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Supplementary information

Why is the negative of the history dependent bias potential an estimate of

the underlying free energy?

For the proof that the bias potential Viias(s, t) at the end of the metadynamics simulation an estimate
of the free energy, we will closely follow the argument of the paper by Laio et al. in Assessing the accuracy
of metadynamics (J. Phys. Chem. 109, 6714 (2005)).

The probability distribution of a canonical system at temperature 3! as a function of a small

number of collective variables s(R) can be written as

exp(—BF(s))

PO = Fhs exp(—BF () 1)
where R are the atomic positions, and F(s) the free energy:
F(s) = =B [ [ dR exp(~pV (R))3(s(R) - 5) (2)

In principle the probability function and the free energy can be calculated from a very long, so called
“brute force” simulation by taking a histogram of s. However, if the free energy has a local minimum
that acts as a stable basin of attraction, then the escape of the motion of s can be a rare event on the
time scale determined by the potential V/(R) alone.

The metadynamics method uses a biasing potential Viias(s, t) to which a new Gaussian with height
H and width w is added every time interval ét:

Voias(8, ) = ) HeXP(—b_TZ}(:il) 3)

to counteract the basin of attraction and reconstruct F(s).
Starting from a zero biasing potential —Vi,a5(s,t) = 0, the probability to deposit the first hill, after

sufficient equilibration time, is largest in (the neighborhood of) the local minimum of the free energy
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function, after which the new probability distribution becomes:
P(s,t) = P(s,0) — exp[—BVhias(s, t)] (4)

For a sufficiently small Gaussian (i.e. H is smaller than the depth of the local minimum, and w is
smaller than the width of the local minimum), the probability to find s in the neighborhood of the local
minimum has reduced and the local minimum in the function F(s) — Vhias(s, t) has also reduced. If
the time interval d¢ of adding Gaussians to the biasing potential is larger than the equilibration time
of the system (the time for the system to fall and thermalize in the new local minimum), repeating
this procedure will lead to the minimization of the function F(s) — Was(s, t), so that Was(s,t) is an
approximation of the free energy F(s).

If instead the function F(s)—Viias(s, t) is locally flat (and the probability distribution P(s, t) therefore
also), the next Gaussian added to Vi (s, t) will lead to an extra bump on the function F(s) — Vyias(s, t),
so that the only corrugations in the free energy estimation left are of the size of the Gaussians. By
reducing the size of the Gaussians after every barrier recrossing to a previously flattened (initial) basin

of attraction, the free energy function is reconstructed to arbitrary accuracy.

Metadynamics working recipe

Here we briefly summarize the working recipe for obtaining the reaction mechanism and free energy
profile for intrinsically multi-dimensional reactions, using metadynamics combined with Car-Parrinello
molecular dynamics, as previously reported (Ensing, B.; Laio, A.; Parrinello, M.; Klein, M. L. A recipe
for the computation of the free energy barrier and the lowest free energy path of concerted reactions.
J. Phys. Chem. B 2005, 109, 6676.).

Firstly, identify the relevant collective variables (bond distances, angles, torsion angles, coordination

numbers) that describe the reaction and perform short metadynamics simulations without adding hills,
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to obtain values for the mass and spring constants that guarantee a healthy (largely adiabatically
decoupled) meta-dynamics. The amplitudes of the collective variables in the reactant well indicate the
width of the well, allowing for a hill width to be chosen. Secondly, perform the hills method simulation,
using a hill height of H = 0.2 — 2kpT (depending on the desired accuracy versus sampling speed) and a
displacement dependent stride At based on 2 hill width or a fixed stride based on At = (1.5w)?/D (i.e.
the average time to diffuse a distance of % hill width. Decrease the hills size after every recrossing for
free energy convergence. Thirdly, locate the lowest free energy path to depict the reaction mechanism.
Finally, perform one-dimensional umbrella sampling along the lowest free energy path to obtain the

reaction free energy profile and reaction barrier to arbitrary accuracy.

Computation details of the alanine peptide simulations

In the simulation of aqueous solution, an alanine dipeptide molecule is placed into a periodic cubic
box (L = 18.8 A) with 216 water molecules. The electrostatic interactions are calculated by Ewald
summation and the real space cut off is half of the cell dimension (9.4 A ). Prior to the metadynamics
runs, an NPT simulation at 1 atm and 298 K for at least 50 ps was carried out to equilibrate the cell
volume. The metadynamics simulations are performed within the NVT ensembles at T = 298 K, using
a time step of 0.5 fs, hill dimensions of w = 0.2 rad and H = 0.02 kcal/mol. The total simulation
times for the metadynamics runs were ~5 ns for gas phase and ~3.5 ns for aqueous solution phase,

respectively.

Error estimation of the alanine peptide metadynamics simulations

To make a valid comparison, we have estimated the resolutions of our results as following. In the
metadynamics run, once the entire ¢-¢ conformational space is filled with hills at time ¢ (= 4 ns), the

molecule moves freely afterward. Take ¢’ to be the simulation time to add another layer of hills over the
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entire ¢-3 conformational space (which should not affect the relative energy and positions of minima).
Then, variations between the FES at ¢ and the one at ¢’ > t are brought by errors. By calculating the
standard deviation of the free energy difference map between different simulation times, such as 4 ns vs
5 ns or 4.5 ns vs 5 ns, we have estimated the errors in relative energy to be 0.3-0.5 kcal/mol. In addition,
comparing the minima positions at 4 ns, 4.5 ns and 5 ns gives an estimation of errors on the dihedral
angles. The resolution for more clearly defined minima such as C7,, is small, at about 3 degrees. The
error in more shallow minima such as ag is larger, at about 10 degrees. Although the simulation in
aqueous solution is not long enough to make a good estimation on errors, preliminary comparison of our
findings with those of the gas phase indicates that the errors are very similar. Considering the variations

observed from different studies, the precision of the metadynamics method is rather good.

Is the gas phase ag minimum a true minimum?

For the gas phase g minimum, three of the four boundaries of the well (across ¢ and on the smaller
side of 1) are clearly defined. The depth of the well relative to the transition state linking to the C7¢
minimum is only =~ 0.3 kcal/mol and thus at the same magnitude as our estimated error range. Note
however that, even though our ag minimum may not be a true minimum, there is a clearly defined
flat region at around —67° < ¢ < —98° and —76° < ¥ < 0° that encloses the ar conformation.
This observation is in agreement with the QM optimization at the MP2/6-311++G** level of theory
which could not locate the exact position of ag, because the QM potential energy surface shows an
extended flat valley from the C7, region up towards the helical region at around (—60°, —45°). Further

calculations are in progress to assess the results here presented.
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