Supporting Information

SI 1. Thickness of EDL for BGE with Monovalent Cations

According to Coulomb's law, the electrical force, F_e , between an oxygen atom in a silanoate (SiO⁻) group and the positive counter ion is

$$F_{\rm e} = \frac{z_{\rm S} z_{\rm B} e^2}{4\pi \varepsilon_0 \varepsilon_r x_1^2} \tag{SI-1}$$

where z_s (-1) and z_B (+1) are the charge numbers of a silanoate ion and the positive counter ion respectively, and e is the elementary charge (1.602 × 10⁻¹² C). The work done on the system in moving a cation toward a silanoate anion a distance dx from the position ∞ to x_1 is

$$dw = \left(\frac{z_{\rm S} z_{\rm B} e^2}{4\pi \varepsilon_{\rm o} \varepsilon_{\rm e} x^2}\right) dx \tag{SI-2}$$

$$w = \int_{\infty}^{x_1} \frac{z_S z_B e^2}{4\pi \varepsilon_0 \varepsilon_r x^2} dx = -\frac{z_S z_B e^2}{4\pi \varepsilon_0 \varepsilon_r x_1}$$
 (SI-3)

This work w is the electrostatic contribution to the Gibbs energy of activation, $\Delta^{\dagger}G_{es}^{\circ}$, when two ions form an activated complex. Multiplication by the Avogadro constant N_A gives the molar quantity,

$$\Delta^{\dagger} G_{es}^{\circ} = -\frac{N_{A} z_{S} z_{B} e^{2}}{4 \pi \varepsilon_{0} \varepsilon_{r} x_{I}}$$
 (SI-4)

The total molar Gibbs energy of activation, or the standard Gibbs energy of activation, combining with the non-electrostatic contribution, $\Delta^{\dagger}G_{nes}^{\circ}$ is

$$\Delta^{\ddagger}G^{\circ} = \Delta^{\ddagger}G_{\text{nes}}^{\circ} - \frac{N_{A}z_{S}z_{B}e^{2}}{4\pi\varepsilon_{0}\varepsilon_{r}x_{1}}$$
 (SI-5)

According to the thermodynamic formulation of conventional transition-state theory¹⁸, the rate constant k of the reaction is

$$k = (\mathbf{k}T/h) \exp(-\Delta^{\ddagger} G^{\circ}/RT)$$
 (SI-6)

where **k** is Boltzmann constant (= R/N_A), and h is Planck constant. Substitution of $\Delta^{\dagger}G^{\circ}$ from equation SI-5 into equation SI-6 and taking natural logarithms, we then have

$$\ln k = \ln \left(\mathbf{k} T / h \right) - \left(\Delta^{\ddagger} G_{\text{nes}}^{\circ} / R T \right) + \frac{N_{A} z_{S} z_{B} e^{2}}{4 \pi \varepsilon_{0} \varepsilon_{r} x_{1} R T}$$
(SI-7)

Equation SI-7 can be written as

$$\ln k = \ln k_0 + \frac{N_A z_S z_B e^2}{4\pi \varepsilon_0 \varepsilon_r x_1 RT}$$
 (SI-8)

where $k_0 = \ln (kT/h) - (\Delta^{\dagger}G_{nes})^{\circ}/RT$, k_0 is the value of k in a medium of infinite dielectric constant, in which the electrostatic forces become zero.

Brønsted suggested that the rate of second order reactions 9 or 10 might be expressed as²⁷

$$v = k_0 [SiO^-] [B] \frac{y_s y_b}{y_x}$$
 (SI-9)

where k_0 is a constant at a given temperature, B is H⁺ or M⁺, y_S and y_b are the activity coefficients of silanoate ions and the other reactants, y_x is the activity coefficient of the product. Square brackets [] represent the concentrations of species in the liquid phase by convention. According to the extended Debye-Hückel law²⁸, the activity coefficient y_i of an ion may be estimated as

$$\log_{10} y_i = -\frac{A z_i^2 I^{1/2}}{1 + R I^{1/2}}$$
 (SI-10)

where z_i is the charge number of an ion i, $A = \frac{F^3}{4\pi N_A \ln 10} \left(\frac{\rho b^{\circ}}{2\epsilon^3 R^3 T^3}\right)^{1/2}$, ρ is the mass density of

the solvent, $b^{\circ} = 1 \mod \text{kg}^{-1}$, and B is an adjustable empirical parameter. For a very low concentration, B = 0, then the equation SI-10 can be simplified as

$$\log_{10} y_i = -A z_i^2 I^{1/2} \tag{SI-11}$$

The rate constant of the reaction, k, is

$$k = k_0 \frac{y_s y_b}{y_x}$$
 (SI-12)

Taking logarithms on equation SI-12 and replacing $log_{10} y_S$, $log_{10} y_b$, and $log_{10} y_x$ with equation SI-10, we have

$$\ln k = \ln k_0 + 2(\ln 10) z_S z_B A I^{1/2}$$
 (SI-13)

where k_0 is the rate constant extrapolated to zero ionic strength. Comparing equations SI-12 with SI-8, since k is the rate constant for the same reaction and k_0 has to be the same, we can solve the thickness of the double layer x_1 ,

$$\delta = x_1 = \frac{1}{F} \sqrt{\frac{\epsilon RT}{2000I}} \tag{SI-14}$$

SI 2. Thickness of EDL for BGE with Multivalent Inorganic Cations

The distance between the centers of an oxygen atom in a silanoate ion group and an inorganic cation is x_1 . The distance between the centers of the inorganic cation and an anion is x_2 , and the total distance between the centers of an oxygen atom and an anion is x_2 , where $x = x_1 + x_2$. A simple scheme is shown in Figure SI-1. It is assumed that the ions contact linearly from the capillary wall towards the center. The portion of the surface covered by the cations alone is θ_M , and the

portion of the surface covered by silanoate-cation-anion complexes is θ_{MA} . Therefore, the average thickness of the electrical double layer δ is

$$\delta = \frac{\theta_M x_1 + \theta_{MA} x}{\theta_M + \theta_{MA}} = \frac{\theta_M x_1 + \theta_{MA} (x_1 + x_2)}{\theta_M + \theta_{MA}}$$
 (SI-15)

where $\theta_{M} = K_{M} a_{M}^{m+} (1 - \theta_{H} - \theta_{M} - \theta_{A})$, $\theta_{MA} = K_{M} a_{M}^{m+} K_{A} a_{A}^{n-} (1 - \theta_{H} - \theta_{M} - \theta_{A})$, and $(\theta_{H} + \theta_{M} + \theta_{A} + \theta_{SiO}) = 1$. When only two ions interact with each other, the distance is x_{1} , derived in Section SI-1,

When three ions interact with one another, electric forces are present between an oxygen atom in a silanoate ion and a cation, the cation and an anion, and the anion and the oxygen atom. The total force F_e is the sum of the three forces that are respectively shown in equation SI-16,

$$F_{c} = \frac{z_{S} z_{M} e^{2}}{4\pi \varepsilon_{0} \varepsilon_{r} x_{1}^{2}} + \frac{z_{M} z_{A} e^{2}}{4\pi \varepsilon_{0} \varepsilon_{r} x_{2}^{2}} + \frac{z_{S} z_{A} e^{2}}{4\pi \varepsilon_{0} \varepsilon_{r} (x_{1} + x_{2})^{2}}$$
(SI-16)

where z_S representing for the charge of a silanoate ion is (-1), z_M representing the charge of a multiply charged cation is a positive integer greater than one, and z_A representing the charge of an anion is a negative integer. The work done on the system in moving the ions toward the silanoate ion a distance dx,

$$dw = \mathbf{F}_e dx$$

$$w = \int_{-\infty}^{x_1} \frac{z_S z_M e^2}{4\pi\epsilon_0 \varepsilon_r x_1^2} dx + \int_{-\infty}^{x_2} \frac{z_M z_A e^2}{4\pi\epsilon_0 \varepsilon_r x_2^2} dx + \int_{-\infty}^{x_2} \frac{z_S z_A e^2}{4\pi\epsilon_0 \varepsilon_r (x_1 + x_2)^2} dx$$
 (SI-17)

$$w = -\frac{e^2}{4\pi \,\varepsilon_0 \varepsilon_r} \left(\frac{z_S z_M}{x_1} + \frac{z_M z_A}{x_2} + \frac{z_S z_A}{x_1 + x_2} \right) \tag{SI-18}$$

Similar to the previous section for the monovalent model, this work w is the electrostatic contribution to the Gibbs energy of activation, $\Delta^{\ddagger}G_{cs}^{\circ}$, when three ions form an activated

complex, multiplied by the Avogadro constant N_A to give the molar quantity. The total molar Gibbs energy of activation, or the standard Gibbs free energy of activation, combining with the non-electrostatic contribution, $\Delta^{\dagger}G_{nes}$ is

$$\Delta^{\ddagger}G^{\circ} = \Delta^{\ddagger}G_{\text{nes}}^{\circ} - \frac{N_{A}e^{2}}{4\pi\epsilon_{0}\epsilon_{r}RT} \left(\frac{z_{S}z_{M}}{x_{1}} + \frac{z_{M}z_{A}}{x_{2}} + \frac{z_{S}z_{A}}{x_{1} + x_{2}}\right)$$
(SI-19)

Following the same process at that in section SI-1, we have

$$\ln k = \ln k_0 + \frac{N_A e^2}{4\pi\epsilon_0 \epsilon_r RT} \left(\frac{z_S z_M}{x_1} + \frac{z_M z_A}{x_2} + \frac{z_S z_A}{x_1 + x_2} \right)$$
 (SI-20)

For a third order reaction involving three ions, the equation SI-12 can be extended to 18

$$\log_{10} k = \log_{10} k_0 + 2 \left(z_S z_M + z_M z_A + z_S z_A \right) A I^{1/2}$$
 (SI-21)

Similar to the previous section, since $z_S = -1$, we can resolve x_2 ,

$$x_2 = x_1 \sqrt{\frac{z_M}{z_M - 1}}$$
 (SI-22)

Replacing x_1 and x_2 in equation SI-15 with equations SI-14 and SI-22, the average thickness of the electrical double layer δ is

$$\delta = \frac{1}{F} \sqrt{\frac{\epsilon RT}{2000I}} \times \frac{1 + K_A a_{A^{n-}} \left(1 + \sqrt{\frac{z_M}{z_M - 1}}\right)}{1 + K_A a_{A^{n-}}}$$
(SI-23)

SI 3. Symbols

Roman Alphabet

 a_X activity of the subscripted specie X in mol L⁻¹.

© 2005 American Chemical Society, Anal. Chem., Zhou ac0518708 Supporting Info Page 6

B: Debye- Hückel empirical constant

e: elementary charge,

E: applied electric field per unit length in V/m

F: Faraday constant

 $F_{\rm e}$: electrical force

h: Planck constant

I: ionic strength

k: Boltzmann constant

 k_0 : value of the rate constant in a medium of infinite dielectric constant, in which the electrostatic forces become zero.

$$K_A$$
: equilibrium constants and $K_A = \frac{[SiO^-M^{m+}A^{n-}]}{[SiO^-M^{m+}]a_{A^{n-}}}$

$$K_{H}$$
: equilibrium constants and $K_{H} = \frac{[SiOH]}{a_{\mu^{+}}[SiO^{-}]}$

$$K_{M}$$
: equilibrium constants and $K_{M}^{+} = \frac{[SiOM]}{a_{M}^{+}[SiO^{-}]}$

$$K_M^{m+}$$
: equilibrium constants and $K_M^{m+} = \frac{[SiO^-M^{m+}]}{a_{M^{m+}}[SiO^-]}$

$$K_N$$
: equilibrium constants and $K_N = \frac{[SiO^-N]}{[SiO^-][N]}$

 l_d : effective length (from injection end to the detection window)

 l_t : total length (from injection end to the detection window)

 N_A : Avogadro constant

© 2005 American Chemical Society, Anal. Chem., Zhou ac0518708 Supporting Info Page 7

 $Q_{0,a}$: number of apparent silanol groups in all forms per unit area at the capillary surface (in mol dm⁻²)

R: universal gas constant

t₀: retention time of unretented peak

t_{buf}: retention time of eof marker when buffer was used as the background electrolyte

t_d: electronic delay time

t_i: retention time of peak i

t_{inj}: time consumed per injection of sample

t_{rmp}: voltage ramp time

t_v: time used for voltage application

twater: retention time of eof marker when water was used as the background electrolyte

T: temperature

w work done on the system in moving a cation toward a silanoate anion

V: applied voltage

x: total distance between the centers of an oxygen atom and an anion is, where $x = x_1 + x_2$. It is assumed that the ions contact linearly from the capillary wall towards the center.

 x_1 : distance between the centers of an oxygen atom in a silanoate ion group and a cation.

 x_2 : distance between the centers of a cation that is attached to an oxygen on the silanoate and the center of an anion in buffer solution

 y_i : activity coefficient of an ion

 z_{Λ} : charge of an anion

z_B charge number of a positive ion (+1)

 z_i : charge of an ion i

 z_{M} : charge of a multivalent cation, a positive integer greater than one,

z_S charge number of a silanoate ion (-1)

Greek Alphabet

- $\Delta^{\ddagger}G^{\circ}$: standard Gibbs energy of activation
- $\Delta^{\mbox{\scriptsize t}} G_{\mbox{\scriptsize es}}$: electrostatic contribution to the Gibbs energy of activation
- $\Delta^{\ddagger}G_{nes}$:non-electrostatic contribution
- δ: thickness of the electrical double layer in m
- ϵ : ~~ permittivity of the buffer and commonly expressed as $\epsilon_0\epsilon_r$
- ε_0 : permittivity of a vacuum
- ε_r : relative permittivity
- η : viscosity of the buffer in Nm⁻²s (or Pa·s)
- κ^{-1} : Debye length
- μ_{ep} : electrophoretic mobility
- μ_{eo} : electroosmotic mobility
- v_{eo} : velocity of the electroosmotic flow
- θ_{A} : fraction of surface covered by A^{n-} and $\theta_{A} = \frac{K_{A}a_{A^{n-}}}{1 + K_{M^{m+}}a_{M^{m+}} + K_{A}a_{A^{n-}} + K_{A}a_{A^{n-}}}$
- θ_{H} : fraction of surface covered by H⁺ and $\theta_{H} = \frac{K_{H} a_{H^{+}}}{1 + K_{M^{m+}} a_{M^{m+}} + K_{H} a_{H^{+}} + K_{A} a_{A^{n-}}}$
- θ_{M} : fraction of surface covered by M^{m+} and $\theta_{M} = \frac{K_{M^{m+}} a_{M^{m+}}}{1 + K_{M^{m+}} a_{M^{m+}} + K_{H} a_{H^{+}} + K_{A} a_{A^{m-}}}$

© 2005 American Chemical Society, Anal. Chem., Zhou ac0518708 Supporting Info Page 9

 θ_{MA} : fraction of the surface covered by silanoate-cation-anion complexes when the charge of M greater than 1. $\theta_{MA} = K_M \, a_M^{m+} \, K_A \, a_A^{n-} \, (1 - \theta_H - \theta_M - \theta_A)$,

σ: charge per unit surface area or charge density.

 σ_v : surface charge density due to the applied radial voltage

 σ_{Si} : surface charge density due to the ionization of the silanol groups

ξ: zeta potential

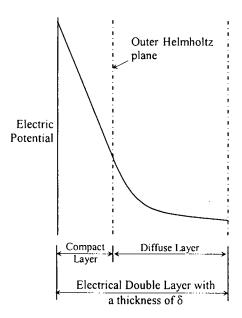


Figure SI-1. A simple electrical double layer model, Gouy-Chapman-Stern model.

In the case that monovalent cations are present, $\delta = x_1$. In the case that multivalent inorganic cations are present, $\delta = x$. $x_1 \neq x$.