Highly Stereoselective TiCl_-Catalyzed Evans-Aldol and E_{3} Al-Mediated Reformatsky Reactions. Efficient Accesses to Optically Active syn- or anti-α-Trifluoromethyl- β-hydroxy Carboxylic Acid Derivatives

Taichi Shimada, Masamitsu Yoshioka, Tsutomu Konno, and Takashi Ishihara*

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan ishihara@kit.ac.jp

SUPPORTING INFORMATION

CONTENTS

I. General Experimental S3
II. Synthetic Chemistry
(4S)-Benzyl-3-(3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (3) S4
(4S)-Benzyl-3-(2-bromo-3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (4) S4
General procedure for synthesis of α-trifluoromethyl- β-hydroxyimides $\mathbf{1}$ by syn-selective Evans-aldol reaction S5
General procedure for synthesis of α-trifluoromethyl- β-hydroxyimides $\mathbf{1}$ by anti-selective Reformatsky reaction S5
(4S)-Benzyl-3-[3-hydroxy-3-phenyl-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1a) S6
(4S)-Benzyl-3-[3-hydroxy-3-(4-methylphenyl)-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1b) S6
(4S)-Benzyl-3-[3-hydroxy-3-(4-methoxyphenyl)-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1c) S7
(4S)-Benzyl-3-[3-(4-chloro-phenyl)-3-hydroxy-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1d) S7
(4S)-Benzyl-3-[3-(4-fluoro-phenyl)-3-hydroxy-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1e) S8
(4S)-Benzyl-3-[3-hydroxy-2-(trifluoromethyl)hexanoyl]-oxazolidin-2-one (1f) S8
(4S)-Benzyl-3-[3-hydroxy-4-methyl-2-(trifluoromethyl)pentanoyl]-oxazolidin-2-one (1g) S9
(4S)-Benzyl-3-[3-hydroxy-2-(trifluoromethyl)hex-4-enoyl]-oxazolidin-2-one (1h) S9
III. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
(4S)-Benzyl-3-(3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (3) S10
(4S)-Benzyl-3-(2-bromo-3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (4) S11
(4S)-Benzyl-3-[3-hydroxy-3-phenyl-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1a) S12
(4S)-Benzyl-3-[3-hydroxy-3-(4-methylphenyl)-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1b) S14
(4S)-Benzyl-3-[3-hydroxy-3-(4-methoxyphenyl)-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1c) S16
(4S)-Benzyl-3-[3-(4-chloro-phenyl)-3-hydroxy-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1d) S18
(4S)-Benzyl-3-[3-(4-fluoro-phenyl)-3-hydroxy-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1e) S20
(4S)-Benzyl-3-[3-hydroxy-2-(trifluoromethyl)hexanoyl]-oxazolidin-2-one (1f) S21
(4S)-Benzyl-3-[3-hydroxy-4-methyl-2-(trifluoromethyl)pentanoyl]-oxazolidin-2-one (1g) S23
(4S)-Benzyl-3-[3-hydroxy-2-(trifluoromethyl)hex-4-enoyl]-oxazolidin-2-one (1h) S25
IV. ORTEP drawing
non-Evans syn (1a) S27
Evans anti (1c) S27

I. General Experimental

Infrared spectra (IR) were recorded on a Shimadzu FTIR-8200A (PC) spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured with a Bruker DRX $500(500.13 \mathrm{MHz})$ in a chloroform- $d\left(\mathrm{CDCl}_{3}\right)$ solution using tetramethylsylane $\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ as internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Bruker DRX $(125.75 \mathrm{MHz})$ in a $\left(\mathrm{CDCl}_{3}\right)$ solution with chloroform $\left(\mathrm{CHCl}_{3}\right)$ as internal reference. ${ }^{19}$ F NMR spectra were measured with JEOR JNM-EX 90A (84.10 MHz) and ECA 500 (470.62 MHz) in a CDCl_{3} solution. Trichlorofluoromethane $\left(\mathrm{CFCl}_{3}\right)$ was used as an internal standard for ${ }^{19} \mathrm{~F}$ NMR. All reactions were routinely monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy or TLC. High resolution mass spectra (HRMS) were taken on a JEOL JMS-700 mass spectrometer by FAB method.

Anhydrous tetrahydrofuran (THF) was purchased from Wako Chemical Co. and used without any purification. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled over calcium hydride. All chemicals were of reagent grade and, if necessary, were purified in the usual manner prior to use. Thin layer chromatography (TLC) was done with Merck silica gel $60 \mathrm{~F}_{254}$ plates, and column chromatography was carried out with Wako gel C-200. All reactions were carried out under an atmosphere of argon.

II. Synthetic Chemistry

Preparation of (4S)-Benzyl-3-(3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (3)

To a dry three-necked flask under argon was added a solution of 3,3,3-trifluoropropanoic acid $(2.561 \mathrm{~g}, 20.0 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$. To the mixture was added trimethylacethyl chloride (t $\mathrm{BuCOCl}, 2.653 \mathrm{~g}, 22.0 \mathrm{mmol}$) and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}, 2.226 \mathrm{~g}, 22.0 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was allowed to stir at $-78^{\circ} \mathrm{C}$ for $15-\mathrm{min}$ prior to warming to $-15^{\circ} \mathrm{C}$ and strring for 45 -min. Then the solution was cooled to $-78^{\circ} \mathrm{C}, 40.0 \mathrm{mmol}$ of lithiated oxazolidinone was added. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with saturated aqueous ammonium chloride (40 mL). The bulk of the THF was removed on a rotary evaporator at a bath temperature of $30^{\circ} \mathrm{C}$, and the resulting mixture was extracted with ethyl acetate ($40 \mathrm{~mL} \times 2$), saturated sodium hydrogencarbonate (40 mL). Combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate $=3 / 1)$ to afford pure product $\mathbf{3}(0.293 \mathrm{~g}, 10.2 \mathrm{mmol}$, 51% yield).
 $123.5(\mathrm{q}, J=276.6 \mathrm{~Hz}), 127.6,129.1,129.4,134.6,153.1,163.3(\mathrm{q}, J=3.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta=-63.3(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS $\left(\mathrm{FAB}^{+}\right)$Found: $m / z 288.0849$, Calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{3}$: 288.0848.

Preparation of (4S)-Benzyl-3-(2-bromo-3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (4)

Under an argon atmosphere, to a solution of imide $1(0.287 \mathrm{~g}, 1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was gradually added trimethylsilyltrifluoromethanesulfonate (TMSOTf, $0.333 \mathrm{~g}, 1.50 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. To the mixture was added triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}, 0.152 \mathrm{~g} 1.50 \mathrm{mmol}\right)$. After stirring at the reflux temperature for 0.5 h , the solution was cooled $-78{ }^{\circ} \mathrm{C}$, then a solution of bromine $(0.208 \mathrm{~g}, 1.30$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ was added. After stirring at that temperature for 0.5 h , the reaction was quenched with ice water $(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} x 4)$, and the extracts were washed with saturated aqueous sodium sulfite (20 mL) and brine (20 mL). The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate $=3 / 1)$ to afford pure product $\mathbf{4}(0.297 \mathrm{~g}, 0.811 \mathrm{mmol}, 81 \%$ yield $)$.

IR (neat) $3011,1771,1705,1456,995,874,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=$ $2.84(\mathrm{dd}, J=9.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}$, for one isomer), 2.87 (dd, $J=9.4,14.6 \mathrm{~Hz}, 1 \mathrm{H}$, for another isomer), $3.30(\mathrm{dd}, J=2.1,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.70-$ $4.76(\mathrm{~m}, 1 \mathrm{H}$, for one isomer), $4.75-4.76(\mathrm{~m}, 1 \mathrm{H}$, for another isomer), $6.17(\mathrm{q}$, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, for one isomer), $6.21(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, for another isomer), $7.18-7.37(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=36.8$ (for one isomer), 37.4 (for another isomer), 37.1 ($\mathrm{q}, J=34.7 \mathrm{~Hz}$, for one isomer), 37.3 ($\mathrm{q}, J=34.5 \mathrm{~Hz}$, for another isomer), 55.2 (for one isomer), 55.7 (for another isomer), 66.5 (for one isomer), 66.6 (for another isomer), 121.9 ($\mathrm{q}, J=278.3 \mathrm{~Hz}$, for one isomer), 121.9 (q, J $=278.7 \mathrm{~Hz}$, for another isomer), 127.7 (for another isomer), 127.7 (for another isomer), 129.1, 129.3, 129.4, 134.1 (for another isomer), 134.2 (for another isomer), 152.3, 162.1; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-68.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS $\left(\mathrm{FAB}^{+}\right)$Found: $\mathrm{m} / \mathrm{z} 365.9954$, Calcd for (M+H) $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrF}_{3} \mathrm{NO}_{3}: 365.9953$.

General procedure for synthesis of α-trifluoromethyl- β-hydroxyimides 1 by syn-selective Evans-aldol reaction

To a dried three-necked flask was added imide $3(0.287 \mathrm{~g}, 1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ under argon. To the mixture were added trimethylsilyltrifluoromethanesluflonate (TMSOTf, 0.333 g , $1.50 \mathrm{mmol})$ and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}, 0.152 \mathrm{~g}, 1.50 \mathrm{mmol}\right)$ at $-20^{\circ} \mathrm{C}$. After stirring at reflux temperature for 0.5 h , the solution was cooled to $0^{\circ} \mathrm{C}$. Then benzaldehyde $(0.127 \mathrm{~g}, 1.20 \mathrm{mmol})$ and titanium tetrachloride $(0.057 \mathrm{~g}, 0.3 \mathrm{mmol})$ were added to it. After stirring at that temperature for 4 h , the solution was poured into cooled water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ $\mathrm{mL} x 4)$. The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (benzene/ethyl acetate $=95 / 5$) to afford pure product $\mathbf{1 a}(0.248 \mathrm{~g}, 0.63 \mathrm{mmol}$, 63 \% yield).

General procedure for synthesis of α-trifluoromethyl- β-hydroxyimides 1 by anti-selective Reformatsky reaction

To a suspension of zinc $(0.078 \mathrm{~g}, 1.20 \mathrm{mmol})$ and benzaldehyde $(0.053 \mathrm{~g}, 0.5 \mathrm{mmol})$ in THF (2 mL) and triethylaluminum in hexane solution $(0.53 \mathrm{~mL})$ was added a solution of ($4 S$)-benzyl-3-(2-bromo-3,3,3-trifluoro-propanoyl)-oxazolidin-2-one $4(0.366 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF (1 mL) at $-40{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring at the same temperature for 3 h , the reaction was quenched with saturated aqueous ammonium chloride (25 mL) and acidified by the addition of 1 N hydrochloric acid solution. The resulting mixture was extracted with ethyl acetate ($25 \mathrm{~mL} \times 3$). The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (benzene/ethyl acetate 95/5) to afford pure product $1 \mathbf{1 a}(0.169 \mathrm{~g}, 0.430 \mathrm{mmol}, 86 \%)$.

$\boldsymbol{s y n}-(\mathbf{2 R}, \mathbf{3 S}): \operatorname{IR}(\mathrm{KBr}) \mathbf{1 7 7 8}, 1763,1705,1682,1369,1161,700,681 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.80(\mathrm{dd}, J=10.1,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=3.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=2.7,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.07 (dd, $J=8.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.55(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=3.7,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.66(\mathrm{dq}, J=9.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.40(\mathrm{~m}$, $3 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=36.6,53.2(\mathrm{q}, J=25.5 \mathrm{~Hz}), 54.9,65.7,72.8(\mathrm{q}, J=$ $1.3 \mathrm{~Hz}), 124.1(\mathrm{q}, ~ J=281.8 \mathrm{~Hz}$), 127.4, 127.6, 128.8, 129.0, 129.1, 129.2, 134.7, 139.1, 152.6, $164.9(\mathrm{q}, J=3.1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{~F}) ;$ HRMS (FAB ${ }^{+}$) Found: m / z 394.1266, Calcd for ($\mathrm{M}+\mathrm{H}$) $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}: 394.1266$.

anti-(2S,3S) : IR (KBr) 3499, 1786, 1709, 1456, 1391, 1211, 1078, 955 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=2.79(\mathrm{br}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=9.5 \mathrm{~Hz}, 13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{dd}, J=3.4,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dd, J = 2.7, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.69(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.55 (dq, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.21$ (m, 2H), $7.27-7.34$ (m, 3H), $7.35-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=37.6,53.7(\mathrm{q}, J=25.4 \mathrm{~Hz}), 55.4$, $66.1,72.0(\mathrm{q}, J=1.6 \mathrm{~Hz}), 123.3(\mathrm{q}, J=281.3 \mathrm{~Hz}), 126.4,127.5,128.7,128.8,129.0,129.3$, 134.6, 139.7, 153.1, 166.3 (q, $J=2.5 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS $\left(\mathrm{FAB}^{+}\right)$Found: m / z 394.1267, Calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}: 394.1266$.
(4S)-Benzyl-3-[3-hydroxy-3-(4-methylphenyl)-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1b)

syn-(2R,3S) : IR (KBr) 3452, 1780, 1684, 1163, 1113, 1001, $754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.84(\mathrm{dd}, J=9.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.45$ (br s, 1H), $2.59(\mathrm{dd}, J=3.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd} J=2.6,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.57(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ $-5.65(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.38(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=21.1,36.6,53.1(\mathrm{q}$, $J=25.4 \mathrm{~Hz}), 54.8,65.6,72.6(\mathrm{q}, J=1.5 \mathrm{~Hz}), 124.1(\mathrm{q}, J=282.1 \mathrm{~Hz}), 127.4,127.5,128.9$, 129.1, 129.4, 134.7, 136.2, 139.1, 152.6, $165.0(\mathrm{q}, J=3.3 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.6(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3F); HRMS (FAB ${ }^{+}$) Found: m / z 407.1346, Calcd for (M+) $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{4}: 407.1344$.

anti-(2S,3S) : m.p. $42-44{ }^{\circ} \mathrm{C}$; IR (KBr) 3445, 2924, 1786, 1456, 1393, 1254, 1111, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=2.35(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.79(\mathrm{dd}, J=9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ $-4.71(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dq}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.125.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta=21.1,37.6$, $52.8(\mathrm{q}, J=25.2 \mathrm{~Hz}), 55.4,66.1,72.0,123.4(\mathrm{q}, J=281.1 \mathrm{~Hz}), 126.4,127.4,129.0,129.4,129.4$, 134.7, 136.8, 138.7, 153.2, $166.4(\mathrm{q}, ~ J=2.6 \mathrm{~Hz})$, ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS (FAB^{+}) Found: m / z 407.1349, Calcd for (M+) $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{4}: 407.1344$.
(4S)-Benzyl-3-[3-hydroxy-3-(4-methoxyphenyl)-2-(trifluoromethyl)propanoyl]-oxazolidin-2one (1c)

syn-(2R,3S) : IR (KBr) 3449, 2927, 1778, 1682, 1377, 1362, 1250 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.89(\mathrm{dd}, J=10.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=3.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{dd} J=2.7$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd} J=8.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.58(\mathrm{~m}, 1 \mathrm{H}), 5.34$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd} J=9.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.42(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=27.0,36.7,53.2(\mathrm{q}, J=25.5 \mathrm{~Hz}), 54.9,55.3,65.7,72.4(\mathrm{q}, J=1.4 \mathrm{~Hz}), 114.1$, $124.1(\mathrm{q}, J=281.9 \mathrm{~Hz}), 127.4,128.9,121.0,129.1,131.2,134.7,152.6,160.2 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $=-63.7(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS $\left(\mathrm{FAB}^{+}\right)$Found: m / z 423.1294, Calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5}$: 423.1294 .

anti-(2S,3S) : m.p. $114-116^{\circ} \mathrm{C}$; IR (KBr) 3531, 2926, 1782, 1713, $1516,1352,1254,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=2.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.80(\mathrm{dd}, J=9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17$ (dd, $J=2.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.73(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5,52(\mathrm{dq}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.20$ - $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=37.7,52.9(\mathrm{q}, J=25.0 \mathrm{~Hz}), 55.3,55.4$, $66.1,71.8(\mathrm{q}, J=1.5 \mathrm{~Hz}), 114.1,123.4(\mathrm{q}, J=281.6 \mathrm{~Hz}), 127.5,127.8,129.0,129.4,131.8,134.7$, 153.2, $160.0,166.5(\mathrm{q}, J=2.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{~F}) ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$ Found: m / z 423.1302, Calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5}: 423.1294$.
(4S)-Benzyl-3-[3-(4-chloro-phenyl)-3-hydroxy-2-(trifluoromethyl)propanoyl]-oxazolidin-2one (1d)

syn-(2R,3S) : IR (KBr) 3443, 1778, 1682, 1194, 1165, 822, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=2.79(\mathrm{dd}, J=9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28$ (dd, $J=3.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12 (dd $J=8.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dd $J=2.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.73(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.49$ - $5.56(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=21.1,36.6,53.1(\mathrm{q}, J=25.4 \mathrm{~Hz}), 37.5,52.7(\mathrm{q}, J=25.3 \mathrm{~Hz}), 66.1,71.3(\mathrm{q}, J=1.3 \mathrm{~Hz})$, 123.2 ($\mathrm{q}, ~ J=281.1 \mathrm{~Hz}$), 127.5, 128.0, 128.3, 128.9, 129.0, 129.3, 134.6 ($\mathrm{q}, ~ J=13.5 \mathrm{~Hz}$), 138.3, 153.12, $166.1(\mathrm{q}, J=2.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.84.10 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CFCl}_{3}\right) \delta=-63.6(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS (FAB^{+}) Found: $m / z 428.0880$, Calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NO}_{4}: 428.0876$.

anti-(2S,3S) : IR (neat) 3468, 2924, 1784, 1391, 1352, 1252, 1211, $1169,1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=2.78(\mathrm{dd}, J=9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.29(\mathrm{dd}, J=3.4,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}$, $J=3.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.71(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5,52$ (dq, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=37.6,52.7(\mathrm{q}, J=25.4 \mathrm{~Hz}), 55.4,66.2,71.4(\mathrm{q}, J=1.5 \mathrm{~Hz})$, $123.2(\mathrm{q}, J=280.9 \mathrm{~Hz}), 127.5,127.9,129.0,129.0,139.3,134.5,134.7,138.3,153.2,166.2(\mathrm{q}, J=$ $2.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.7(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS (FAB ${ }^{+}$) Found: $m / z 427.0804$,

Calcd for (M+) $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{NO}_{4}: 427.0798$.
(4S)-Benzyl-3-[3-(4-fluoro-phenyl)-3-hydroxy-2-(trifluoromethyl)propanoyl]-oxazolidin-2-one (1e)

syn-(2R,3S) : IR (KBr) 3485, 1784, 1607, 1393, 1227, $1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.95(\mathrm{dd}, J=10.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.68(\mathrm{dd}, J=3.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=1.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}$, $J=0.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.58(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (dq, $J=0.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=36.8,53.2(\mathrm{q}, J=25.4 \mathrm{~Hz}), 55.0,65.8,72.0(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.8$ $\mathrm{Hz}), 124.0(\mathrm{q}, J=281.8 \mathrm{~Hz}), 127.5,129.0,129.1,129.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 134.5,135.0(\mathrm{~d}, J=2.6$ $\mathrm{Hz}), 152.6,163.0(\mathrm{~d}, J=248.6 \mathrm{~Hz}), 165.0(\mathrm{q}, J=3.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.5(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 3 \mathrm{~F}$), -112.3 - -112.8 (m, 1F); HRMS (FAB ${ }^{+}$) Found: m / z 412.1175, Calcd for (M+H) $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{NO}_{4}$: 412.1172.

(4S)-Benzyl-3-[3-hydroxy-2-(trifluoromethyl)hexanoyl]-oxazolidin-2-one (1f)

$\boldsymbol{s y n} \boldsymbol{n}(\mathbf{2 R}, \mathbf{3 S}): \mathrm{IR}$ (neat) $3512,2963,1782,1705,1388,1213 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=0.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.69(\mathrm{~m}, 3 \mathrm{H})$, $2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=9.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=3.3,13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20-4.30(\mathrm{~m}, 3 \mathrm{H}), 4.75-4.80(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.08(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.40(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=13.7,18.8,36.5,37.6,51.9(\mathrm{q}, J=24.6 \mathrm{~Hz}), 55.5$, 66.3, 69.7, 124.2 (q, $J=281.7 \mathrm{~Hz}$), 127.5, 129.0, 129.3, 134.6, 153.2, $166.0(\mathrm{q}, J=3.3 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-62.5(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS (FAB^{+}) Found: $m / z 360.1430$, Calcd for (M+H) $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4}: 360.1422$.

anti-(2S,3S) : IR (neat) 3479, 2964, 1784, 1709, 1391, 1254, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.47(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.78 (dd, $J=9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $\mathrm{J}=3.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=$ $3.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.81(\mathrm{~m}, 1 \mathrm{H}), 5.104(\mathrm{dq}, J=8.1$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=13.6,18.2,37.3,37.6,51.9(\mathrm{q}, J=25.3 \mathrm{~Hz}), 55.4,66.2,69.4,123.8(\mathrm{q}, J=281.1$ $\mathrm{Hz}), 127.5,129.0,129.3,134.7,153.4,166.9(\mathrm{q}, J=3.1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=-64.0(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS (FAB^{+}) Found: $m / z 360.1424$, Calcd for (M+H) $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4}: 360.1422$.

syn-(2R,3S) : IR (KBr) 3464, 2970, 2343, 1757, 1705, 1394, $1213 \mathrm{~cm}^{-1} ; \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.03(\mathrm{dd}, J=6.7,10.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.77-1.84(\mathrm{~m}, 1 \mathrm{H}), 2.16$ (br s, 1H), 2.75 (dd, $J=9.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (dd, $J=3.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ $-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.81(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.23(\mathrm{~m}, 5 \mathrm{H})$, $7.21-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=16.7,19.6,31.4,37.8,49.6(\mathrm{q}, J=$ $24.2 \mathrm{~Hz}), 55.3,66.3,74.6,124.4(\mathrm{q}, J=281.9 \mathrm{~Hz}), 127.6,129.1,129.3,134.6,152.8,166.4(\mathrm{q}, J=$ $3.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-62.2(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS (FAB ${ }^{+}$) Found: m / z 360.1430, Calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4}: 360.1422$.

anti-(2S,3S) : IR (neat) 3503, 2970, 1786, 1709, 1391, 1352, 1213, $1094 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=9.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, \mathrm{J}=3.4$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=4.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.80$ $(\mathrm{m}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=15.1,19.6,31.0,37.5,49.4(\mathrm{q}, J=25.5 \mathrm{~Hz}), 55.4,66.2,74.2,123.8(\mathrm{q}$, $J=281.2 \mathrm{~Hz}), 127.5,129.0,129.3,134.7,153.3,167.3(\mathrm{q}, J=3.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-64.1$ (d, $J=8.8 \mathrm{~Hz}, 3 \mathrm{~F}$); HRMS (FAB^{+}) Found: m / z 360.1424, Calcd for (M+H) $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4}: 360.1422$.
(4S)-Benzyl-3-[3-hydroxy-2-(trifluoromethyl)hex-4-enoyl]-oxazolidin-2-one (1h)

$\boldsymbol{s y n} \boldsymbol{r}(\mathbf{2 R}, \mathbf{3 S}):$ IR (neat) $3501,3030,1778,1705,1355,1256,1163 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.72(\mathrm{dd}, J=1.4,6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58(\mathrm{dd}$, $J=10.2,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=3.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.77(\mathrm{~m}$, $2 \mathrm{H}), 5.15-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=8.1,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{qd}, J=$ $15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=17.7,37.5,52.1(\mathrm{q}, J=25.1 \mathrm{~Hz}), 55.5,66.0,71.4,123.9(\mathrm{q}, J=281.3 \mathrm{~Hz}), 127.5$, 128.7, 129.1, 129.3, 131.6, 134.8, 153.1, $165.2(\mathrm{q}, J=2.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-62.2(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS (FAB^{+}) Found: m / z 358.1270, Calcd for ($\mathrm{M}+\mathrm{H}$) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}: 358.1266$.

anti-(2S,3S) : IR (neat) 3468, 3032, 1786, 1707, 1391, 1354, 1167, 1142 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.74(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.79$ (dd, $J=9.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=3.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.24(\mathrm{~m}$, $2 \mathrm{H}), 4.68(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.79(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dq}, J=8.2$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=7.5,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dq}, J=6.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=17.6,37.6,52.1(\mathrm{q}, J=25.0 \mathrm{~Hz})$, $55.4,66.1,70.7,123.4(\mathrm{q}, J=280.7 \mathrm{~Hz}), 127.4,129.0,129.4,129.4,130.8,134.7,153.3,166.4 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-63.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{~F})$; HRMS $\left(\mathrm{FAB}^{+}\right)$Found: $m / z 357.1272$, Calcd for (M+H) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}: 358.1266$.
(4S)-Benzyl-3-(3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (3)

(4S)-Benzyl-3-(2-bromo-3,3,3-trifluoro-propanoyl)-oxazolidin-2-one (4)

syn-(2R,3S) (1a)

anti-(2S,3S) (1a)

syn-(2R,3S) (1b)

anti-(2S,3S) (1b)

$S 15$
syn-(2R,3S) (1c)

COCOCOC

syn-(2R,3S) (1h)

IV. ORTEP drawing
non-Evans syn (1a)

Evans anti (1c)

