacetylene (PPA) control at 0.5 mg/ml in 0.1 M TBAH /CH₂Cl₂ solution, 50mV/s. From the anodic CV trace, no onset of oxidation is observed up to 1.8 V vs. Ag / AgCl.

Figure 2) a) 5 Cycle CV for electrochemical crosslinking/deposition of PPA-C3-Cz at a scan rate of 50mv/sec. b) 5 Cycle CV for electrochemical crosslinking/deposition of PPA-C6-Cz at a scan rate of 50mv/sec.

Figure 3. Monomer free E-QCM study. Δ Frequency Vs. Time showing the doping dedoping of supporting electrolyte into the film, but no permanent gain or loss of mass.