240 GHz TR-EPR spectra calculated for different degrees of molecular biaxiality.

In Figure 1 we report calculated spectra at 240GHz, obtained considering the director *n* parallel to the Z_{ZFS} axis, $\varepsilon=2$ and increasing values of the biaxiality parameter λ . Spectra a-c correspond to the director parallel to the magnetic field, while for spectra d-f the director is perpendicular to the magnetic field. The spectra in Figure 1a,d refer to uniaxial distribution, $\lambda = 0.0$; in Figure 1b,e to biaxial distribution with $\lambda=0.7$; in Figure 1c,f the same as before but with a negative value of the biaxiality parameter $\lambda = -0.7$. The biaxiality determines the relative intensity of the spectral features corresponding to the tensor components less aligned to the director, in this case X_{ZFS} and Y_{ZFS} . Changing the sign of λ is equivalent to exchanging the X and Y axes in the molecular frame.

Table 1: values of the Saupe tensor for the spectra in figure 1						
	Spectrum	3	λ	$\mathbf{S}_{\mathbf{X}\mathbf{X}}^{\mathbf{ZFS}}$	S_{YY}^{ZFS}	S_{ZZ}^{ZFS}
	a), d)	2.0	0.0	-0.22	-0.22	0.44
	b), e)	2.0	0.7	-0.02	-0.33	0.35
	c), f)	2.0	-0.7	-0.33	-0.02	0.35

Parameters for the simulation: D = 554 MHz, E = 38 MHz, $g_{xx} = 2.00105$, $g_{yy} = 2.00160$, $g_{zz} = 2.00215$, $p_x = 0.93$, $p_y = 0.07$, $p_z = 0.00$, $\Omega_g = \Omega_{ZFS} = (0^\circ, 0^\circ, 0^\circ)$ [see Scheme 2 of the article].

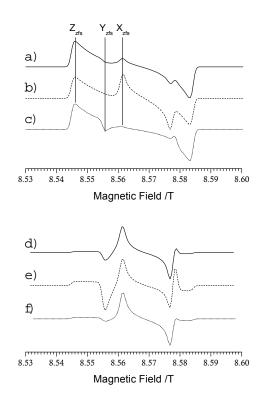


Fig.1. Calculated TR-EPR spectra at 240GHz, with ε = 2 and different values of λ , see table 1. Spectra a-c correspond to B₀ parallel to the director, spectra d-f to B₀ perpendicular to the director.