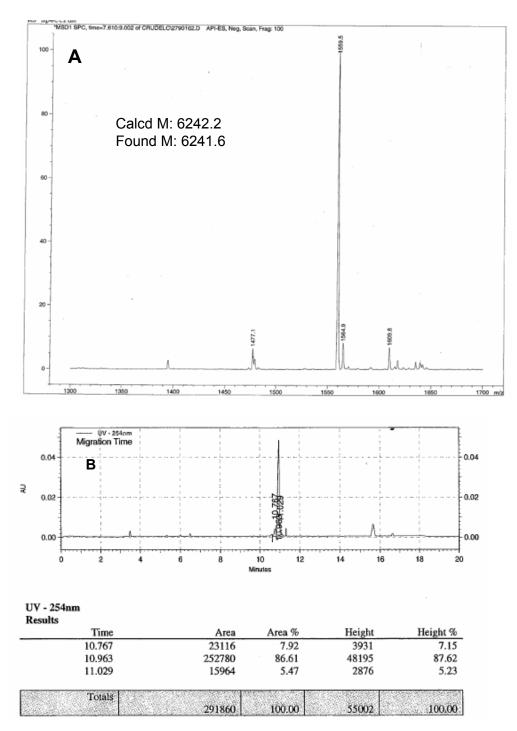
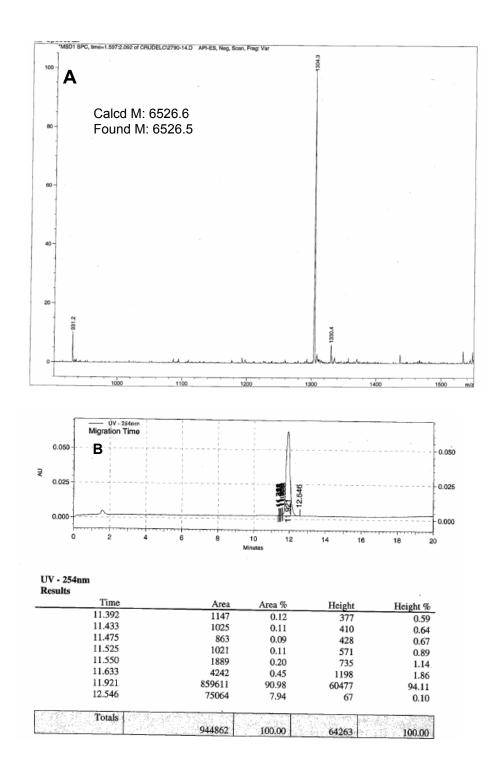
Supporting Information

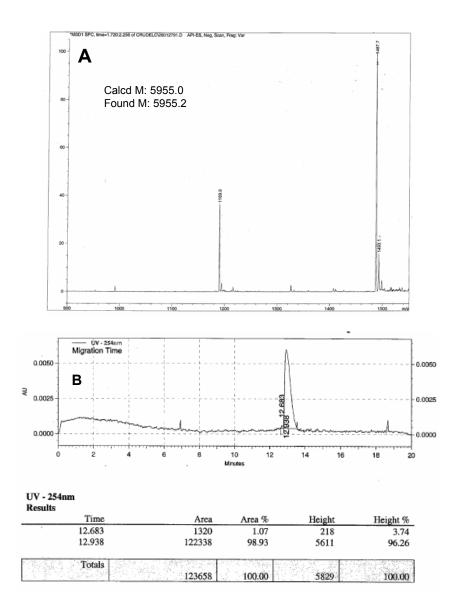

Improving RNA Interference in Mammalian Cells by 4'-Thio modified siRNA: Effect on siRNA Activity and Nuclease Stability When Used in Combination with 2'-O-Alkyl Modifications Prasad Dande *, Thazha P. Prakash, Namir Sioufi, Hans Gaus, Russell Jarres, Andreas Berdeja, Eric E.

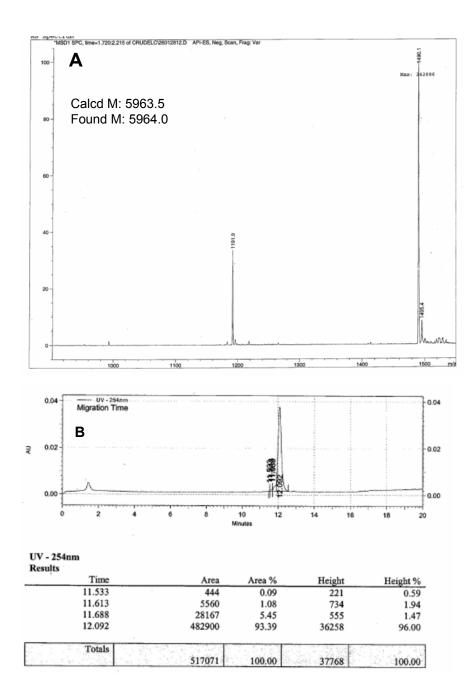
Swayze, Richard H. Griffey, Balkrishen Bhat.

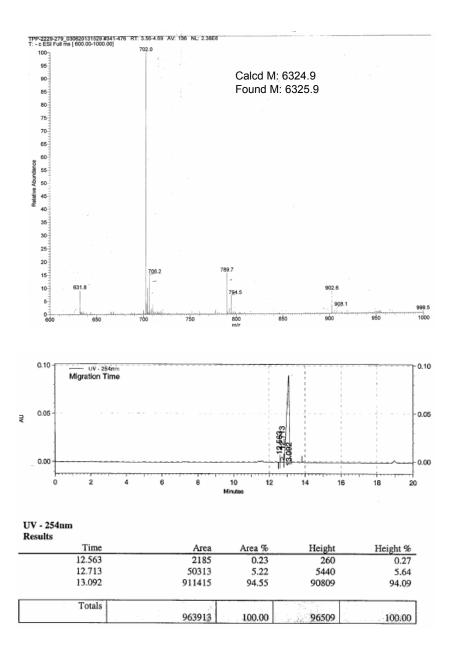

Department of Medicinal Chemistry and Antisense Core Research, Isis Pharmaceuticals Inc., Carlsbad CA 92008

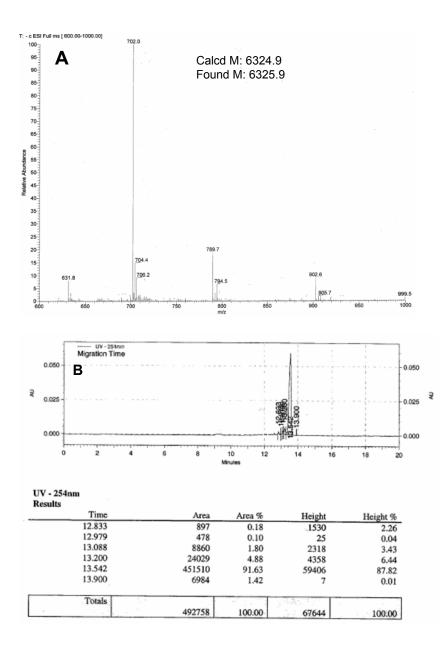
Contents:

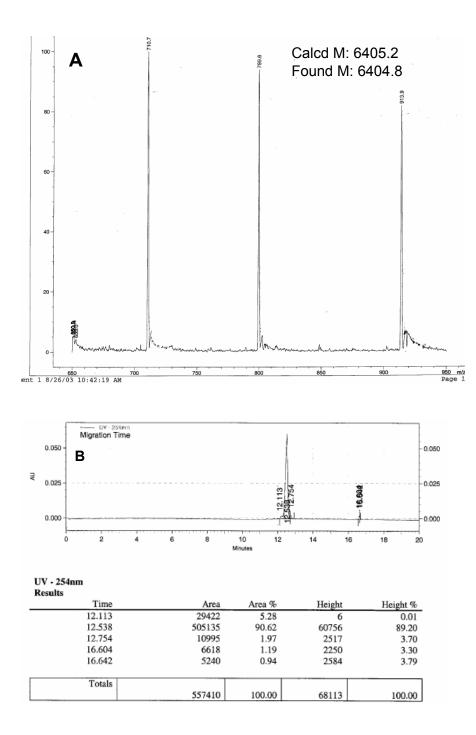

1	Figure 1. Electrospray mass spectrum and capillary electrophoresis profile	S2
	of oligonucleotide 5'- AAGUAAGGACCAGAGACAA-3'.	
2	Figure 2. Electrospray mass spectrum and capillary electrophoresis profile	S3
	of oligonucleotide 5'- AAGUAAGGACCAGAGACAA-3'.	
3	Figure 3. Electrospray mass spectrum and capillary electrophoresis profile	S4
	of oligonucleotide 5'-AAGUAAGGACCAGAGACAA-3'	
4	Figure 4. Electrospray mass spectrum and capillary electrophoresis profile	S5
	of oligonucleotide 5'- UUCAUUCCUGGUCUCUGUU-3'.	
5	Figure 5. Electrospray mass spectrum and capillary electrophoresis profile	S6
	of oligonucleotide 3'- UUCAUUCCUGGUCUCUGUU -5'.	
6	Figure 6. Electrospray mass spectrum and capillary electrophoresis profile	S7
	of oligonucleotide 3'-UUCAUUCCUGGUCUCUGUUU-P-5'.	
7	Figure 7. Electrospray mass spectrum and capillary electrophoresis profile	S 8
	of oligonucleotide 3'-UUCAUUCCUGUUUU-P -5'.	
8	Figure 8. Electrospray mass spectrum and capillary electrophoresis profile	S9
	of oligonucleotide 3'-UUCAUUCCUGGUCUCUGUUU-P -5'.	
9	Figure 9. High resolution mass spectrum (FAB) of compound 7.	S10
10	Figure 10. High resolution mass spectrum (FAB) of compound 8.	S11
11	Figure 11. High resolution mass spectrum (FAB) of compound 14.	S12
12	Figure 12. ³¹ P NMR of compound 7 in CDCl ₃ .	S13
13	Figure 13. ³¹ P NMR of compound 8 in CDCl ₃	S14
14	Figure 14. ³¹ P NMR of compound 14 in CDCl ₃ .	S15


Figure 1. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 5'- AAGUAAGGACCAGAGACAA-3'.


Figure 2. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 5'- AAGUAAGGACCAGAGACAA-3'.


Figure 3. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 5'-*AAG*UAAGGACCAGAGA*CAA*-3'.


Figure 4. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 5'- **UU**CAUUCCUGGUCUCUG**UU-3'**.


Figure 5. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 3'- *UUC*AUUCCUGGUCUCUG**UU** -5'.

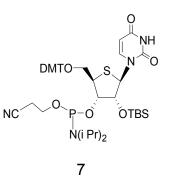

Figure 6. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 3'-**UUC**AUUCCUGGUCUCUGUUU-P**-5'**.

Figure 7. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 3'-UUCAUUCCUGGUCUCUGUUU-P -5'.

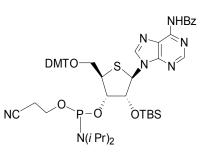


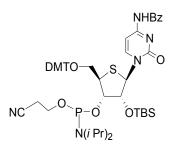
Figure 8. Electrospray mass spectrum (A) and capillary electrophoresis profile (B) of oligonucleotide 3'-UUCAUUCCUGGUCUCUGUUU-P -5'.

AUG-16-2005 17:06	MASS SPEC. UC BERKELEY					510 642 9295			P.03		
	Elémental C	Date : 16-AUG-2005									
Hetercatom Max: 40 Limits:	Ion: Both Even	and Odd									
			~0.5	Ó	0	0	0	0	0	0	
877.381470	10.0		20.0	200	400	6 0	0 10	0	0	0	
Mass	PPM mDa	Calc. Mass	DBE	С	н	N	0	Si	₽	s	
877.381470	-0.7 -0.6	877.380872	18.0	47	64	1	9	1	1	1	
	-2.2 -1.9	877.379529	18.5	45	62	4	8	ĩ	1	ī	
	3.7 3.2	877.384711	19.0	44	60	5	10	ī	ī	-	
	4.0 3.5	877.384939	19.0	45	60	5	9	_	1	1	
	5.5 4.8	877.386282	18.5	47	62	2	10		1	1	
	-6.8 -6.0	877.375507	14.5	40	62	6	10	1	1	1	
	-7.2 -6.3	877.375194	19.0	44	59	5	10	1		1	
	7.2 6.3	877.387770	18.5	45	61	4	10	1		1	
	7.5 6.6	877.388083	14.0	41	64	5	10	1	1	1	
	-8.8 -7.8	877.373706	19.0	46	60	3	10		1	1	
	-10.4 -9.1	877.372363	19.5	44	58	6	9		1	í	
	10.6 9.3	877.390763	18.5	44	62	6	7	1	1	ī	
	-10.6 -9.3	877.372135	19.5	43	58	6	10	ī	1		

Figure 9. High resolution mass spectrum (FAB) of compound 7. HRMS (FAB) calc. for $C_{45}H_{61}N_4O_8PSSi = 876.3717$, found = 877.3815 $[M + H]^+$

8

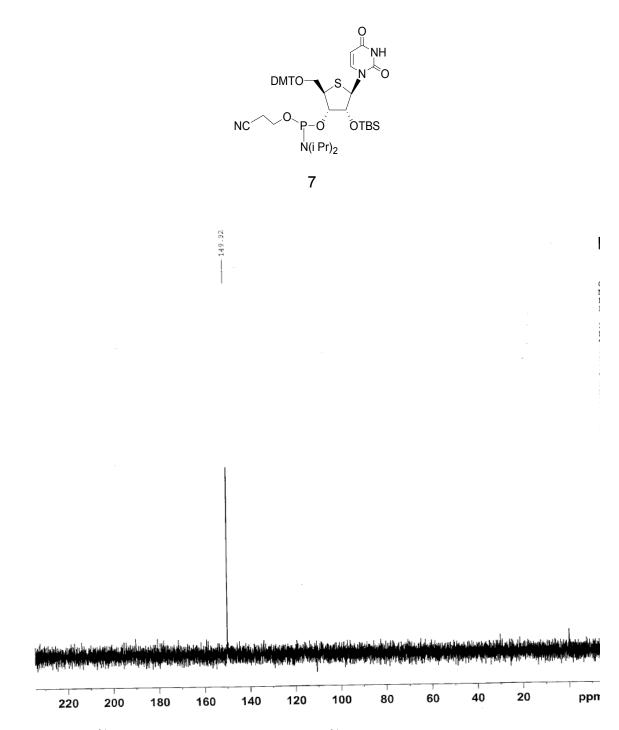
510 642 9295

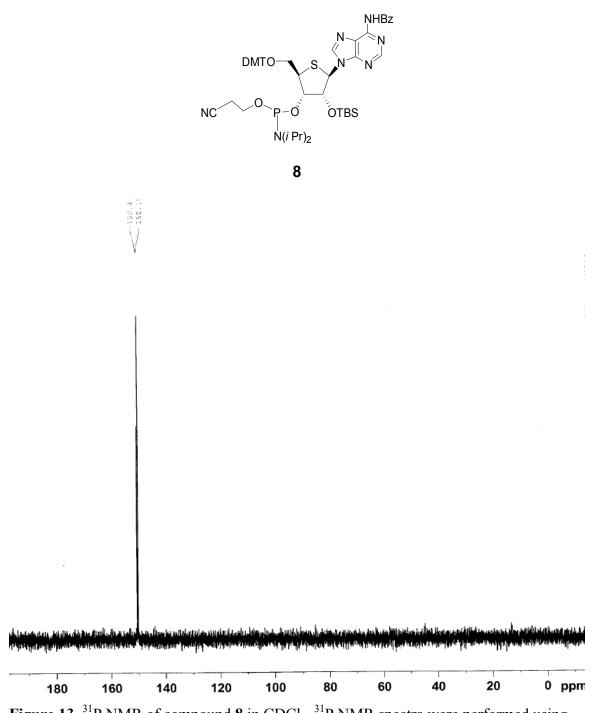

P.09

MASS SPEC. UC BERKELEY

JUL-02-2004 18:02

		Elemental Composition					Date : 2-JUL-2004							
Heteroatom Max:	40 :	Ion:	Both	Even	and Odd									
Limits:														
						-0.5	0	0	Ó	0	0	0	0	
1004.434280				10.0		40.0	200	400	8	10	ĩ	ĩ	ĩ	
				•						-	~ 1	-	-	
Mass			PPM	mDa	Calc. Mass	DBE	C	н	N	0	Si	P	s	
1004.434280			0.0	0.0	1004.434305	25.0	55 59	69 66	4 3	8	1	1	1	
			0.3	-0.3	1004.433992 1004.434643	38.5	67	62	1	6	i		1	
			0.4	0.4	1004.434687	35.5	60	58	ź	ă	-			
			0.4	-0.4	1004.433841	34.5	62	63	5	4		1	1	
			0.6	0.6	1004.434871	38.5	68	62	1	5			1	
		-	0.7	-0.7	1004.433613	34.5	61	63	5	5	1	1		
			0.7	0.7	1004.434955	34.0	63	65	2	6	1	1		
			0.7	0.7	1004.435000	31.0	56	61	8	8		1		
			0.7	-0.8	1004.433529 1004.435184	39.0 34.0	66 64	60 65	4	4		1	1	
			1.0	-1.0	1004.433300	39.0	65	60	4	5	1	-	-	
			1.0	1.0	1004.435329	34.5	60	62	7	4	î		1	
			1.1	1.1	1004.435335	29.0	61	68		9	ī		ī	
			1.3	-1.3	1004.432962	25.5	53	67	7	7	1	1	1	
			1.4	1.4	1004.435642	30.0	56	65	8	4	1	1	1	
			1.4	1.4	1004.435647	24.5	57	71	1	9	1	1	1	
			1.6	-1.6	1004.432649	30.0 35.0	57 62	64 60	6 4	7	1		1	
			1.8	-1.8	1004.432504	29.5	61	67	ĩ	8		1	1	
			1.8	-1.8	1004.432499	35.0	60	61	â	3		ĩ	ĩ	
			1.8	-1.8	1004.432454	38.0	67	65	2	ĩ	1	ĩ	ĩ	
			2.0	-2.0	1004.432275	29.5	60	67	1	9	1	1		
			2.0	-2.0	1004.432270	35.0	59	61	8	4	1	1		
			2.0	2.0	1004.436293	39.0	64	61	6	2	1	1		
			2.1	2.1	1004.436343 1004.432191	30.5	58 65	63 64	5	9 8		1	1	
			2.1	-2.1	1004.432186	39.5	64	58	7	3			î	
			2.2	2.2	1004.436521	39.0	65	61	Ġ	ĩ		1	ĩ	
			2.3	-2.3	1004.431963	34.0	64	64		9	1			
			2.3	-2.3	1004.431957	39.5	63	58	7	4	1			
			2.4	2.4	1004.436672	34.0	62	64	4	5	1		1	
			2.5	-2.5	1004.431812 1004.436985	39.0	67 58	61 67	25	5 5	1	1	1	
			2.7 3.1	2.7	1004.436985	40.0	63	56	8	5	1	1	1	
			3.1	3.1	1004.437373	34.5	64	62	ĭ	10				
			3.1	-3.1	1004.431161	30.0	59	65	4	7		1	1	
				-3.2	1004.431111	38.5	65	63	5		1	1	1	
			3.3	-3.3	1004.430933	30.0	58	65	4	8	1	1		
			3.3	3.4	1004-437635	38.5	66	63	3	3	1	1		
		_	3.4	-3.4	1004.437685	30.0	60 63	65 62	23	10 7		1	1	
		-	3.5	3.6	1004.437831	30.5	56	62	7	ģ	1		•	
			3.6	3.6	1004.437864	38.5	67	63	ś	2	-	1	1	
		-	3.6	-3.7	1004.430620	34.5	62	62	3	8	1			
			3.7	3.7	1004.438009	39.0	63	60	8	1	1		1	
			3.7	3.7	1004.438015	33.5	64	66	1	6	1		1	
			3.8	.3.8	1004.438059	30.5	57	62	7	8			1	


Figure 10. High resolution mass spectrum (FAB) of compound **8**. HRMS (FAB) calc. for $C_{53}H_{66}N_7O_7PSSi = 1003.4251$, found = 1004.434 [M + H]⁺


14

AUG-16-2005 17:07	IC BERKELEY		510	8 642 9	9295	P.05)		
	Elemental Composition					AUG-20	005		
Heteroatom Max: 40 Limits:	Ion: Both Eve	en and Odd							
	10.	0	-0.5	0 0	0 6	0 10	0	0	0
980.419920								P	s
Mass	PPM mI		DBE	CH	N	0	Si		
980.419920	0.0 0.			58 65 64 63	23	8 1	1	1	1
	-0.2 -0.			57 65	2	9	1	1	
	-0.3 -0.		32.5	62 62	1	8			1
	-0.5 -0.			61 62	1	9	1		
	0.7 0.			66 61 64 59	з	5		1	
	-0.7 -0. 0.8 0.	.7 980.419236 .8 980.420724	37.5	62 58	5	5	1	-	
		.0 980.420953	37.5	63 58	5	4	-		1
		1 980.421036		58 61	6	5	1	1	
		.3 980.421220	36.0	66 65	_	2	1	1	1
	-1.4 -1.		28.5	56 63 59 61	5	7		1	1
	1.4 1.		33.0 37.0	62 61	6	*	1	î	i
		.5 980.421416	28.0	56 64	4	8	ĩ	-	ĩ
	-1.6 -1		28.5	55 63	5	8	1	1	_
	-1.7 -1		33.0	60 60	4	7			1
		.8 980.421728 .9 980.418044	23.5 33.0	52 67 59 60	5	8	1	1	1
	-1.9 -1		38.0	62 57	6	4	•	1	
		.1 980.422067	37.0	64 60	ž	6	1	-	
		.4 980.422295	37.0	65 60	2	5			1
		.5 980.422379	32.5	60 63	з	6	1	1	
	-2.6 -2		24.0	51 64 61 63	6 3	10	1	1	1
	2.7 2	.7 980.422608 .7 980.417198	32.5 32.0	61 63 61 65	2	5 4	1	i	1
		.8 980.422759	27.5	58 66	ĩ	9	ĩ	-	ĩ
	-3.1 -3		36.5	65 62	1	4	1		1
		.2 980.423071	23.0	54 69	2	9	1	1	1
	-3.4 -3		33.0	61 61	25	8 9		1	
	3.6 3 -3.7 -3	.5 980.423454 .7 980.416243	33.5 37.5	59 58 65 58	1	8			
		.8 980.423722	32.0	62 65	-	7	1	1	
		.8 980.423767	29.0	55 61	6	9	-	1	
	-4.1 -4		24.0	53 65	4	10		1	1
		.0 980.423951	32.0	63 65 59 63	5	6 3	1	1	1 1 1
	-4.1 -4 4.3 4	.1 980.415855 .2 980.424096	32.5	59 63 59 62	5	5	1	-	1
	-4.4 -4		28.5	57 62	3	10	•		ī
	-4.5 -4		37.0	63 60	4	3	1		1
	4.6 4	.5 980.424408	28.0	55 65	6	5	1	1	1
	-4.8 -4		33.5	59 59	5	7		1	
		.9 980.424797 .0 980.414901	33.0 38.0	61 60 63 56	2	10 7			
		.1 980.425059	37.0	63 61	4	ś	1	1	
		.2 980.425109	28.5	57 63	3	10	-	ĩ	
	5.5 5	.4 980.425288	37.0	64 61	4	2		1	1
		.4 980.414518	27.5	58 67	1	7	1	1	1
		.5 980.425439	32.0	61 64	2	6	1		1
		.7 980.414250 .7 980.414205	29.0 32.0	55 60 62 64	6	9	1		1
	-5.6 -5	., 200.414205	32.0	02 04		'	-		-

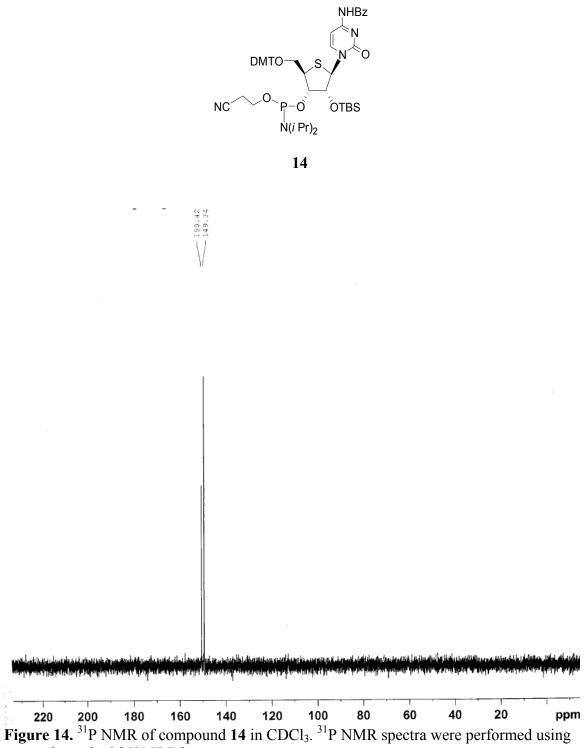

Figure 11. High resolution mass spectrum (FAB) of compound 14. HRMS (FAB) calc. for $C_{52}H_{66}N_5O_8PSSi = 979.4139$, found = 980.4199 [M + H]⁺

Figure 12. ³¹P NMR of compound 7 in CDCl₃. ³¹P NMR spectra were performed using external standard 85% H₃PO₄

Figure 13. ³¹P NMR of compound **8** in CDCl₃. ³¹P NMR spectra were performed using external standard 85% H₃PO₄

external standard 85% H₃PO₄