Total Synthesis of (+)-Mycalamide A

Natsuko Kagawa, Masataka Ihara, and Masahiro Toyota*
Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
E-mail: toyota@c.s.osakafu-u.ac.jp

10

(+)-(2R,3R)-1,2-O-Isopropylidene-4-pentyne-1,2,3-triol (10)

To a $-30{ }^{\circ} \mathrm{C}$ solution of p-nitrobenzoic acid $(0.156 \mathrm{~g}, 0.934 \mathrm{mmol})$ and powdered $\mathrm{PPh}_{3}(0.245 \mathrm{~g}$, $0.934 \mathrm{mmol})$ in toluene (10 mL) was added a solution of anti-alcohol $9(0.178 \mathrm{~g}, 0.779 \mathrm{mmol})$ in toluene (3 mL), and followed by a solution of DEAD in toluene ($0.424 \mathrm{~mL}, 40 \%, 0.934 \mathrm{mmol}$). The mixture was stirred for 17 h at $-30{ }^{\circ} \mathrm{C}$, then poured into saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting yellow solid was diluted with $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL})$ and hexane (30 mL), and filtered. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$, and combined filtrate and washings were evaporated to provide a viscous oil. Purification of the crude product by flash chromatography ($9 \% \mathrm{EtOAc} / \mathrm{hexane}$) provided syn-p-nitrobenzoate ($0.462 \mathrm{~g},>100 \%$) as a yellow solid, which was used without further purification in a next experiment.
To a $0{ }^{\circ} \mathrm{C}$ solution of syn-p-nitrobenzoate ($0.462 \mathrm{~g},<0.779 \mathrm{mmol}$) in MeOH (12 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.419 \mathrm{~g}, 3.03 \mathrm{mmol})$, and the suspension was stirred for 15 min at rt . After neutralization with AcOH , the solvent was removed to give a colorless oil. The resulting oil was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification of the crude product by flash chromatography (25% EtOAc/hexane) provided β-acetylenic alcohol 10 ($98.6 \mathrm{mg}, 81 \%$ for 2 steps), of which structure was confirmed by comparison with reported spectral data ${ }^{1)}$.

11
(-)-(3R,4R)-3-Benzyloxy-4,5-isopropylidenedioxypentene (11)
To a $0{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{LiAlH}_{4}(3.89 \mathrm{~g}, 0.103 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added a solution of β-acetylenic alcohol $10(14.5 \mathrm{~g}, 0.0929 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture was stirred for 2 h at rt , then cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}(3.89 \mathrm{~mL})$ was slowly added. After $30 \mathrm{~min}, 15 \% \mathrm{NaOH}(3.89 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(11.7 \mathrm{~mL})$ were added and the resulting solution was stirred for an additional 10 h at rt . $\mathrm{MgSO}_{4}(4 \mathrm{~g})$ was added, and the mixture was filtered through Celite and concentration to provide olefin $(12.34 \mathrm{~g})$. The crude olefin was used without further purification in a next experiment.
To a $0{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{NaH}(3.46 \mathrm{~g}, 60 \%$ in oil, 0.0864 mmol$)$ in $\mathrm{DMF}(180 \mathrm{~mL})$ was added a solution of a crude olefin $(12.34 \mathrm{~g})$ in DMF $(40 \mathrm{~mL})$, followed by $\operatorname{BnBr}(11.2 \mathrm{~mL}, 0.0944 \mathrm{mmol})$.

The mixture was stirred for 1.5 h at rt , and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added over 15 min . The phases were separated and the aqueous phase was further extracted with $\mathrm{Er}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification of the crude product by flash chromatography ($6 \% \mathrm{EtOAc} /$ hexane) provided benzyl ether $\mathbf{1 1}(18.75 \mathrm{~g}$, 98% for 2 steps) as a colorless oil.
Data for $11 ;[\alpha]^{28}{ }_{\mathrm{D}}=-27.46^{\circ}$ (c $0.97, \mathrm{CHCl}_{3}$); IR (neat) $1635 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCD}_{3}$) $\delta 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=8.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=7.4,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{dd}, J=8.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (ddd, $J=0.8,1.4,18.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (ddd, $J=0.8,1.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.73 (ddd, $J=7.7,11.0,18.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.38,134.34$, $128.34,127.79,127.55,120.04,109.68,80.97,77.40,70.25,65.68,26.36,25.25$; LRMS $m / z 233$ ($\mathrm{M}^{+}-15$) ; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$ 233.1177, found 233.1154; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.11. Found : C, 72.60; H, 8.08.

$12(\alpha: \beta=8: 1)$

(2RS,3R,4R)-3-Benzyloxy-4,5-isopropylidenedioxy-1,2-pentanediol (12)

To a solution of olefin $11(2.43 \mathrm{~g}, 9.78 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v})$ were added NMO $(1.72 \mathrm{~g}, 14.7 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(0.124 \mathrm{~g}, 0.489 \mathrm{mmol})$. The mixture was stirred for 10 h at rt , then saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The solution was stirred for an additional 1 h . The resulting mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography (80% EtOAc/hexane) provided diol diastereomers $\mathbf{1 2}(2.76 \mathrm{~g}, 100 \%)$ in a 8:1 ratio.
Partial data for $\mathbf{1 2}$; IR (neat) $3420 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3$ H), 2.97 (br s, 2 H), $3.59-3.69$ (m, 2 H), 3.71-3.79 (m, 2 H), 3.87 (dd, $J=8.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (dd, $J=8.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 0.1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 0.9 \mathrm{H})$, $4.76(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 0.9 \mathrm{H}), 4.82(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H})$, LRMS m/z 267 ($\mathrm{M}^{+}-15$); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{5}$ 267.1231, found : 267.1223.

(+)-(2R,3R,4R)-3-Benzyloxy-1-tert-butyldiphenylsilyloxy-

4,5-isopropylidenedioxy-2-pentol (13)

To a solution of diol $\mathbf{1 2}\left(0.475 \mathrm{~g}, 1.68 \mathrm{mmol}\right.$, a 8:1 mixture of diastereomers) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) were added $E t_{3} \mathrm{~N}(0.305 \mathrm{~mL}, 2.18 \mathrm{mmol}), \operatorname{TBDPSCl}(0.524 \mathrm{~mL}, 2.02 \mathrm{mmol})$ and DMAP (10.3 mg , 0.084 mmol). The mixture was stirred for 10 h at rt , and quenched by $\mathrm{H}_{2} \mathrm{O}$. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated to provide a yellow solid. The crude product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane to yield TBDPS ether $\mathbf{1 3}(0.531 \mathrm{~g}, 61 \%)$ as a colorless powder.
Data for $\mathbf{1 3}$; mp115-117 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=+6.86^{\circ}$ (c 1.02, CHCl_{3}); IR (neat) $3550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73-3.85(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{dd}, J=8.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dt}, J=7.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.47(\mathrm{~m}, 11 \mathrm{H}), 7.62-7.66(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.38,135.78,133.18,133.12,130.06,128.48,128.14,127.99,127.79,109.01$, $79.24,77.60,73.94,71.98,66.43,64.85,26.89,26.42,25.62,19.21$; LRMS $m / z 505\left(\mathrm{M}^{+}-15\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{Si} 505.2408$, found : 505.2411; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 71.50$; H, 7.74. Found : C, 71.34 ; H, 7.81 .

14

(-)-(2R,3S,4R)-3-Benzyloxy-1-tert-butyldiphenylsilyloxy-

2,4-dihydroxypentan-5-yl pivalate (14)

A solution of acetonide $13(6.93 \mathrm{~g}, 13.3 \mathrm{mmol})$ in AcOH-THF- $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL}, 3: 1: 1, \mathrm{v} / \mathrm{v})$ was stirred for 6 h at $55^{\circ} \mathrm{C}$. The solution was cooled to rt, and then poured into saturated NaHCO_{3}. The resulting solution was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography ($80 \% \mathrm{EtOAc} /$ hexane) provided a triol $(6.28 \mathrm{~g}, 98 \%)$ as a colorless oil.
Data for the triol ; $[\alpha]^{26}{ }_{\mathrm{D}}=-5.00^{\circ}$ (c 1.16, CHCl_{3}) ; IR (neat) $3400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.92-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=3.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63-3.73 (m, 2 H), 3.77 (dd, $J=6.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (dd, $J=4.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88-3.97 (m, $2 \mathrm{H}), 4.51(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 3 \mathrm{H})$, 7.35-7.48 (m, 6 H), 7.63-7.66 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.60,135.72$, 135.69, 133.08, $132.99,130.03,128.57,128.20,128.10,127.96,78.07,73.44,71.62,64.83,64.04,26.85$,
19.14; LRMS $m / z 423$ ($\mathrm{M}^{+}-57$); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{Si} 423.1626$, found : 423.1645; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 69.96 ; \mathrm{H}, 7.54$. Found : C, 69.99 ; H, 7.63.
To a solution of the triol ($1.21 \mathrm{~g}, 2.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added pyridine ($2 \mathrm{~mL}, 24.7$ $\mathrm{mmol})$ and $\mathrm{PivCl}(0.324 \mathrm{~mL}, 2.63 \mathrm{mmol})$. The mixture was stirred for 10 h at rt . After the solvent was removed, the resulting crude oil was purified by flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$) to provide pivalate $\mathbf{1 4}(1.27 \mathrm{~g}, 89 \%)$ as a colorless oil.
Data for $14 ;[\alpha]^{20}{ }_{\mathrm{D}}=-4.50^{\circ}\left(\mathrm{c} 1.20, \mathrm{CHCl}_{3}\right)$; IR (neat) $3450,1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 2.79(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=1.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, $J=$ $5.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (dd, $J=3.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90-3.97$ (m, 1 H), 4.12 (dd, $J=5.5,12.7 \mathrm{~Hz}, 1$ H), 4.11-4.15 (m, 1 H), 4.25 (dd, $J=8.8,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (s, 2 H), 7.14-7.18 (m, 2 H), 7.26-7.29 $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.46,137.54$, 135.64, 135.61, 132.97, 132.83, 129.95, 128.45, 128.05, 127.96, 127.88, 77.22, 73.59, 71.36, 69.10, 64.92, 64.67, 38.61, 27.05, 26.76, 19.06; LRMS m/z 489 (${ }^{+}-75$); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si} 489.2095$, found : 489.2127; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 70.17 ; \mathrm{H}, 7.85$. Found : C, 70.00 ; H, 7.81 .

(+)-(2S,3R,4R)-3-Benzyloxy-5-tert-butyldiphenylsilyloxy-2,4-methylenedioxypentanal (15)
To a solution of diol $\mathbf{1 4}(0.340 \mathrm{~g}, 0.559 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added freshly distilled dimethoxymethane (12 mL) followed by $\mathrm{P}_{2} \mathrm{O}_{5}(3.4 \mathrm{~g})$. The mixture was vigorously stirred for 1.5 h , and poured into saturated NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The phases were separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography (9% EtOAc/hexane) provided a methylene acetal $15(0.303 \mathrm{~g}, 88 \%)$ as a colorless oil.
Data for $15 ;[\alpha]^{28}=+12.82^{\circ}\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right)$; IR (neat) $1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 3.76$ (dd, $J=3.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.97(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.24$ (m, 2 H), $4.50(\mathrm{dd}, J=9.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $4.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.44(\mathrm{~m}, 11 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.56,137.71,135.84,135.76,133.23,133.12,130.03,128.64,128.14,128.11,127.96$, 88.27, 75.22, 72.42, 72.18, 70.69, 62.63, 61.63, 38.75, 27.15, 26.83, 19.21; LRMS m/z 519 ($\mathrm{M}^{+}-57$); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si} 519.2200$, found : 519.2200; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}$: C,70.79; H, 7.68. Found : C, 70.62 ; H, 7.67.

To a $0{ }^{\circ} \mathrm{C}$ solution of $\mathbf{1 5}(1.22 \mathrm{~g}, 2.12 \mathrm{mmol})$ in THF (13 mL) was added DIBAL-H (4.96 mL , $4.66 \mathrm{mmol})$ dropwise. The solution was stirred for 1 h at that temperature. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to quench the reaction. After $20 \mathrm{~min}_{\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}) \text { and hexane }(10 \mathrm{~mL}) \text { were added. The resulting }}$ mixture was allowed to warm to rt and stirred for 10 h , then dried $\left(\mathrm{MgSO}_{4}\right)$ and filterd through Celite. The filtrate was concentrated to afford a crude oil. Purification of the crude product by flash chromatography ($33 \% \mathrm{EtOAc} /$ hexane) provided an alcohol ($1.04 \mathrm{~g}, 99 \%$) as a colorless oil.
Data for the alcohol ; $[\alpha]^{27}{ }_{\mathrm{D}}=+0.75^{\circ}$ (c 1.05, CHCl_{3}); IR (neat) $3425 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.83-1.85(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.98-4.01(\mathrm{~m}, 1$ H), $4.46(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.48(\mathrm{~m}, 11 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.53$, 135.78, $135.72,133.09,129.99,128.66,128.25,128.20,127.93,127.90,88.23,75.04,74.41,71.97,70.83$, 62.18, 61.01, 26.82, 19.15 ; LRMS $m / z 435\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{Si} 435.1626$, found : 435.1610 ; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 70.69 ; \mathrm{H}, 7.36$. Found : C, $70.83 ; \mathrm{H}, 7.51$.
To a $-78{ }^{\circ} \mathrm{C}$ solution of $(\mathrm{COCl})_{2}(0.080 \mathrm{~mL}, 0.917 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added a solution of DMSO ($0.141 \mathrm{~mL}, 1.99 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ dropwise over 10 min . The mixture was stirred for 30 min , then a solution of the above alcohol $(0.377 \mathrm{~g}, 0.765 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}(0.553 \mathrm{~mL}, 3.97 \mathrm{mmol})$ was added. The solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, then warmed to $-30^{\circ} \mathrm{C}$ and quenched by $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The phases were separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated, producing crude aldehyde $\mathbf{1 6}(0.38 \mathrm{~g})$. Due to the instability of the crude aldehyde 16, it was immediately used without further purification.

17a : $P=T M S$
17b: $\mathrm{P}=\mathrm{H}$

18a: $P=T M S$
18b : $P=H$
(+)-Methyl (3S,4R,5R,6S)-5-Benzyloxy-7-tert-butyldiphenylsilyloxy-2,2-dimethyl-4,6-methylenedioxy-3-trimethylsilyloxyheptanoate (17a)
(-)-Methyl (3S,4R,5R,6R)-5-Benzyloxy-7-tert-butyldiphenylsilyloxy-2,2-dimethyl-3-hydroxy-4,6-methylenedioxy-heptanoate (17b)

(-)-Methyl (3S,4R,5R,6R)-5-Benzyloxy-7-tert-butyldiphenylsilyloxy-2,2-dimethyl-4,6-methylenedioxy-3-trimethylsilyloxyheptanoate (18a)

(-)-Methyl (3S,4R,5R,6S)-5-Benzyloxy-7-tert-butyldiphenylsilyloxy-2,2-dimethyl-3-hydroxy-4,6-methylenedioxyheptanoate (18b)

(entry 3)
To a water bath cooled suspention of $\mathrm{Yb}(\mathrm{OTf})_{3}(47 \mathrm{mg}, 0.076 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added a mixture of the crude aldehyde $\mathbf{1 6}(0.38 \mathrm{~g})$ and methyl trimethylsilyl dimethylketene acetal ($0.39 \mathrm{~mL}, 1.92 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ dropwise. The mixture was stirred for 48 h at rt and saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The phases were separated and the aqueous phase was further extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. The crude product was purified by flash chromatography. Elution with a 10:1 mixture of hexane-EtOAc afforded aldol 17a and $18 \mathbf{a}$ (17a: $0.261 \mathrm{~g}, 51 \%$ for 2 steps; 18a: $0.125 \mathrm{~g}, 25 \%$ for 2 steps) as a colorless oil. Elution with a $6: 1$ mixture of hexane-EtOAc afforded aldol 17b and 18b (17b: $35.7 \mathrm{mg}, 8 \%$ for 2 steps; 18b: $24.0 \mathrm{mg}, 5 \%$ for 2 steps) as a colorless oil. Data for 17a ; $[\alpha]^{27}{ }_{\mathrm{D}}=+19.09^{\circ}$ (c $0.54, \mathrm{CHCl}_{3}$) ; IR (neat) $1735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.06(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{dd}, J=4.4,5.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.87 (dd, $J=4.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (t, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (dd, $J=5.1,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.44(\mathrm{~m}, 11 \mathrm{H}), 7.67-7.71(\mathrm{~m}, 4$ H) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.48,138.18,135.82,135.70,133.40,133.21,129.86$, $128.42,127.96,127.85,127.82,127.75,89.94,75.89,74.50,74.27,71.93,71.88,62.68,51.86$, 47.71, 26.96, 21.89, 21.87, 19.36, 0.87; LRMS $m / z 649\left(\mathrm{M}^{+}-15\right)$; HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{O}_{7} \mathrm{Si}_{2}$ 649.3014, found : 649.3003 ; Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{Si}_{2}: \mathrm{C}, 66.82 ; \mathrm{H}, 7.88$. Found : C, $66.84 ; \mathrm{H}$, 7.98 .

Data for 17b; $[\alpha]^{27}{ }_{\mathrm{D}}=-6.03^{\circ}\left(\mathrm{c} 1.03, \mathrm{CHCl}_{3}\right)$; IR (neat) $3500,1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}$, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.91(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.21(\mathrm{~m} 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.48(\mathrm{~m}, 11 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 4$ H) ; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.71,137.39,135.70,135.66,133.02,132.97,130.04,128.64$, 128.29, 128.17, 127.95, 89.40, 76.19, 74.85, 74.47, 72.21, 71.65, 62.43, 51.84, 46.36, 26.79, 21.78, 21.59, 19.14; LRMS m/z $535\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{Si} 535.2150$, found : 535.2147 ; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 68.88 ; \mathrm{H}, 7.48$. Found : C, $68.79 ; \mathrm{H}, 7.46$.
Data for 18a ; $[\alpha]^{27}{ }_{\mathrm{D}}=-1.64^{\circ}\left(\mathrm{c} 1.68, \mathrm{CHCl}_{3}\right)$; IR (neat) 2932, 1732, 1252, 1113, 1042, 843, 735, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.21(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, 3.41 (td, $J=2.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92-3.93 (m, 2 H$), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=4.8$
$\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.41(\mathrm{~m}, 9 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,137.9,135.9,135.7,133.5,132.9,129.7,129.6,128.4,127.7$, 127.6, 127.3, 92.8, 81.8, 79.2, 74.0, 73.5, 69.8, 63.4, 51.8, 48.2, 26.9, 21.9,19.3, 1.23; LRMS m / z $607\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{Si}_{2} 607.2545$, found : 607.2552 .
Data for 18b; $[\alpha]^{28}{ }_{D}=-3.09^{\circ}\left(\right.$ c $\left.0.34, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3452,1732,1084,1040,741,702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.74 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{td}, J=2.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ ($\mathrm{s}, 3 \mathrm{H})$, 3.89-3.97 (m, 3 H), 4.59 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.45(\mathrm{~m}, 9 \mathrm{H}), 7.64-7.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,138.0,135.7,133.3,129.7,129.7,128.5,127.9,127.8,127.6,92.6,81.5$, $78.8,74.9,74.7,69.4,65.8,63.2,51.8,44.5,26.7,24.3,21.7,19.2,15.1 ;$ LRMS $m / z 535\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{Si} 535.2150$, found : 535.2186.
(entry 1)
To a $-78{ }^{\circ} \mathrm{C}$ solution of crude aldehyde $16(53.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(0.0180$ $\mathrm{mL}, 0.162 \mathrm{mmol}$), followed by methyl trimethylsilyl dimethylketene acetal ($0.0330 \mathrm{~mL}, 0.162$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ dropwise. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and quenched by $\mathrm{H}_{2} \mathrm{O}$. The phases were separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane) provided aldol $\mathbf{1 7 b}(40.4 \mathrm{mg}, 63 \%$ for 2 steps).
(entry 5)
To a water bath cooled suspension of $\mathrm{Yb}(\mathrm{OTf})_{3}(15 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathrm{TMSCl}(0.030 \mathrm{~mL}, 0.25$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added a mixture of the crude aldehyde $16(0.122 \mathrm{~g})$ and methyl trimethylsilyl dimethylketene acetal ($0.125 \mathrm{~mL}, 0.618 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ dropwise. The mixture was stirred for 24 h at rt and quenched by saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was further extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. The crude product was purified by flash chromatography. Elution with a 10:1 mixture of hexane-EtOAc afforded aldol $17 \mathbf{a}(0.130 \mathrm{~g}$, 79% for 2 steps) as a colorless oil. Elution with a $4: 1$ mixture of hexane-EtOAc afforded aldol 17b ($15.2 \mathrm{mg}, 10 \%$ for 2 steps) as a colorless oil.

(+)-Methyl (3S,4R,5R,6R)-5-Benzyloxy-7-tert-butyldiphenylsilyloxy-2,2-dimethyl-

3-methoxy-4,6-methylenedioxy-heptanoate (19)

To a solution of a crude mixture of $\mathbf{1 7 a}$ and $\mathbf{1 7 b}(16 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added CSA (1.0 mg , cat.). The mixture was stirred for 15 min at rt , then quenched by saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography ($14 \% \mathrm{EtOAc} /$ hexane) provided alcohol $\mathbf{1 7 b}$ (11.9 mg , 84% for 3 steps).
To a $0{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{NaH}(53.7 \mathrm{mg}, 1.34 \mathrm{mmol})$ in THF (13 mL) was added a solution of alcohol 17b $(0.531 \mathrm{~g}, 0.895 \mathrm{mmol})$ in THF (2 mL) dropwise. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, then warmed to rt and stirred for 1 h . After the solution was cooled to $0^{\circ} \mathrm{C}$, MeI $(0.111 \mathrm{~mL}$, 1.79 mmol) was added and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to rt and stirred for an additional 4 h , then poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography (13% EtOAc/hexane) provided methyl ether 19 (0.519 mg , 95\%).
Data for 19 ; $[\alpha]^{20}{ }_{\mathrm{D}}=+28.18^{\circ}\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)$; IR (neat) $1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86-3.93(\mathrm{~m}, 3 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 11 \mathrm{H}), 7.67-7.73(\mathrm{~m}, 4 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.62,138.07,135.92,135.75,133.65,133.37,129.83,128.58$, $128.08,127.96,127.84,127.79,90.01,84.93,75.40,72.68,72.58,71.56,63.30,60.54,51.81$, 47.28, 26.83, 21.91, 21.76, 19.27 ; LRMS $m / z 457$ ($\mathrm{M}^{+}-149$); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{Si}$ 457.1681, found : 457.1666 ; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 69.27 ; \mathrm{H}, 7.64$. Found : C, 69.27 ; H, 7.77 .

20
(+)-(4S,5R,6R,7R)-6-Benzyloxy-8-tert-butyldiphenylsilyloxy-3,3-dimethyl-
4-methoxy-5,7-methylenedioxyoct-1-ene (20)
To a $0{ }^{\circ} \mathrm{C}$ solution of ester $19(0.0980 \mathrm{~g}, 0.162 \mathrm{mmol})$ in THF (5 mL) was added DIBAL-H (0.440 $\mathrm{mL}, 0.404 \mathrm{mmol})$ dropwise. The solution was stirred for 1 h at that temperature. $\mathrm{H}_{2} \mathrm{O}(0.44 \mathrm{~mL})$ was added to quench the reaction. After $20 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and hexane $(5 \mathrm{~mL})$ were added. The resulting mixture was allowed to warm to rt and stirred for 1 h , then dried $\left(\mathrm{MgSO}_{4}\right)$ and filterd
through Celite. The filtrate was concentrated to afford a crude solid. The crude product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane to provided an alcohol $(0.0934 \mathrm{~g}, 100 \%)$ as colorless plates.
Data for the alcohol : mp 108-109 ${ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}=+30.36^{\circ}\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$; IR (neat) $3450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 2.99(\mathrm{dd}, J=5.5,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.43(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.96(\mathrm{~m}, 3 \mathrm{H}), 4.06-4.12(\mathrm{~m}, 1 \mathrm{H})$, 4.15 (dd, $J=2.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.45(\mathrm{~m}, 11 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.00,135.96,135.78,133.67,133.35,129.86,128.66,128.14,127.87,127.82,90.32$, $86.98,75.67,72.88,72.11,71.63,69.15,63.39,60.86,40.51,26.86,23.95,21.61,19.30$; LRMS $\mathrm{m} / \mathrm{z} 521\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{Si} 521.2357$, found : 521.2373 ; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 70.55 ; \mathrm{H}, 8.00$. Found : C, $70.61 ; \mathrm{H}, 8.07$.
To a solution of the alcohol ($0.613 \mathrm{~g}, 1.06 \mathrm{mmol}$) in DMSO $(8 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(1.03 \mathrm{~mL}$, $7.41 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(0.505 \mathrm{~g}, 3.18 \mathrm{mmol})$. The mixture was stirred for 2.5 h , and quenched by $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography ($17 \% \mathrm{EtOAc} /$ hexane) provided an aldehyde ($0.593 \mathrm{~g}, 97 \%$) as a colorless oil.
Data for the aldehyde : $[\alpha]^{26}{ }_{\mathrm{D}}=+25.40^{\circ}\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}\right)$; IR (neat) $1722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.91-3.93 (m, 3 H), 4.00 (dd, $J=3.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.06-4.11$ (m, 1 H$), 4.46$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 11 \mathrm{H})$, 7.67-7.73 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.15,138.04,135.92,135.73,133.59,133.24$, $129.83,128.64,128.08,128.02,127.84,127.79,90.04,86.98,75.23,72.76,71.33,63.12,61.20$, 50.38, 26.82, 19.68, 19.35, 19.24, 15.20; LRMS m/z 519 ($\mathrm{M}^{+}-57$); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si}$ 519.2200, found : 519.2189; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 70.79 ; \mathrm{H}, 7.68$. Found : C, $70.90 ; \mathrm{H}$, 7.67 .

To a solution of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{Br}^{-}(0.372 \mathrm{~g}, 1.04 \mathrm{mmol})$ in THF (8 mL) was added BuLi (0.680 mL , 1.53 M in hexane, 1.04 mmol) dropwise. The solution was warmed to $65^{\circ} \mathrm{C}$, and stirred for 15 min , then cooled to $0{ }^{\circ} \mathrm{C}$. A solution of the aldehyde $(0.200 \mathrm{~g}, 0.346 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 20 min . Saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to quench the reaction and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated. Purification of the crude product by flash chromatography ($9 \% \mathrm{EtOAc} /$ hexane) provided olefin $20(0.199 \mathrm{~g}, 100 \%$) as a white solid.
Data for $20: \mathrm{mp} 86-87{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}=+9.42^{\circ}\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)$; IR (neat) $1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 3.22(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, 3.77 (dd, $J=4.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.47 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=1.6,10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95$ (dd, $J=1.6,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (dd, $J=10.7,17.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31-7.43 (m, 11 H), 7.66-7.71 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.1,138.2,135.8,135.7$, 133.5, 133.3, 129.9, 128.6, 128.1, 127.9, 127.9, 127.8, 111.7, 90.0, 86.6, 74.7, 73.6, 72.0, 71.9,
62.8, 61.2, 42.1, 26.8, 25.3, 21.8, 1.92; LRMS $m / z 517\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{Si}$ 517.2408, found : 517.2410.

21

(+)-(2R,3R,4R,5S)-1-tert-Butyldiphenylsilyloxy-6,6-dimethyl-3-hydroxy-

5-methoxy-2,4-methylenedioxyoct-7-en-3-ol (21)

Liquid $\mathrm{NH}_{3}(30 \mathrm{~mL})$ was distilled from Na (solid) via cannula to a $-78{ }^{\circ} \mathrm{C}$ flask, and Li (solid) $(0.130 \mathrm{~g}, 6.92 \mathrm{mmol})$ was added, immediately producing a blue solution. A solution of benzyl ether $20(0.199 \mathrm{~g}, 0.346 \mathrm{mmol})$ in THF (9 mL) was added dropwise over 2 min . The mixture was stirred for 20 min , then $\mathrm{NH}_{4} \mathrm{Cl}$ (solid) was added until the blue color disappeared. The solution was allowed to warm to rt and stand for at least 6 h , then quenched by $\mathrm{H}_{2} \mathrm{O}$. The resulting solution was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated to give a crude oil (0.176 g).
To a solution of crude product described above $(0.176 \mathrm{~g})$ in benzene (10 mL) was added DDQ $(0.243 \mathrm{~g}, 1.04 \mathrm{mmol})$. The mixture was stirred for 3.5 h , then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added.
The resulting solution was filterd through Celite and the filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated to give a crude oil. Purification of the crude product by flash chromatography ($13 \% \mathrm{EtOAc} / \mathrm{hexane}$) provided alcohol $21(0.124 \mathrm{~g}, 74 \%$ for 2 steps) as a colorless oil.
Data for $21:[\alpha]^{22}{ }_{D}=+10.28^{\circ}\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right)$; IR (neat) $3400,1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}) $\delta 1.05$ ($\mathrm{s}, 9 \mathrm{H}$), $1.06(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.53 (s, 3 H), 3.82-3.94 (m, 4 H), 4.00-4.05 (m, 1 H$), 4.79$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (d, $J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=11.3,17.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.46 (m, 6 H), 7.63-7.67 (m, 4 H), ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.0,135.7,133.0,132.8$, 130.2, 128.0, 112.0, 89.8, 87.1, 77.7, 67.1, 62.2, 61.9, 42.1, 26.8, 25.7, 21.4, 19.1; LRMS m/z 427 $\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si} 427.1939$, found : 427.1947.

22

(1R,5R,6R,8RS,10S)-8-Acetoxy-5-(tert-butyldiphenylsilyloxy)methyl-9,9-dimethyl-

10-methoxy-2,4,7-trioxabicyclo[4.4.0]decane (22)

Ozone was bubbled through a $-78{ }^{\circ} \mathrm{C}$ solution of olefin $21(54.0 \mathrm{mg}, 0.111 \mathrm{mmol})$ in $\mathrm{MeOH}(10$ $\mathrm{mL})$ for 15 min . After removal of excess ozone, $\mathrm{Me}_{2} \mathrm{~S}(0.041 \mathrm{~mL}, 0.558 \mathrm{mmol})$ was added and the solution was stirred for 5 h . The solution was concentrated to afford a clear oil (33.5 mg). Due to the instability of the crude lactol, it was immediately used without further purification.
A mixture of crude lactol (33.5 mg) and $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ in pyridine $(1 \mathrm{~mL})$ was stirred for 16 h . The solvent was removed to leave a crude oil. Purification of the crude product by flash chromatography ($14 \% \mathrm{EtOAc} /$ hexane) provided acetate diastereomers 22 ($58.0 \mathrm{mg}, 99 \%$ for 2 steps) in a 1.4:1 ratio, as a colorless oil.
Partial data for 22 : IR (neat) $1745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~s}, 1.3 \mathrm{H}), 0.98$ (s,
 $\mathrm{Hz}, 0.4 \mathrm{H}$), 3.23 (d, $J=3.6 \mathrm{~Hz}, 0.6 \mathrm{H}$), 3.42 ($\mathrm{s}, 1.3 \mathrm{H}$), 3.43 ($\mathrm{s}, 1.7 \mathrm{H}$), $3.81-4.21$ (m, 5 H$), 4.92$ (d, $J=6.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.97(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.08(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 0.6 \mathrm{H})$, $5.71(\mathrm{~s}, 0.6 \mathrm{H}), 5.78(\mathrm{~s}, 0.4 \mathrm{H}), 7.26-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 4 \mathrm{H})$, LRMS m/z $471\left(\mathrm{M}^{+}-57\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{Si} 471.1837$, found : 471.1835 ; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 65.88$; H, 7.62. Found : C, 66.03 ; H, 7.62.

23
(+)-(1R,5R,6R,8R,10S)-5-(Hydroxy)methyl-10-methoxy-9,9-dimethyl -8-(prop-2-enyl)-2,4,7-trioxabicyclo[4.4.0]decane (23)
A suspension of acetate $22(10.4 \mathrm{mg}, 0.0197 \mathrm{mmol})$ and activated $4 \AA$ mol. sieves $(0.1 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, and allyltrimethylsilane ($0.019 \mathrm{~mL}, 0118 \mathrm{mmol}$) was added. The solution was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(7.0 \mu \mathrm{~L}, 0.059 \mathrm{mmol})$ was added dropwise. The mixture was stirred for an additional 10 min , and quenched by saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. After the removal of $4 \AA$ mol. sieves by Celite, the filtrate was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated to give a crude oil. The crude product was purified by flash chromatography. Elution with a 7:1 mixture of hexane-EtOAc afforded a silyl ether ($7.7 \mathrm{mg}, 77 \%$) as a colorless oil. Elution with a 2:1 mixture of hexane-EtOAc afforded alcohol $23(0.9 \mathrm{mg}, 17 \%)$ as a colorless oil. Data for the silyl ether : $[\alpha]^{26}{ }_{\mathrm{D}}=+75.70^{\circ}\left(\mathrm{c} 1.02, \mathrm{CHCl}_{3}\right.$); IR (neat) $1635 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.95-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=2.6,9.5$
$\mathrm{Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{ddd}, J=1.6,5.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $5.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=1.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=6.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=6.9$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dt}, J=9.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (dt, $J=17.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.87 (ddt, $J=6.6,10.7,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.79(\mathrm{~m}, 6 \mathrm{H}), 7.80-8.03(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.17,135.89,135.86,129.83,129.80,127.82,116.51,87.24$, $79.67,78.44,74.05,73.52,67.05,63.80,61.77,41.45,33.39,26.80,23.26,19.30,13.55 ;$ LRMS $m / z 469\left(\mathrm{M}^{+}-41\right)$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{Si} 469.2408$, found : 469.2427 ; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 70.54 ; \mathrm{H}, 8.28$. Found : C, $70.40 ; \mathrm{H}, 8.05$.
Data for 23; $[\alpha]^{27}{ }_{\mathrm{D}}=+79.83^{\circ}\left(\mathrm{c} 1.77, \mathrm{CHCl}_{3}\right)$; IR (neat) $3458,1641,1178,912,841,613 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (ddd, $J=2.0,6.9$, $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=2.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.82-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{dd}, J=6.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~A}$ of $\mathrm{AB}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02(\mathrm{~B}$ of $\mathrm{AB}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.73-5.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.9,117.1,86.9,78.5,73.5,72.9,68.4,63.4,61.7,41.6,33.4,23.1,13.1$; LRMS $m / z 272\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 61.74; H, 8.88. Found: C, $61.37 ; \mathrm{H}, 8.63$.

To a solution of crude products (64 mg , a mixture of the silyl ether and 23) in THF (5 mL) was added TBAF $(0.10 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.10 mmol$)$. The solution was stirred for 6 h and saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added. The resulting mixture was extracted with EtOAc (3 x 7 mL). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated to give a crude oil. Purification of the crude product by flash chromatography ($33 \% \mathrm{EtOAc} / \mathrm{hexane}$) provided alcohol $23(25.8 \mathrm{mg}, 86 \%$ for 2 steps) as a colorless oil.

(+)-(1R,5S,6S,8R,10S)-9,9-Dimethyl-10-methoxy-8-(prop-2-enyl)-5-\{N-[(2-trimethylsilyl)ethoxycarbonyl]amino\}-2,4,7-trioxabicyclo[4.4.0]decane (24)
To a solution of alcohol $23(5.5 \mathrm{mg}, 0.0202 \mathrm{mmol})$ in acetone $(0.5 \mathrm{~mL})$ was added Jones reagent (approximately 0.06 mL , prepared in according to literature ${ }^{37)}$). The mixture was stirred for 0.5 h , and $i-\operatorname{PrOH}(0.2 \mathrm{~mL})$ was added. The solution was concentrated and diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The resulting solution was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a crude carboxylic acid (7.7 mg) .
To a suspension of the carboxylic acid $(7.7 \mathrm{mg})$ and activated $4 \AA$ mol. sieves in THF (1.0 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(8.5 \mu \mathrm{~L}, 0.0607 \mathrm{mmol})$, DPPA $(4.5 \mu \mathrm{~L}, 0.0212 \mathrm{mmol})$ and freshly distilled
trimethylsilylethanol ($14 \mu \mathrm{~L}, 0.101 \mathrm{mmol}$). The mixture was warmed to $65^{\circ} \mathrm{C}$, and stirred for 5.5 h . After filtration, the filtrate was washed with 5% citric acid aqueous solution, saturated NaHCO_{3}, and brine. The resulting solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification of the crude product by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) provided carbamate $24(6.3 \mathrm{mg}, 78 \%$ for 2 steps) as a colorless oil.
Data for 24; $[\alpha]^{27}{ }_{D}=+79.83^{\circ}\left(\mathrm{c} 1.77, \mathrm{CHCl}_{3}\right)$; IR (neat) $3323,1732,1714,1531,1250,1032,860$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 9 \mathrm{H}), 086(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.96-1.01(\mathrm{~m}, 2 \mathrm{H})$, 1.98-2.06 (m, 1 H), 2.15 (ddd, $J=1.0,6.0,14.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (d, $J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.54 ($\mathrm{s}, 3 \mathrm{H}$), 3.76 (dd, $J=7.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.16-4.21 (m, 3 H), 4.83 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.93 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=0.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (br d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $5.50(\mathrm{brt}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.8,116.2$, 86.6, 79.5, 78.5, 76.4, 74.7, 70.7, 63.9, 61.8, 41.6, 33.1, 23.0, 17.6, 13.3, -1.66; LRMS $m / z 401$ $\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Si} 401.2234$, found : 401.2245.

25
(+)-(1S,5R,6S,8R,10S)-10-Methoxy-5-\{N-(methoxalyl)-N-[(2-trimethylsilyl)ethoxy-carbonyl]amino\}-9,9-dimethyl -8-(prop-2-enyl)-2,4,7-trioxabicyclo[4.4.0]decane (25)
To a $-78{ }^{\circ} \mathrm{C}$ mixture of carbamate $24(111.6 \mathrm{mg}, 278 \mu \mathrm{~mol})$ and DMAP ($44.2 \mathrm{mg}, 362 \mu \mathrm{~mol}$) in THF (2.0 mL) was added a solution of LHMDS in THF ($0.56 \mathrm{~mL}, 1.0 \mathrm{M}, 0.56 \mathrm{mmol}$) dropwise over 10 min . The resulting yellow solution was stirred for 0.5 h , at which time a solution of methyl chlorooxoacetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.14 \mathrm{~mL}, 3.0 \mathrm{M}, 0.42 \mathrm{mmol})$ was added dropwise. The mixture was stirred for 0.5 h at $-78^{\circ} \mathrm{C}$, and warmed to $0^{\circ} \mathrm{C}$, and stirred for 1 h at $0^{\circ} \mathrm{C}$, The mixture was allowed to warm to rt , and poured into a slurry of SiO_{2} in hexane- $\mathrm{EtOAc}(2: 1,10 \mathrm{~mL})$. The resulting suspension was vigorously stirred for 15 min , and filtered through Celite. The filtrate was concentrated to give a crude oil. Purification of the crude product by chromatography (25% EtOAc/hexane) provided imide $25(105.8 \mathrm{mg}, 78 \%$; 90% yield based on the recoverd 24) as a colorless oil, in addition to recovered carbamate 24 ($14.5 \mathrm{mg}, 13 \%$).
Data for $25:[\alpha]^{29}=+63.74^{\circ}$ (c 1.80, CHCl_{3}); IR (neat) 2955, 1714, 1715, 1541, 1252, 1177, $1128,1109,1084,1030,860,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ referenced to 7.24 ppm) δ $0.032(\mathrm{~s}, 3 \mathrm{H}), 0.043(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{dd}, J=3.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{dd}, J=$ $3.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{dd}, J=7.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=3.6,6.0$
$\mathrm{Hz}, 1 \mathrm{H}$), 4.34 (dd, $J=3.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=7.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.95$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (tdd, $J=6.8,10.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.62,160.96,152.22,135.59,116.33,87.60,79.43,78.77$, $77.32,75.05,67.51,61.84,52.91,41.66,33.58,23.06,17.42,13.27,-1.41,-1.54,-1.54$; LRMS $m / z 446\left(\mathrm{M}^{+}-41, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{NSi} 446.1847$, found : 446.1835.

2
(+)-(1S,5R,6S,8R,10S)-10-Methoxy-5-\{N-(methoxalyl)amino\}-9,9-dimethyl-8-(prop-2-enyl)-2,4,7-trioxabicyclo[4.4.0]decane (2)
To a $0^{\circ} \mathrm{C}$ solution of imide $\mathbf{2 5}(98.3 \mathrm{mg}, 0.202 \mathrm{mmol})$ in THF (3.0 mL) was added TBAF (0.30 $\mathrm{mL}, 1.0 \mathrm{M}, 0.30 \mathrm{mmol}$). After 5 min , a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The aqueous phase was separated and further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford a crude yellow solid. Purification of the crude product by flash chromatography ($50 \% \mathrm{EtOAc} / \mathrm{hexane}$) provided methyl oxalate $\mathbf{2}$ ($64.5 \mathrm{mg}, \mathbf{9 3 \%}$) as a white solid, in addition to carbamate $\mathbf{2 4}(3.3 \mathrm{mg}, 4.1 \%)$. The methyl oxalate $\mathbf{2}$ was used immediately in the next step.
Data for 2 : mp 168-170 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3315, 1738, 1701, 1541, 1263, 1182, 1123, 1103, 1076, 1036, $978,907 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ referenced to 7.24 ppm) $\delta 0.88(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$, 1.97-2.05 (m, 1 H), 2.16 (dddd, $J=1.6,2.0,6.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (dd, $J=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (s, 3 H), 3.91 (dd, $J=6.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (s, 3 H), 4.25 (dd, J=6.4, $10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.88 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.88 (br d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.97 (dddd, $J=1.4,1.4,3.2$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{tdd}, J=6.8,10.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=10.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.98,156.23,135.45$, 116.22, 86.69, 79.34, 78.67, 74.63, 74.11, 70.37, 61.78, 53.85, 41.71, 33.25, 23.11, 13.43; LRMS $m / z 344\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~N} 344.1709$, found : 344.1711.

33
($2 R, 3 R, 4 R$)-2,3-epoxy-4,5-isopropylidenedioxypentanol (33)
To a $-78{ }^{\circ} \mathrm{C}$ solution of ethyl (S)-4,5-isoprorylidenedioxy-2-pentenoate (32) ${ }^{2}$ ($0.980 \mathrm{~g}, 4.91 \mathrm{mmol}$)
in THF (20 mL) was added DIBAL-H in hexanes ($10.3 \mathrm{~mL}, 1.0 \mathrm{M}, 10.3 \mathrm{mmol}$). The mixture was stirred for 3.5 h at $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The solution was stirred for 30 min at -78 ${ }^{\circ} \mathrm{C}$, at which time $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and hexane $(10 \mathrm{~mL})$ were added. The solution was allowed to warm to rt, then filtered through Celite. The resulting clear solution was concentrated to afford a crude oil. Purification of the crude product by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane) provided (S)-4,5-isopropylidenedioxy-2-pentenol ($0.682 \mathrm{~g}, 88 \%$), in addition to recovered ester 32 $(0.110 \mathrm{~g}, 11 \%)$. To a $-40{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(0.110 \mathrm{~mL}, 0.374 \mathrm{mmol})$ and powdered activated $3 \AA$ mol. sieves (0.2 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added a solution of (+)-DIPT (0.087 mL , $0.416 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was stirred for 40 min at $-40{ }^{\circ} \mathrm{C}$, then the solution of (S)-4,5-isopropylidenedioxy- 2-pentenol ($0.658 \mathrm{~g}, 4.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. After 1.5 h , cumene hydroperoxide ($1.84 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was added dropwise over 3 min . The resulting solution was stirred for 89 h at $-40{ }^{\circ} \mathrm{C}$, then cooled to $-78^{\circ} \mathrm{C}$ and stirred for 10 min . $\mathrm{Bu}{ }_{3} \mathrm{P}(2.09 \mathrm{~mL}$, 8.05 mmol) was added dropwise over 10 min to quench the reaction. The mixture was stirred for 30 min , then treated with citric acid monohydrate (ca. $87 \mathrm{mg}, 0.42 \mathrm{mmol}$) dissolved in acetone-ether $(1: 9,6 \mathrm{~mL})$. The cooling bath was removed, and the resulting mixture was stirred for an additional 40 min . After filtration through a pad of Celite, the filtrate was dried over MgSO_{4} and concentrated to give an oil. Purification of the oil by flash chromatography ($33 \% \mathrm{EtOAc} / \mathrm{hexanes}$) provided epoxide $33(0.644 \mathrm{~g}, 89 \%)$. The identity of epoxide 33 was confirmed by comparison with reported spectral data ${ }^{34)} ;[\alpha]^{23}{ }_{D}=-21.36^{\circ}\left(\mathrm{c} 1.80, \mathrm{CHCl}_{3}\right)$, literature ${ }^{5}[\alpha]_{\mathrm{D}}=-21.5^{\circ}(\mathrm{c} 0.77$, CHCl_{3}); IR (neat) $3435,1637,1376,1217,1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ referenced to $7.26 \mathrm{ppm}) \delta 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{dd}, J=5.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=2.3,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15 (td, $J=2.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (ddd, $J=3.7,7.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83-3.88 (m, 1 H), 3.95 (ddd, $J=2.3,5.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=5.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=6.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 110.01,75.13,65.95,60.79,55.37,54.99,26.28,25.47$.

34
(1,2-diol)

(1,3-diol)
(2S,3S,4R)-1-tert-Butyldiphenylsilyloxy-4,5-isopropylidenedioxy-
3-methylpentan-2-ol (34, 1,2-diol)
(2R,3R,4R)-1-tert-Butyldiphenylsilyloxy-4,5-isopropylidenedioxy-
2-methylpentan-3-ol (1,3-diol)

To a $0{ }^{\circ} \mathrm{C}$ solution of epoxide $33(29.8 \mathrm{mg}, 0.171 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.119 \mathrm{~mL}, 0.856 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added TBDPSCl ($89.0 \mu \mathrm{~L}, 0.342 \mathrm{mmol}$) and DMAP ($5.0 \mathrm{mg}, 0.0409 \mathrm{mmol}$). The mixture was stirred for 10 h at rt , then cooled to $0{ }^{\circ} \mathrm{C}$, and quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Purification of the crude product by flash chromatography ($9 \% \mathrm{EtOAc} / \mathrm{hexane}$) provided a silyl ether (173 mg , including any remaining silanol). To a $-20{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{CuI}(0.456 \mathrm{~g}, 2.40$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added $\mathrm{MeLi}\left(5.26 \mathrm{~mL}, 1.14 \mathrm{M} \mathrm{in}^{\mathrm{Et}} \mathrm{I}_{2} \mathrm{O}, 5.99 \mathrm{mmol}\right)$ dropwise over 5 min . When the yellow color had disappeared, the solution was cooled to $-40^{\circ} \mathrm{C}$, then the silyl ether described above in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added. The mixture was stirred for 1 h between $-40^{\circ} \mathrm{C}$ and $-30{ }^{\circ} \mathrm{C}$, quenching with a mixture of concd. $\mathrm{NH}_{4} \mathrm{OH}$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(1: 9,10 \mathrm{~mL})$. The resulting mixture was allowed to warm to rt, and stirred for 20 min , then filtered through Celite. The phases were separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Purification of the crude product by flash chromatography ($9 \% \mathrm{EtOAc} /$ hexane) provided a mixture of $\mathbf{3 4}$ and $\mathbf{1 , 3 - d i o l}(64.6 \mathrm{mg}, 0.151 \mathrm{mmol}, 88 \%$ from 33) in a $7: 1$ ratio.
Partial data for 34 and 1,3-diol: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2.6 \mathrm{H}), 1.00(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.06(\mathrm{~s}, 1.1 \mathrm{H}), 1.07(\mathrm{~s}, 7.9 \mathrm{H}), 1.33(\mathrm{~s}, 2.6 \mathrm{H}), 1.36(\mathrm{~s}, 0.4 \mathrm{H}), 1.38(\mathrm{~s}, 2.6 \mathrm{H})$, $1.44(\mathrm{~s}, 0.4 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 0.1 \mathrm{H}), 1.96(\mathrm{dq}, J=13.6,6.8 \mathrm{~Hz}, 0.9 \mathrm{H}), 2.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.1 \mathrm{H})$, $3.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 0.9 \mathrm{H}), 3.45-3.50(\mathrm{~m}, 0.3 \mathrm{H}), 3.56-3.59(\mathrm{~m}, 0.3 \mathrm{H}), 3.56-3.59(\mathrm{~m}, 0.1 \mathrm{H})$, $3.61-3.67(\mathrm{~m}, 1.8 \mathrm{H}), 3.70(\mathrm{dd}, J=10.4,4.0 \mathrm{~Hz}, 0.9 \mathrm{H}), 3.75(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 0.9 \mathrm{H}), 3.78$ (dd, $J=10.4,4.4 \mathrm{~Hz}, 0.1 \mathrm{H}), 3.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.1 \mathrm{H}), 3.99(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 0.1 \mathrm{H}), 4.02(\mathrm{dd}, J=8.0$, $6.0 \mathrm{~Hz}, 0.9 \mathrm{H}$), 4.12 (dt, $J=6.4,7.6 \mathrm{~Hz}, 0.9 \mathrm{H}$), 4.22-4.27 (m, 0.1 H), 7.36-7.44 (m, 6 H), 7.67 (dd, $J=3.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=2.8,1.2 \mathrm{~Hz}, 2 \mathrm{H})$.

35

(-)-(2S,3R,4R)-1-tert-Butyldiphenylsilyloxy-4,5-isopropylidenedioxy-2-mesyloxy-

3-methylpentane (35)

To a $0{ }^{\circ} \mathrm{C}$ solution of alcohols ($0.205 \mathrm{~g}, 0.479 \mathrm{mmol}$; a $7: 1$ mixture of $\mathbf{3 4}$ and $\mathbf{1 , 3 - d i o l}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 2.40 \mathrm{mmol})$ and $\mathrm{MsCl}(0.048 \mathrm{~mL}, 0.623 \mathrm{mmol})$. The mixture was stirred for 30 min , then poured into saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The phases were separated
and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a yellow oil. The crude oil was chromatographed ($11 \% \mathrm{EtOAc} /$ hexane) to remove any remaining $\mathrm{Et}_{3} \mathrm{~N}$, then recrystallized twice from $\mathrm{Et}_{2} \mathrm{O}$ to yield methanesulfonate $35(0.168 \mathrm{~g}, 69 \%)$ as colorless prisms.
Data for 35: mp $113{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=-10.45^{\circ}\left(\mathrm{c} 0.60, \mathrm{CHCl}_{3}\right)$; IR (KBr) 1360, 1176, 1113, 915, 703 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.06(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3$ H), 2.18 (ddq, $J=10.9,6.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=6.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=$ $3.2,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-4.02(\mathrm{~m}, 3 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,135.5,132.9,132.7,130.0,127.9,109.1,85.7,76.2,67.8,63.7$, 39.5, 38.4, 26.7, 26.4, 19.0, 11.1 ; LRMS $m / z 491\left(\mathrm{M}^{+}-15\right)$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{SSi}: \mathrm{C}$, 61.63 ; H, 7.56 ; S, 6.33. Found : C, 61.53 ; H, 7.67 ; S, 6.41.

36

(-)-(2R,3R,4R)-4-(4-Methoxybenzyl)oxy-3-methylpentan-1,2-diol (36)

To a solution of methanesulfonate $\mathbf{3 5}(1.23 \mathrm{~g}, 2.42 \mathrm{mmol})$ in THF (10 mL) was added TBAF (3.6 $\mathrm{mL}, 1.0 \mathrm{M}$ in THF, 3.6 mmol). The mixture was stirred for 50 min , then saturated $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ was added. The mixture was stirred for an additional 10 min . The phases were separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated, providing the intermediate (crude) epoxide $(0.46 \mathrm{~g})$ which was used immediately in the next step.

To a $23^{\circ} \mathrm{C}$ bath cooled suspension of $\mathrm{LiAlH}_{4}(0.184 \mathrm{~g}, 4.85 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added a solution of the crude epoxide in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ dropwise. The mixture was stirred for 12 h at rt , then cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{H}_{2} \mathrm{O}(0.18 \mathrm{~mL})$ was added. After $15 \mathrm{~min}, 15 \% \mathrm{NaOH}(0.18 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.55$ mL) were added and the resulting solution was stirred for an additional 2 h at $\mathrm{rt} . \mathrm{MgSO}_{4}(0.5 \mathrm{~g})$ was added, and the solution was filterd through Celite and concentrated to afford a crude alcohol $(0.42 \mathrm{~g})$. This crude alcohol was immediately used without further purification.
To a $0{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{NaH}(0.485 \mathrm{~g}, 12.1 \mathrm{mmol})$ in DMF (5 mL) was added the solution of the crude alcohol (0.42 g) in DMF (2 mL). The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and warmed to rt , then MPMCl ($0.43 \mathrm{~mL}, 3.15 \mathrm{mmol}$) was added. The solution was stirred for 7 h at rt , then cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added slowly to quench the reaction. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a crude p-methoxybenzyl ether $(1.0 \mathrm{~g})$ which was dissolved in AcOH-THF- $\mathrm{H}_{2} \mathrm{O}(3: 1: 1,5 \mathrm{~mL})$. The mixture was warmed to $55^{\circ} \mathrm{C}$, and stirred for 9 h . After the removal of the solvents by azeotropic distillation , the residue was purified by flash chromatography ($50 \% \mathrm{EtOAc} / \mathrm{hexane}$) to provide $\operatorname{diol} 36(0.482 \mathrm{~g}, 78 \%$ from 35) as a colorless oil.

Data for 36: $[\alpha]^{24}{ }_{\mathrm{D}}=-10.00^{\circ}\left(\mathrm{c} 1.09, \mathrm{CHCl}_{3}\right.$); IR (neat) $3414,1613,1512,1246,1038,822,421$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.98-2.10$ (m, 1 H), 2.25 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 3.51 (dd, $J=5.7,11.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.66-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.81$ ($\mathrm{s}, 3 \mathrm{H}), 4.16$ (br $\mathrm{s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,130.1,129.3,113.9,77.6,70.2,64.8,55.1,37.8$, 14.4, 12.2; LRMS $m / z 254\left(\mathrm{M}^{+}\right) ;$HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ 254.1518, found : 254.1504.

37

(+)-(3R,4R)-4-(4-Methoxybenzyl)oxy-3-methylpentene (37)

To a mixture of diol $\mathbf{3 6}(1.46 \mathrm{~g}, 5.75 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.18 \mathrm{~g}, 23.0 \mathrm{mmol})$ in benzene (50 mL) was added $\mathrm{Pb}(\mathrm{OAc})_{4}(5.61 \mathrm{~g}, 12.6 \mathrm{mmol})$. The mixture was stirred for 1.5 h and then filtered through Celite. The filtrate was concentrated to give a colorless oil which was used immediately in the next step.
To a $0{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{MePPh}_{3}{ }^{+} \mathrm{Br}^{-}(3.08 \mathrm{~g}, 8.62 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added $\mathrm{BuLi}(6.48$ $\mathrm{mL}, 1.33 \mathrm{M}$ in hexane, 8.62 mmol) dropwise over 5 min . The resulting yellow solution was warmed to rt and stirred for 20 min . After the yellow solids had dissipated, a solution of crude aldehyde in THF (10 mL) was added at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to rt and stirred for 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ was added to quench the reaction. The phases were separated and the aqueous phase was further extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a crude oil. Purification of the crude oil by flash chromatography (5% EtOAc/hexane) provided alkene 37 ($0.834 \mathrm{~g}, 69 \%$ for 2 steps) as a colorless oil.
Data for 37: $[\alpha]^{29}{ }_{\mathrm{D}}=+2.20^{\circ}\left(\mathrm{c} 1.16, \mathrm{CHCl}_{3}\right)$; IR (neat) $1614,1514,1456,1248,1092,1038,822$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ referenced to 7.24 ppm$) \delta 7.26(\mathrm{td}, J=2.5,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{td}$, $J=2.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.81 (ddd, $J=7.6,10.8,18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (ddd, $J=1.6,2.0,17.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.01 (ddd, $J=1.2,2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3$ H), 3.34 (qd, $J=6.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (ddq, $J=6.8,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.12 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.03 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13}{ }^{13}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.86,140.74,131.04,128.98,114.31,113.96$, 78.07, 70.27, 55.21, 43.04, 16.69; LRMS m/z $220\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 76.33 ; \mathrm{H}$, 9.15. Found : C, 76.45 ; H, 9.09.

19

(2RS)-2-[(1R,2R)-2-(4-Methoxybenzyl)oxy-1-methylpropyl]cyclopropane-1,1-dimethyl dicarboxylate (38)

To a suspension of CuOTf ($31.8 \mathrm{mg}, 63.2 \mu \mathrm{~mol}$) in toluene- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,20 \mathrm{~mL})$ were added alkene $37(1.39 \mathrm{~g}, 6.32 \mathrm{mmol})$ and dimethyl diazomalonate ${ }^{6}(100 \mathrm{mg}, 0.632 \mathrm{mmol})$. The solution was plunged into an oil bath at $110{ }^{\circ} \mathrm{C}$ and the mixture was heated at reflux for 12 hours. The solvent was removed in vacuo to afford a green oil. Purification of the crude oil by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane) provided cyclopropane $38(179 \mathrm{mg}, 81 \%, \mathrm{dr}=3: 1$) as a colorless oil.
Data for 38: IR(neat) $1728,1514,1437,1300,1248,1213,1132,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.25 \times 2 \mathrm{H}), 7.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.75 \times 2 \mathrm{H}), 6.87(\mathrm{dd}, J=1.8,7.2 \mathrm{~Hz}$, $0.25 \times 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.75 \times 2 \mathrm{H}), 4.52(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.51(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 0.75 \mathrm{H})$, 4.37 (d, $J=11.4 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.36(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 0.75 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 0.25 \times 3 \mathrm{H}), 3.72$ (s, $0.25 \times 3 \mathrm{H}$), 3.72 (s, $0.75 \times 3 \mathrm{H}$), 3.69 ($\mathrm{s}, 0.75 \times 3 \mathrm{H}$), 3.49 (dq, $J=3.6,6.0 \mathrm{~Hz}, 0.75 \mathrm{H}), 3.47$ (dq, $J=4.2,6.0 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.10(\mathrm{dt}, J=8.4,8.4 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.94(\mathrm{td}, J=9.0,10.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 1.53$ (dd, $J=4.8,8.4 \mathrm{~Hz}, 0.25 \mathrm{H}$), 1.43 (dd, $J=4.8,8.4 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.40(\mathrm{dd}, J=4.2,9.0 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.34$ (dd, $J=4.2,9.0 \mathrm{~Hz}, 0.25 \mathrm{H}) 1.26-1.19(\mathrm{~m}, 0.75 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 0.25 \mathrm{H}), 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.25 \times 3 \mathrm{H})$, $1.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.75 \times 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.75 \times 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.25 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.07,170.63,169.19,169.04,159.23,159.16,131.31,131.15$, $129.37,129.35,113.88,113.83,77.84,77.42,70.97,70.58,55.43,55.41,52.73,52.67,52.61$, $52.53,38.45,38.37,34.76,33.51,33.17,32.89,21.46,20.33,17.23,16.94,14.88,14.39$; LRMS $\mathrm{m} / \mathrm{z} 350\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}: \mathrm{C}, 65.13 ; \mathrm{H}, 7.48$. Found : C, $64.85 ; \mathrm{H}, 7.52$.

27

(3RS,4R,5R)-4,5 -Dimethyl-3-phenylselenylmethylpentano-5-lactone (27)

To a solution of cyclopropane $38(0.395 \mathrm{~g}, 1.13 \mathrm{mmol})$ in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(10: 1,10 \mathrm{~mL})$ was added ceric ammonium nitrate ($1.86 \mathrm{~g}, 3.39 \mathrm{mmol}$) in one portion. After 2 h , the reaction was quenched by the addition of saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and $\mathrm{NaHSO}_{3}(0.4 \mathrm{~g})$. The mixture was stirred vigorously for a further 15 min and then filtered. The filter cake was washed several times with EtOAc, and the combined filtrate and washings were extracted with EtOAc (3x50 mL). The organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a crude oil.

Purification of the crude oil by flash chromatography ($33 \% \mathrm{EtOAc} /$ hexane) provided alcohols ($240.8 \mathrm{mg}, \mathrm{dr}=3: 1,93 \%$) as a colorless oil.
Data for alcohols ($\mathrm{dr}=3: 1$): IR(neat) 3437, 1728, 1439, 1298, 1215, 1134, $912 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.85-3.78(\mathrm{br}, 1 \mathrm{H}$), 3.77 ($\mathrm{s}, 0.25 \times 3 \mathrm{H}$), $3.75(\mathrm{~s}, 0.75 \times 3 \mathrm{H}$), $3.73(\mathrm{~s}, 3 \mathrm{H})$, $1.95(\mathrm{dt}, J=8.0,8.0 \mathrm{~Hz}, 0.25 \mathrm{H}), 1.92(\mathrm{dt}, J=9.2,9.2 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.88(\mathrm{br} \mathrm{s}, 0.75 \mathrm{H}), 1.79(\mathrm{br} \mathrm{s}$, $0.25 \mathrm{H}), 1.57$ (dd, $J=4.8,8.0 \mathrm{~Hz}, 0.25 \mathrm{H}$), 1.44 (dd, $J=4.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.39 (dd, $J=4.8,8.0 \mathrm{~Hz}$, $0.75 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 0.75 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.25 \times 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.75 \times 3 \mathrm{H}), 1.02$ (d, $J=7.2 \mathrm{~Hz}, 0.75 \times 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.25 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.62$, $170.31,169.11,71.31,70.11,52.67,52.62,52.57,52.52,34.70,33.29,32.80,31.64,21.23,20.90$, 20.19, 19.67, 14.40, 13.88; LRMS $m / z 231\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{5} 231.1123$, found : 231.1238.

To a suspension of $(\mathrm{PhSe})_{2}(1.56 \mathrm{~g}, 5.00 \mathrm{mmol})$ in $\mathrm{EtOH}(15 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.36 \mathrm{~g}, 9.52$ $\mathrm{mmol})$. After the yellow color had dissipated a solution of the alcohol (0.24 g) in EtOH (5 mL) was added. The mixture was heated at reflux and stirred for 16 hours. The reaction was diluted with $10 \% \mathrm{HCl}(15 \mathrm{~mL})$ and which was stirred for a further 5 min and then extracted with EtOAc (3 x 80 $\mathrm{mL})$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine(50 mL), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification of the crude product by column chromatography ($33 \% \mathrm{EtOAc} /$ hexane) provided lactones $(0.29 \mathrm{~g}$, a mixture of three compounds). The mixture of lactones $(0.29 \mathrm{~g})$ and $\mathrm{LiI}(0.35 \mathrm{~g})$ in DMF (5 mL) was plunged into an oil bath at $150{ }^{\circ} \mathrm{C}$ and stirred for 12 hours. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, and brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification of the crude oil by column chromatography (33% EtOAc/hexane) provided an unseparated mixture of lactone $27(0.28 \mathrm{~g}, 83 \%)$ as a pale yellow oil.
Data for $27(\mathrm{dr}=3: 2): \operatorname{IR}$ (neat) $1732,1240,1209,1096,1003,739,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.50(\mathrm{dq}, J=3.6,6.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.43(\mathrm{dq}$, $J=2.4,6.6 \mathrm{~Hz}, 0.4 \mathrm{H}$), 3.03 (dd, $J=6.0,12.0 \mathrm{~Hz}, 0.6 \mathrm{H}$), 2.96 (dd, $J=7.2,12.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.89$ (dd, $J=6.6,14.4 \mathrm{~Hz}, 0.4 \mathrm{H}$), 2.84 (dd, $J=7.2,12.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.74$ (dd, $J=5.4,18.0 \mathrm{~Hz}, 0.4 \mathrm{H}$), 2.67 (dd, $J=6.6,16.8 \mathrm{~Hz}, 0.6 \mathrm{H}$), 2.37 (dd, $J=9.6,16.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 0.4 \mathrm{H}), 2.17$ (dd, $J=12.6$, $18.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 0.4 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 0.6 \times 2 \mathrm{H}), 1.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.4 \times 3 \mathrm{H}), 1.28$ (d, $J=6.6 \mathrm{~Hz}, 0.6 \times 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.6 \times 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.4 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.06,170.39,133.18,133.09,133.08,129.36,129.29,129.14,127.46$, $127.45,127.44,80.28,75.86,37.34,37.19,36.86,34.33,34.24,33.83,32.28,31.03,18.49,16.98$, 13.91, 4.20; LRMS $m / z 298\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Se} 298.0472$, found : 298.0470.

26

(2R,3R,4RS)-3,4-Dihydro-2,3 -dimethyl-4-phenylselenylmethyl-

6-trimethylstannyl-2H-pyran (26)

To a $-78{ }^{\circ} \mathrm{C}$ solution of lactone $27(114.3 \mathrm{mg}, 0.384 \mathrm{mmol})$ in THF (2.5 mL) was added KHMDS $(1.00 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene, 0.500 mmol) dropwise over 20 min . After 15 min , HMPA (0.100 mL , 0.575 mmol) was added and the mixture stirred for 2 hours at that temperature. A solution of $\mathrm{PhNTf}_{2}\left(0.164 \mathrm{mg}, 0.460 \mathrm{mmol}\right.$, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) in THF (2 mL) was added dropwise and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour and at rt for 2 hours. The solvent was removed to give an oily residue, which was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The separated aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a crude enol triflate (163 mg), which was used immediately in the next step.
To a solution of the crude enol triflate (163 mg) in THF (15 mL) was added a solution of $\left(\mathrm{Me}_{3} \mathrm{Sn}\right)_{2}$ in THF ($0.580 \mathrm{~mL}, 1.0 \mathrm{M}, 0.580 \mathrm{mmol}$) followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.2 \mathrm{mg}, 19.2 \mu \mathrm{~mol})$ and LiCl $(162.6 \mathrm{mg}, 3.84 \mathrm{mmol})$. The mixture was stirred under reflux for 12 hours. Saturated NaHCO_{3} (10 mL) was added to the mixture and the phases were separated. The aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a crude oil. Purification of the crude oil by chromatography on alumina deactivated by 5% water eluting with petroleum ether provided dihydropyran 26 ($143.5 \mathrm{mg}, 84 \%$) as a colorless oil.
Data for 26 (dr = 3:1): IR(neat) 2970, 2922, 2876, 1603, 1578, 1477, 1437, 1379, 1252, 1070, $1022, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.73-4.64(\mathrm{~m}$, $0.75 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 0.25 \mathrm{H}), 3.95(\mathrm{dq}, J=1.6,6.4 \mathrm{~Hz}, 0.25 \mathrm{H}), 3.78(\mathrm{dq}, J=2.4,6.4 \mathrm{~Hz}, 0.75 \mathrm{H})$, 2.96 (dd, $J=6.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (dd, $J=8.0,11.2 \mathrm{~Hz}, 0.75+0.25 \times 2 \mathrm{H}$), 2.73-2.66 (m, 0.25 H), 1.93-1.88 (m, 0.75 H), 1.85-1.77 (m, 1 H), 1.18 (d, $J=6.0 \mathrm{~Hz}, 0.25 \times 3 \mathrm{H}$), 1.14 (d, J=6.8 Hz, 0.75 x 3 H), 0.82 (d, $J=7.2 \mathrm{~Hz}, 0.75 \times 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.25 \times 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.48,132.59,132.50,130.60,128.95,128.92,126.65,125.43,112.64,75.55$, $70.60,39.77,38.44,35.08,34.80,34.27,33.95,31.49,30.38,18.57,17.51,13.08,5.32,-9.64$; LRMS $m / z 446\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSeSn} 446.0171$, found :.446.0154.
Data for the major isomer of $\mathbf{2}: \mathrm{mp}<30{ }^{\circ} \mathrm{C} ;[\alpha]^{26}=+51.86^{\circ}$ (c 1.10, CHCl_{3}) ; IR (neat) 2970, 2920, 2876, 1578, 1477, 1456, 1437, 1379, 1252, 1070, 1022, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.74-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dq}, J=2.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, $J=6.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=8.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.47,132.59,130.60,128.91,126.65,125.42,112.63,70.59,39.77,35.08,34.80,30.37,17.50$, 13.07, -9.66.

(1S,5R,6S,8R,10S)-10-Methoxy-9,9-dimethyl-5-\{[(2R,3R,4RS)-

2,3-dimethyl-4-phenylselenylmethyl-3,4-dihydro-2H-pyran-6-yl]oxoethanamido\}-8-(prop-2 -enyl)-2,4,7-trioxabicyclo[4.4.0]decane (39)
To a $-78{ }^{\circ} \mathrm{C}$ solution of left segment $26(51.6 \mathrm{mg}, 0.116 \mathrm{mmol})$ in THF (0.65 mL) was added BuLi $(0.20 \mathrm{~mL}, 0.57 \mathrm{M}$ in THF, 0.12 mmol) dropwise over 10 min . After 15 min TMEDA $(0.11 \mathrm{~mL})$ was added and the solution was stirred for 30 min , and then a cold solution of right segment $2(22.9 \mathrm{mg}$, $66.8 \mu \mathrm{~mol})$ in THF ($0.25 \mathrm{~mL} \times 2$) was added via cannula. The mixture was stirred for 2.5 hours at that temperature before being poured onto ice-cooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(7 \mathrm{~mL})$ and stirred vigorously for 10 min . The separated aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} x$ 3). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude yellow oil (71.5 mg). Purification of the crude oil by flash chromatography ($33 \% \mathrm{EtOAc} / \mathrm{hexane}$) provided the title compound 39 ($19.6 \mathrm{mg}, 50 \%$) as a colorless oil.
Data for 39 (dr = 12.5:1): IR (neat) $3364,2878,1695,1674,1522,1107,1074,1024,739,694$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{dd}, J=1.2,5.0$ $\mathrm{Hz}, 0.93 \mathrm{H}$), 7.07 (dd, $J=1.6,2.2 \mathrm{~Hz}, 0.07 \mathrm{H}$), 5.71 (dd, $J=9.5,9.5 \mathrm{~Hz}, 0.07 \mathrm{H}$), 5.70 (dd, $J=9.5,9.5$ $\mathrm{Hz}, 0.93 \mathrm{H}), 5.61(\mathrm{tdd}, J=6.8,10.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.86 (dd, $J=1.6,9.5 \mathrm{~Hz}, 0.07 \mathrm{H}), 4.78$ (dd, $J=1.2,10.0 \mathrm{~Hz}, 0.93 \mathrm{H}), 4.25$ (dd, $J=6.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (dq, $J=1.2,6.4 \mathrm{~Hz}, 0.07 \mathrm{H}), 4.00(\mathrm{dq}, J=2.2,6.3 \mathrm{~Hz}, 0.93 \mathrm{H}), 3.92$ (dd, $J=6.7,9.8 \mathrm{~Hz}, 0.07 \mathrm{H})$, 3.91 (dd, $J=6.6,9.8 \mathrm{~Hz}, 0.93 \mathrm{H}), 3.57$ (s, 3 H), 3.46 (d, $J=10.2 \mathrm{~Hz}, 0.07 \mathrm{H}$), 3.45 (d, $J=10.2 \mathrm{~Hz}$, 0.93 H), 3.29 (dd, $J=2.0,10.0 \mathrm{~Hz}, 0.07 \mathrm{H}$), 3.27 (dd, $J=2.0,10.0 \mathrm{~Hz}, 0.93 \mathrm{H}$), 3.06 (dd, $J=5.9,12.4$ $\mathrm{Hz}, 0.93 \mathrm{H}), 3.03-2.92$ (m, $0.07 \times 2 \mathrm{H}$), 2.88 (dd, $J=8.5,12.7 \mathrm{~Hz}, 0.93 \mathrm{H}$), $2.89-2.81$ (m, 0.07 H), 2.88 (dd, $J=8.5,12.7 \mathrm{~Hz}, 0.93 \mathrm{H}), 2.27-2.21$ (m, 1 H), 2.13 (ddm, $J=6.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.95$ (m, 2 H), 1.38 (d, $J=6.6 \mathrm{~Hz}, 0.07 \times 3 \mathrm{H}$), 1.31 (d, $J=6.6 \mathrm{~Hz}, 0.93 \times 3 \mathrm{H}$), 1.01 ($\mathrm{s}, 3 \mathrm{H}), 0.88$ ($\mathrm{s}, 3 \mathrm{H}$), $0.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.93 \times 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for the major isomer $\delta 179.84$, $160.43,147.47,135.44,133.29,129.38$, 129.14, 127.35, 124.37, 116.24, 86.72, 79.40, 78.77, $74.61,73.81,72.11,70.24,61.83,41.66,40.01,34.34,33.24,32.78,23.19,16.99,13.54,13.20$; LRMS $m / z 593\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{Se} 593.1892$, found : 593.1901.

(4RS)-7-Benzoyl-4-phenylselenylmethyl-15-(prop-2-enyl)-mycalamide A

To a $-90{ }^{\circ} \mathrm{C}$ solution of ketone $39(21.3 \mathrm{mg}, 35.9 \mu \mathrm{~mol})$ in $(1.5 \mathrm{~mL})$ was added $\mathrm{LiBH}(s \mathrm{Bu})_{3}(0.47$ $\mathrm{mL}, 0.23 \mathrm{M}$ in THF, 0.108 mmol) dropwise over 20 min . After stirring at $-90{ }^{\circ} \mathrm{C}$ for 15 min the reaction was quenched by the addition of brine (3 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The mixture was stirred vigorously for a further 20 min . The separated aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} \times 3$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a colorless oil, which was used immediately in the next step. The residue was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ and $\mathrm{MeOH}(0.2 \mathrm{~mL})$ to which CSA (2 mg) was added. The mixture was stirred for 18 hours before $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mg})$ was added. The solution was then stirred for 40 min and poured onto saturated aqueous NaHCO_{3} (3 $\mathrm{mL})$. The phases were separated and the aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$ $x 3)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a yellow oil, which was used immediately in the next step. To a solution of the crude oil in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added DMAP ($8.8 \mathrm{mg}, 72 \mu \mathrm{~mol}$), ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(63 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$ and benzoyl chloride ($12 \mu \mathrm{~L}, 0.10$ $\mathrm{mmol})$. The mixture was stirred for 1 hour at rt , and then $\mathrm{MeOH}(0.05 \mathrm{~mL})$ was added. After stirring for 10 min , brine (3 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a yellow solid. Purification of the crude solid by flash chromatography ($33 \% \mathrm{EtOAc} /$ hexane) provided benzoates ($19.8 \mathrm{mg}, 75 \%$ for 3 steps, a mixture of 5 diastereoisomers) as a colorless solid. The diastereoisomers were separated by column chromatography ($33 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give the title compounds 40 (11.0 mg , a 5.4:1 mixture of diastereoisomers at $\mathrm{C} 4,42 \%$ for 3 steps).

Data for 40 ($\mathrm{dr}=13: 1$): mp $70-75^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 3362,1732,1699,1522,1269,1107,1034,739$, $710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ referenced to 7.16 ppm) $\delta 8.31$ (ddd, $J=1.8,1.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50-7.48 (m, 0.93 x 2 H), 7.48-7.46 (m, 0.07 x 2 H), $7.31(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.93 \mathrm{H}), 7.06-6.91(\mathrm{~m}, 6$ H), 6.08-6.02 (m, 0.07 H), 6.00-5.95 (m, 0.93 H), $5.94(\mathrm{~s}, 0.07 \mathrm{H}), 5.93$ (t, J=10.2 Hz, 0.07 H$)$, 5.93 (t, $J=10.2 \mathrm{~Hz}, 0.93 \mathrm{H}$), 5.89 (s, 0.93 H), 4.97 (dddd, $J=1.8,1.8,3.6,6.7 \mathrm{~Hz}, 0.93 \mathrm{H}$), 4.95 (dd, $J=1.2,2.1 \mathrm{~Hz}, 0.93 \mathrm{H}), 4.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.07 \mathrm{H}), 4.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.93 \mathrm{H}), 4.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $0.07 \mathrm{H}), 4.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.93 \mathrm{H}), 4.32(\mathrm{dd}, J=6.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=6.8,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (dd, $J=6.6,10.2 \mathrm{~Hz}, 0.93 \mathrm{H}), 3.73$ (dq, $J=2.4,6.6 \mathrm{~Hz}, 0.93 \mathrm{H}), 3.81$ (dd, $J=6.8,9.7 \mathrm{~Hz}, 0.07 \mathrm{H}$), $3.56-3.54(\mathrm{~m}, 0.07 \times 2 \mathrm{H}$), 3.54 (dd, $J=3.0,10.2 \mathrm{~Hz}, 0.93 \mathrm{H}$), $3.31(\mathrm{dd}, J=7.2,12.6 \mathrm{~Hz}, 0.93 \mathrm{H})$, $3.27(\mathrm{~s}, 0.07 \times 3 \mathrm{H}), 3.26(\mathrm{~s}, 0.93 \times 3 \mathrm{H}), 3.16(\mathrm{dd}, J=9.0,12.6 \mathrm{~Hz}, 0.93 \mathrm{H}), 3.07(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $0.93 \mathrm{H}), 3.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 0.07 \mathrm{H}), 2.89(\mathrm{~s}, 0.07 \times 3 \mathrm{H}), 2.84(\mathrm{dd}, J=5.8,11.9 \mathrm{~Hz}, 0.07 \mathrm{H}), 2.82(\mathrm{~s}$, $0.93 \times 3 \mathrm{H}$), 2.79 (dd, $J=11.9,14.4 \mathrm{~Hz}, 0.07 \mathrm{H}$), 2.47-2.38 (m, 0.07 H), 2.29 (dd, $J=3.6,13.5 \mathrm{~Hz}$, 0.07 H), 2.27 (dd, $J=6.0,14.4 \mathrm{~Hz}, 0.93 \mathrm{H}$), 2.24 (mddd, $J=1.8,2.4,12.6 \mathrm{~Hz}, 0.093 \mathrm{H}$), 2.17-2.11 (m, $0.07 \mathrm{H}), 2.09(\mathrm{qdd}, J=3.0,5.4,15.0 \mathrm{~Hz}, 0.93 \mathrm{H}), 2.04(\mathrm{mdd}, J=7.8,15.8 \mathrm{~Hz}, 0.07 \mathrm{H}), 2.01-1.95(\mathrm{~m}$, $0.93 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 0.93 \mathrm{H}), 1.85(\mathrm{t}, J=13.0 \mathrm{~Hz}, 0.07 \mathrm{H}), 1.63-1.60(\mathrm{~m}, 0.07 \mathrm{H}), 1.60-1.55(\mathrm{~m}$, $0.93 \mathrm{H}), 0.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.93 \times 3 \mathrm{H}), 0.86(\mathrm{~s}, 0.07 \times 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.93 \times 3 \mathrm{H}), 0.84$ (s, $0.93 \times 3 \mathrm{H}), 0.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.07 \times 3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.07 \times 3 \mathrm{H}), 0.78(\mathrm{~s}, 0.07 \times 3 \mathrm{H}), 0.77$
($\mathrm{s}, 0.93 \times 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for the major isomer δ 166.40, 165.58, 137.10, 133.30 , 133.16, 131.00, 130.41, 130.29, 129.26, 128.61, 126.95, 115.99, 99.92, 86.76, 78.98, $78.53,75.35,74.41,73.03,72.08,64.73,61.28,47.51,41.58,38.24,35.08,34.24,34.20,28.95$, 23.11, 18.28, 13.63, 13.10; LRMS $m / z 731$ (M^{+}); HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NO}_{9} \mathrm{Se} 731.2573$, found : 731.2554.

(4RS)-7-Benzoyl-17,18-O-carbonyldioxy-4-phenylselenylmethylmycalamide A (41)
To a well stirred suspension of (DHQ) ${ }_{2} \mathrm{PYR}(3.6 \mathrm{mg}, 4.1 \mu \mathrm{~mol}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(13.5 \mathrm{mg}, 41.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.7 \mathrm{mg}, 4.1 \mu \mathrm{~mol})$ in ${ }^{t} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,1 \mathrm{~mL})$ was added $\mathrm{OsO}_{4}(1 \%$ in water, $5 \mu \mathrm{~L}, 0.1$ $\mu \mathrm{mol})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 h and poured onto alkene $40(3.0 \mathrm{mg}, 4.1 \mu \mathrm{~mol})$ in a 10 mL flask at $-10{ }^{\circ} \mathrm{C}$. The mixture was stirred for 4 hours at $-10{ }^{\circ} \mathrm{C}$ before saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{~mL})$ was added. The resulting colorless solution was extracted with EtOAc ($10 \mathrm{~mL} x 3$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a white solid (13 mg), which was used immediately in the next step.

To a solution of the crude diol (13 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(5.7 \mu \mathrm{~L}, 41.0 \mu \mathrm{~mol})$ and a solution of triphosgene $(4.9 \mathrm{mg}, 16.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. The mixture was stirred for 2 hours and poured onto a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated and the aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL} \times 3)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude oil. Purification of the crude oil by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane) provided carbonates ($3.1 \mathrm{mg}, 94 \%$ for 2 steps, $\mathrm{C} 17 \alpha: \mathrm{C} 17 \beta=4.8: 1$) as a white oil. The diastereoisomers were separated by HPLC ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexane) to afford carbonate $41(1.8 \mathrm{mg})$.
Data for 41 (C4 $\alpha: \mathrm{C} 4 \beta=11: 1$): IR (neat) 3352 , 2959, 2930, 1799, 1732, 1699, 1271, 1124, 1107, $1092,1069,1036,712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ referenced to 7.15 ppm) $\delta 8.30(\mathrm{dd}, J=2.8$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54 (d, $J=7.1 \mathrm{~Hz}, 0.92 \times 2 \mathrm{H}), 7.53$ (d, $J=8.3 \mathrm{~Hz}, 0.08 \times 2 \mathrm{H}), 7.31$ (d, $J=11.0 \mathrm{H}, 1 \mathrm{H}$), 7.12-6.95 (m, 6 H$), 5.79(\mathrm{~s}, 0.08 \mathrm{H}), 5.76(\mathrm{~s}, 0.92 \mathrm{H}), 4.50(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.74(\mathrm{~m}, 0.08 \mathrm{x}$ $2 \mathrm{H}), 4.76-4.69(\mathrm{~m}, 0.92 \times 2 \mathrm{H}), 4.61(\mathrm{t}, J=8.5 \mathrm{~Hz}, 0.08 \mathrm{H}), 4.54(\mathrm{t}, J=8.3 \mathrm{~Hz}, 0.92 \mathrm{H}), 4.52(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 0.92 \mathrm{H}), 4.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.08 \mathrm{H}), 4.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.92 \mathrm{H}), 4.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.08$ H), 4.19 (dd, $J=7.1,10.7 \mathrm{~Hz}, 0.08 \mathrm{H}), 4.18$ (dd, $J=6.8,10.5 \mathrm{~Hz}, 0.08 \mathrm{H}$), 3.68 (dd, $J=7.1,10.0 \mathrm{~Hz}$, 0.08 H), 3.71 (dq, $J=2.4,6.2 \mathrm{~Hz}, 0.92 \mathrm{H}$), 3.68 (dd, $J=7.1,10.0 \mathrm{~Hz}, 0.08 \mathrm{H}$), 3.54 (dd, $J=8.0,8.0 \mathrm{~Hz}$,
$0.08 \mathrm{H}), 3.54(\mathrm{dd}, J=6.2,8.3 \mathrm{~Hz}, 0.08 \mathrm{H}), 3.53$ (dd, $J=6.1,8.5 \mathrm{~Hz}, 0.92 \mathrm{H}$), 3.24 (s, 3 H), 3.23 (dd, $J=6.6,12.4 \mathrm{~Hz}, 0.92 \mathrm{H}$), 3.14 (dd, $J=9.0,12.4 \mathrm{~Hz}, 0.92 \mathrm{H}$), 3.09 (d, $J=10.5 \mathrm{~Hz}, 0.92 \mathrm{H}$), 3.06 (d, $J=10.1 \mathrm{~Hz}, 0.08 \mathrm{H}), 2.83(\mathrm{dd}, J=6.5,11.9 \mathrm{~Hz}, 0.08 \mathrm{H}), 2.79-2.77(\mathrm{~m}, 0.08 \mathrm{H}), 2.82(\mathrm{~s}, 0.08 \times 3 \mathrm{H})$, $2.78(\mathrm{~s}, 0.92 \times 3 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 0.08 \mathrm{H}), 2.24(\mathrm{dd}, J=11.3,14.8 \mathrm{~Hz}, 0.08 \mathrm{H}), 2.25(\mathrm{dd}, J=2.8$, $11.7 \mathrm{~Hz}, 0.92 \mathrm{H}), 2.19(\mathrm{dd}, J=3.2,13.0 \mathrm{~Hz}, 0.08 \mathrm{H}), 2.04(\mathrm{dd}, J=6.1,14.1 \mathrm{~Hz}, 0.92 \mathrm{H}), 1.96-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{dd}, J=10.0,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0.92 \times 3 \mathrm{H}), 0.83$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 0.92 \times 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.08 \times 3 \mathrm{H}), 0.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0.08 \times 3 \mathrm{H}), 0.66(\mathrm{~s}$, $3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.08 \times 3 \mathrm{H}), 0.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0.08 \times 3 \mathrm{H}), 0.66(\mathrm{~s}, 3 \mathrm{H}), 0.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ referenced to 128 ppm) for the major isomer $\delta 166.84,165.49,133.80$, $133.28,132.64,130.77,130.10,129.77,129.45,129.01,128.44,127.34,127.19,99.89,86.83$, $78.30,74.92,74.80,74.73,72.74,72.56,69.88,64.91,62.75,61.39,47.73,41.27,38.45,34.78$, $34.38,33.85,30.56,28.67,22.79,18.28,13.03 ;$ LRMS $m / z 791\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{NO}_{12} \mathrm{Se} 791.2420$, found : 791.2412.

$1 a$

Mycalamide A (1a)

To a solution of carbonate $41(2.1 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 1: 1,1 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(5.7 \mathrm{mg}, 26 \mu \mathrm{~mol})$ in one portion. The mixture was stirred for 2 hours, and then diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL} \times 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a white solid. The residue was dissolved in toluene $(0.25 \mathrm{~mL})$, whereupon $\mathrm{Et}_{3} \mathrm{~N}(0.25 \mathrm{~mL})$ was added. After refluxing for 10 min , the reaction was poured onto saturated aqueous $\mathrm{NaHCO}_{3}(2$ $\mathrm{mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford a yellow oil. To a solution of the crude oil in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added a
solution of $\mathrm{LiOH}(0.05 \mathrm{~mL}, 1.0 \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred for 2 hours and concentrated to yield a white residue, which was dissolved in EtOAc (10 mL). The solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL} x 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a white oil. Purification of the crude oil by pipette column chromatography provided micalamide $\mathrm{A}(0.9 \mathrm{mg}, 69 \%$ for 3 steps).
Data for 1a: $[\alpha]^{32}{ }_{\mathrm{D}}=-98.9^{\circ}\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}($ neat $) 3392,2924,2852,1682,1521,1456,1382$, $1195,1093,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ referenced to 7.26 ppm) $\delta 7.49(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (s, 1 H), 4.78 (s, 1 H), 4.32 ($\mathrm{s}, 1 \mathrm{H}$), 4.24 (dd, $J=6.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01(\mathrm{dq}, J=2.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (dd, $J=6.9$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (br s, 1 H), 3.76 (m, 1 H), 3.66 (dd, $J=4.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (m, 1 H), 3.58 (s, 3 H), 3.48 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (dd, $J=5.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 332 ($\mathrm{s}, 3 \mathrm{H}$), 3.18 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 2.39 (m, 2 H), 227 (dq, J=2.8, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $223(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.02$ (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.59,145.45$, $110.57,99.68,86.75,79.02,78.99,74.30,73.69,72.82,71.45,71.21,69.73,66.44,61.76,48.90$, 41.56, 41.24, 33.67, 31.91, 23.04, 17.82, 13.50, 11.97; LRMS $m / z 502\left(\mathrm{M}^{-}-\mathrm{H}\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO}_{10} 502.2652$, found : 502.2659.

Literature Cited in Experimental Procedures

(1) Mulzer, J.; Greifenberg, S.; Beckstett, A.; Gottwald, M. Liebigs Ann. Chem. 1992, 1131-1135.
(2) Takano, S.; Kurotaki, A.; Takahashi, M.; Ogasawara, K. Synthesis 1986, 5, 403-406.
(3) Katsuki, T.; Lee, A. W. M.; Ma, P.; Martin, V. S.; Masamune, S.; Sharpless, K. B.; Tuddenham, D.; Walker, F. J. J. Org. Chem. 1982, 47, 1373-1378
(4) Scheuplein, S. W.; Kusche, A.; Bruckner, R.; Harms, K. Chem. Ber. 1990, 917-925.
(5) Minami, N.; Ko, S. S.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 1109-1111.
(6) Doyle, M. P.; Davies, S. B.; Hu, W. Org. Lett. 2000, 2, 1145-1147.

