Supporting information for

Solution and Solid-state Study of Heteroleptic Hg(II)-thiolates: Crystal Structures of [Hg₄I₄(SCH₂CH₂NH₂)₄] and [Hg₄I₈(SCH₂CH₂NH₃)₂]_n•nH₂O

Mohan S. Bharara, Sean Parkin and David A. Atwood* Department of Chemistry, University of Kentucky, Lexington, Kentucky 40508-006 (U. S. A.) Email: datwood@uky.edu

Table of content

Experimental Section	S2
Crystal Data for 1 and 2	S 3
Lowest energy transition for 1, 2 and selected Hg-thiolates	S4
Viberational frequencies for 1,2 and selected Hg-thiolates	S4
Selected bond angles and distances for 1	S 4
Selected bond angles and distances for 2	S5
Repeating tetranuclear unit of 2	S 5
199Hg NMR of 1	S 6
Thermogram of 1	S 7
Thermogram of 2	S 7
Packing diagram for 1 and 2	S 8
Hydrogen bonding geometry in 1 and 2	S 8
References	S 8

Experimental Section

General Procedure. The reactions were carried out at room temperature in a mixture of DI water and methanol under nitrogen. The reagents 2-aminoethanethiol hydrochloride (TCI America) and HgI₂ (Alfa Aesar) were used as received. ¹H and ¹³C NMR data were obtained with JEOL-GSX-400 and 270 instruments operating at 199.17 MHz using d₆-DMSO as solvent. The ¹⁹⁹Hg{¹H} NMR spectrum of 1 (0.5M) in d₆-DMSO was collected at 25 °C on a Varian INOV 400 MHz instrument with 4-Nucleus Autoswitchable 5mm Probe and referenced to 1M HgCl₂ in DMSO at -1500 ppm^{1,2} and checked against external 0.1M Hg(ClO₄)₂ in D₂O (-2250 ppm).³ The IR data was recorded as KBr pellets on a Mattson Galaxy 5200 FT-IR instrument between 400 - 4000 cm⁻¹. Mass Spectral data (MALDI) were obtained on a Kratos Kompact SEQ MALDI-TOFMS at the University of Kentucky Mass Spectrometry Facility. Raman spectra were obtained on a Nicolet FT-Raman 906 Spectrometer ESP between 100 - 800 cm⁻¹ in Center for Applied Energy Research at the University of Kentucky Facility. The UV-Vis studies were conducted on an Agilent HP 8453 instrument by using 0.05 mM solutions of 1 and 2 in water:DMSO mixture (80:20 v/v). The TGA analyses were done one DSC 2950 Thermal Analyzer with TGA 2950 Furnace operating at 10 °C/minute in open atmosphere.

X-ray Crystallography. Crystals of **1** and **2** were obtained by the partial evaporation of the filtrate and by recrystallization in DI water, however, crystals obtained by partial evaporation were used for X-ray. X-ray diffraction data were collected at 90 and 173 °K on a Nonius Kappa CCD diffractometer unit using Mo-K α radiation from regular shaped crystals mounted in Paratone-N oil on glass fibers. Initial cell parameters were obtained using DENZO⁴ from 1° frames and were refined *via* a least-square scheme using all data-collection frames (SCALEPACK).⁴ The structures were solved by direct methods (SHELXL97)⁵ and completed by difference Fourier methods (SHELXL97).⁵ Refinement was performed against F^2 by weighted full-matrix least-square and empirical absorption correction (SADABS)⁵ were applied. Hydrogen atoms were placed at calculated positions using suitable riding models with isotropic displacement parameters derived from their carrier atoms. Non-hydrogen atoms were refined with anisotropic displacement parameters. Atomic scattering factors were taken from the International Tables for Crystallography Volume C.⁶

Synthesis of $[Hg_4I_4(SCH_2CH_2NH_2)_4]$ (1): To a stirring solution of 2-aminoethanethiol hydrochloride (10 mmol, 1.14 g) and NaOH (10 mmol, 0.4 g) in a mixture of DI water (90 mL) and methanol (10 mL) was added HgI₂ (5 mmol, 2.27 g) and stirred for three days. The precipitate was removed, washed with methanol followed by cold water and vacuum dried. Evaporation of the filtrate at room temperature yielded X-ray quality crystals. Yield: 2.5 g (62%). Mp 175 - 177°. ¹H NMR (d_6 -DMSO, 200MHz, ppm): δ 2.84 (t, 2H, SCH₂), δ 2.96 (t, 2H, NCH₂), δ 6.06 (br, 2H, NH₂). ¹³C NMR (d₆-DMSO, 200 MHz, ppm): δ 29.1 (CH₂S), δ 42.7 (CH₂N). ¹⁹⁹Hg{¹H} NMR (d₆-DMSO, 400 MHz, ppm):δ-642. IR (KBr, v/cm⁻¹): 3445, 3164, 2831, 1601, 1555, 1364, 1266, 1153, 1018, 935, 630. MALDI MS $(m/z \ (\%))$: 356, $([Hg(SCH_2CH_2NH_2)_2]^+$, 5): 401. $([HgI(SCH_2CH_2NH_2)]^+, 5); 146, ([NH_4I]^+, 25); 172, ([CH_2CH_2NH_3I]^+, 100); 78,$ $([SCH_2CH_2NH_2)]^+,$ 47). Uv-Vis: λ_{max} =270 nm. Anal. calcd for $[Hg_4I_4(SCH_2CH_2NH_2)_4)]$: C, 5.951; H, 1.498; N, 3.470. Found: C, 5.949; H, 1.486; N, 3.481.

Synthesis of $[Hg_4I_8(SCH_2CH_2NH_3)_2]_n \cdot nH_2O$ (2): To a stirring solution of 2aminoethanethiol hydrochloride (10 mmol, 1.14 g) in a mixture of DI water (90 mL) and methanol (10 mL) was added HgI₂ (5 mmol, 2.27 g) and stirred for three days. The precipitate was removed, washed with methanol followed by cold water and vacuum dried. Evaporation of the filtrate at room temperature yielded X-ray quality crystals. Yield: 4.03 g (80%). Mp 110 - 112°. ¹H NMR (d₆-DMSO, 200MHz, ppm): δ 3.04 (m, 4H, SCH₂ and NCH₂), δ 7.68 (br, 3H, NH₃). ¹³C NMR (d₆-DMSO, 200 MHz, ppm): δ 27.3 (CH₂S), δ 42.5 (CH₂N). IR (KBr, v/cm⁻¹): 3720, 3448, 3164, 2962, 2831, 1594, 1468, 1407, 1364, 1260, 1086, 804, 675. MALDI MS (m/z (%)): 172, ([CH₂CH₂NH₃I]⁺ 100); 144, ([NH₄I]⁺, 7). Uv-Vis: $\lambda_{max} = 270$ nm and 360 nm(shoulder). Anal. calcd for [Hg₄I₈(SCH₂CH₂NH₃)₂]·2H₂O: C, 2.392; H, 0.9036; N, 1.395. Found: C, 2.390; H, 0.9032; N, 1.399.

Data	1	2
Empirical Formula	$C_4H_{12}Hg_2I_2N_2S_2$	C ₂ H ₉ Hg ₂ I ₄ NOS
Formula Weight	807.26	1003.94
Temperature (K)	90.0(2)	90.0(2)
Wavelength Å	0.71073	0.71073
Crystal System	Monoclinic	Orthorhombic
Space Group	P 21/c	P c a 21
Unit Cell Dimensions (Å and °)	a = 9.2107(2)	a = 29.6018(3)
	b = 8.1173(2)	b = 7.25240(10)
	c = 18.1332(4)	c = 13.3459(2)
	$\alpha = 90.0$	$\alpha = 90.000$
	$\beta = 100.5020(10)$	$\beta = 90.0$
	$\gamma = 90.0$	$\gamma = 90.00$
Volume ($Å^3$)	1333.04(5)	2865.15(7)
Ζ	4	8
Density Calculated (mg/m ³)	4.022	4.655
Absorption Coefficient (mm ⁻¹)	27.911	30.137
F(000)	1392	3392
Crystal Size	0.08 x 0.06 x 0.04 mm	0.15 x 0.10 x 0.10 mm
Reflection Collected	20973	6261
Independent Reflections	3054 (R(int) = 0.0540)	6261 (R(int) = 0.00)
Refinement Method	Full-matrix least-square	Full-matrix least-square on
	on F^2	$ \mathbf{F}^2 $
Goodness of fit on F^2	1.086	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0248	R1 = 0.0345
	wR2 = 0.0427	wR2 = 0.0740
R indices (all data)	R1 = 0.0366	R1 = 0.0429

Table S1. Crystal Data for **1** and **2**.

	wR2 = 0.0455	wR2 = 0.0776
Extinction Coefficient	0.00040(3)	0.00011(2)
Largest diff peak and hole e $Å^{-3}$	1.339 and -1.164	2.342 and -2.345

Table S2. Lowest energy transitions for **1**, **2** and selected Hg(II)-thiolates.

Compounds	λ_{max} (nm)	Reference
1	270	This work
2	270, 360 (sh)	This work
$[Hg_6Cl_8(SCH_2CH_2NH_3)_8)]^{4+}$	270	7
$[Hg_9Br_{15}(SCH_2CH_2NH_3)_9]^{3+}$	270, 340 (sh)	7
Hg ₇ -MT	245, 304 (sh)	7
Hg-plastocyanin	245, 280 (sh)	8
Hg-stellacyanin	240, 278 (sh)	9
Hg-MerR	245, 290 (sh)	9
$[Hg(SEt)_2$	228, 282 (sh)	10
$[Hg(Pr^{i})_{2}]$	228, 262(sh)	10
$[Hg(SBu^{t})_{3}]^{+}$	235, 260(sh)	10

sh = shoulder, MT = metallothionein

Table S3. Vibrational frequencies observed for 1 and 2 and corresponding frequencies for several Hg(II)-thiolates.

Compound	v(Hg-S)	v(Hg-X)	Reference
1	260 (s), 341 (as)	499(X = N), 127	This work
2	287 (s), 340 (as)	133(t), 106 (br)	This work
$[HgI_{2}{SCHNH(CH_{3})_{2}}_{2}]$	162 (s), 311 (as)	134 (t)	11
$[HgI_2(tzdSH)_2]$	194 (s), 321(as)	126 (t)	12
$Hg_2I_6^{2-}$	-	105 (br)	13

X = I unless specified, t = terminal, br = bridging, s = symmetric, as = asymmetric stretching, tzdSH = 1,3-thiazolidine-2-thione.

Table S4. Bond distance (Å) and angles (°) for 1.

Hg(1)-S(1)	2.518(1)	Hg(2)-S(1) #1	2.473(1)
Hg(1)-S(2)	2.476(1)	Hg(2)-S(2)	2.530(1)
Hg(1)-N(1)	2.404(4)	Hg(2)-N(2)	2.371(4)
Hg(1)-I(1)	2.762(4)	Hg(2)-I(2)	2.755(4)
S(2)-Hg(1)-S(1)	123.47(5)	S(2)-Hg(2)-S(1)#1	124.18(5)
N(1)-Hg(1)-S(1)	81.53(1)	N(2)-Hg(2)-S(1)#1	108.94(1)
N(1)-Hg(1)-S(2)	109.45(1)	N(2)-Hg(2)-S(2)	82.00(1)
S(1)-Hg(1)-I(1)	112.34(4)	S(1)#1-Hg(2)-I(2)	112.35(3)
S(2)-Hg(1)-I(1)	115.81(3)	S(2)-Hg(2)-I(2)	112.65(3)
Hg(1)-S(2)-Hg(2)	104.62(5)	Hg(1)-S(1)-Hg(2)#1	100.62(5)
#1= -x+2, -y+1, -z			

Table S5. Bond distances (Å) and angles (°) for 2.

Hg(1)-S(1)	2.464(3)	Hg(2)-S(2)	2.463(3)
Hg(3)-S(1)#1	2.491(3)	Hg(3)-S(2)	2.482(3)
Hg(3)#2-S(1)	2.491(3)	Hg(1)-I(1)	2.936(9)
Hg(2)-I(1)	2.989(1)	Hg(1)-I(2)	3.046(1)
Hg(2)-I(2)	2.932(1)	Hg(1)-I(3)	2.668(1)
Hg(2)-I(4)	2.932(1)	Hg(3)-I(5)	2.965(1)
Hg(4)-I(5)	2.797(1)	Hg(4)-I(6)	3.129(1)
Hg(4)-I(7)	2.704(1)	Hg(4)-I(8)	2.697(1)
S(1)-Hg(1)-I(1)	106.21(8)	S(2)-Hg(2)-I(1)	104.09(3)
S(1)-Hg(1)-I(2)	99.50(8)	S(2)-Hg(2)-I(2)	106.77(8)
S(1)-Hg(1)-I(3)	141.62(8)	S(2)-Hg(2)-I(4)	139.56(8)
I(1)-Hg(1)-I(2)	91.19(3)	I(1)-Hg(2)-I(2)	92.42(3)
I(1)-Hg(1)-I(3)	105.26(3)	I(1)-Hg(2)-I(4)	102.38(3)
I(2)-Hg(1)-I(3)	101.26(3)	I(2)-Hg(2)-I(4)	104.09(3)
S(2)-Hg(3)-S(1)#1	133.59(9)	I(5)-Hg(4)-I(6)	89.96(3)
S(2)-Hg(3)-I(5)	107.56(8)	I(5)-Hg(4)-I(7)	119.61(3)
S(2)-Hg(3)-I(6)	110.62(8)	I(5)-Hg(4)-I(8)	111.07(3)
S(1)#1-Hg(3)-I(5)	98.09(8)	I(6)-Hg(4)-I(7)	95.09(3)
S(1)#1-Hg(3)-I(6)	110.60(8)	I(6)-Hg(4)-I(8)	103.42(3)
I(5)-Hg(3)-I(6)	92.79(3)	I(7)-Hg(4)-I(8)	125.71(3)
Hg(2)-S(2)-Hg(3)	106.65(1)	Hg(1)-S(1)-Hg(3)#2	105.28(1)
Hg(1)-I(1)-Hg(2)	86.21(3)	Hg(1)-I(2)-Hg(2)	85.26(3)
Hg(3)-I(5)-Hg(4)	90.53(3)	Hg(3)-I(6)-Hg(4)	86.70(3)

#1= x, y+1, z, #2 = x,y-1,z

Figure 1. The repeating unit of 2 with 50% thermal ellopsoids

Figure 2. 199 Hg[1 H] NMR of **1** in d₆-DMSO.

Figure 3. Thermogram of **1**.

Figure 4. Thermogram of **2**.

Figure 5. Packing diagrams of **1** and **2** along b-axis emphasizing the hydrogen bonding (shown by dotted lines).

D-HA	d(D-H)Å	d(HA)Å	d(DA)Å	<(DHA)°
		1		
N1 H1A I2	0.92	3.17	3.849(5)	131.9 (2)
N1 H1B I1	0.92	3.20	3.875(4)	131.9 (3)
N1 H1B I2	0.92	3.27	3.698(5)	111.1 (1)
N2 H2C S2	0.92	2.55	3.447(5)	165.9 (2)
N2 H2D S1	0.92	2.61	3.438(5)	150.5 (1)
		2		
N1 H1C I4	0.89	2.98	3.73(2)	142.5 (4)
N1 H1D O1W	0.89	1.97	2.85(3)	166.4
N1 H1E I4	0.89	3.00	3.82(2)	153.6 (4)
N2 H2C I3	0.89	3.05	3.73(2)	134.4 (4)
N2 H2D O2W	0.89	1.82	2.71(3)	174.5
N2 H2E I3	0.89	3.01	3.84(2)	157.4 (4)

Table S6. Hydrogen bonding geometry in 1 and 2.

References:

(1) Sens, M. A.; Wilson, N. K.; Ellis, P. D.; Odon, J. D. J. Magn. Res. 1975,

19, 323.

(2) Al-Showiman, S. S. Inorg. Chim. Acta 1988, 141, 263.

(3) Pregosin, P. S. *Transition Metal Nuclear Magnetic Resonances*; Elsevier: New York, 1991.

(4) Otwinowski, Z.; Moinor, W. *Methods Enzymol.* **1997**, 276, 307.

(5) Sheldrick, G. M. *SADABS-An empirical adsorption correction program*; Bruker Analytical X-ray Systems: Madison, WI, 1996.

(6) *International Tables for Crystallography vol. C*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.

(7) Vasak, M.; Kagi, J. H.; Hill, H. A. *Biochemistry* **1981**, *20*, 2582.

(8) Tamilarasan, R.; McMillin, D. R. *Inorg. Chem.* **1986**, *26*, 3139.

(9) Wright, J. G.; Natan, M. J.; MacDonnell, F. M.; Ralston, D. M.; O'Halloran, T. V. *Prog Inorg Chem.* **1990**, *38*, 323.

(10) Watton, S. P.; Wright, J. G.; MacDonnell, F. M.; Bryson, J. W.; Sabat, M.; O'Halloran, T. V. J. Am. Soc. Chem. **1990**, *112*, 2824.

(11) Stalhandske, C. M. V.; Persson, I.; Sandstrom, M.; Aberg, M. Inorg. Chem. 1997, 36, 4945.

Bell, N. A.; Coles, S. J.; Constable, C. P.; Hibbs, D. E.; Hursthouse, M.B.; Mansor, R.; Raper, E. S.; Sammon, C. *Inorg Chim Acta* 2001, *323*, 69.

(13) Svensson, P. H.; Kloo, L. Inorg Chem. 1999, 38, 3390 and ref therein.