The enantioselective total synthesis of (-)-dactylolide

Ignace Louis, Natasha L. Hungerford, Edward J. Humphries and Malcolm D. McLeod*

School of Chemistry, F11, The University of Sydney, NSW 2006, Australia.
m.mcleod@chem.usyd.edu.au

Experimental Procedures and Spectroscopic Data	S1
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra	S20

Experimental Procedures and Spectroscopic Data:

1. Optical rotations α were measured using an Optical Activity PoIAAr 2001 Automatic polarimeter with the sodium D line (589 nm) at ambient temperature. Optical rotations were recorded in the indicated solvent and run in a 0.25 dm cell. Specific rotations $[\alpha]_{\mathrm{D}}$ are expressed in units of 10^{-1} deg.cm g^{-1} and concentrations (c) are reported as $c \mathrm{~g}$ solute/ 100 cm^{3} solution.
2. Analytical thin layer chromatography was performed using aluminium backed precoated silica gel plates (Merck Kieselgel 60 F254). Compounds were visualized by ultraviolet fluorescence or by staining with acidified ethanolic solution of anisaldehyde, alkaline potassium permanganate solution or phosphomolybdic acid and ceric sulfate in sulfuric acid.
3. $\quad{ }^{1} \mathrm{H}$ Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker AC200 (200.1 MHz), Bruker AVANCE DPX200 (200 MHz), Bruker AVANCE DPX300 (300.1 MHz), or Bruker DPX400 (400.1 MHz) spectrometer at 300 K . Spectra were recorded in deuteriochloroform unless otherwise stated. Data is expressed as parts per million (ppm) downfield shift from tetramethylsilane with either tetramethylsilane or chloroform as an internal standard and is reported as chemical shift (δ), relative integral, multiplicity ($\mathrm{s}=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet with descriptors $b r=$ broad , coupling constant (JHz) and assignment. All multiplicities and coupling constants are apparent.
4. $\quad{ }^{13} \mathrm{C}$ Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker AC200 (50.3 MHz), Bruker AVANCE DPX200 (50 MHz), Bruker AVANCE DPX300 (75.5 MHz), or Bruker DPX400 (100.4 MHz) spectrometer at 300 K . Spectra were recorded in deuteriochloroform unless otherwise stated. The chemical shifts are reported relative to chloroform ($\delta 77.3$) and are expressed as chemical shift (δ), while numbers in brackets following the chemical shift refer to the number of carbon environments contributing to the
signal. FID's were manipulated prior to Fourier transformation applying an exponential line broadening function to improve the signal to noise ratio.
5. Infrared absorption spectra were obtained using a Perkin Elmer 1600 Fourier Transform Infrared spectrometer as a thin film between 0.5 cm sodium chloride plates. Absorption maxima are expressed in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.
6. Low resolution electron impact mass spectra were recorded on either an AEI model Kratos MS902 double focusing mass spectrometer with an accelerating voltage of 8000 V and using electron impact (EI) ionisation mode at 70 eV , or a Finnegan PolarisQ ion trap mass spectrometer using electron impact ionisation mode at 40 or 70 eV . High resolution electron impact mass spectra were recorded on a VC Autospec mass spectrometer operating at 70 eV (Australian National University, Canberra). Low resolution electrospray mass spectra were recorded on a Finnegan LCQ mass spectrometer. High resolution electrospray mass spectra were recorded on a Bruker ApexII Fourier Transform Ion CyclotronResonance mass spectrometer with a 7.0 T magnet, fitted with an off-axis Analytica electrospray source (University of New South Wales, Sydney). Major fragments are quoted as \times (\% relative to base peak), where x is the mass to charge ratio. High resolution mass spectra were recorded at a nominal resolution of 8000 to 9000 a.u.
7. All compounds were named using the CS ChemDraw® Ultra version 9.0 software. Carbon numbers used in assignment of spectra and in the discussion correspond to the numbers on the dactylolide macrocycle.
(2S,6S)-2-((tert-Butyldimethylsilyloxy)methyl)-6-(2-(4-methoxybenzyloxy)ethyl)dihydro-2H-pyran-4(3H)-one 9^{i}

Diene 6 ($3.26 \mathrm{~g}, 9.35 \mathrm{mmol}$) was added via cannula to a stirred pre-cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of aldehyde $7^{\mathrm{ii}}(2.3 \mathrm{~mL}, 12.2 \mathrm{mmol}),(1 \mathrm{~S}, 2 R)$ chromium catalyst $8(0.32 \mathrm{~g}, 0.65 \mathrm{mmol})$ and $4 \AA$ molecular sieves ($1.2 \mathrm{~g}, 0.1 \mathrm{~g} / \mathrm{mmol}$ of aldehyde) under argon. The mixture was allowed to warm to room temperature and stirred for 12 h . The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and dissolved in tetrahydrofuran (45 mL). Acetic acid ($0.65 \mathrm{~mL}, 11.2 \mathrm{mmol}$) and tetra
butylammonium fluoride ($9.4 \mathrm{~mL}, 9.35 \mathrm{mmol}, 1.0 \mathrm{M}$ in tetrahydrofuran) were then added and the reaction stirred for 15 mins. The solution was then concentrated in vacuo. Flash chromatography (30% ethyl acetate/hexane) afforded the pyranone 9 as a single diastereomer ($3.13 \mathrm{~g}, 82 \%$).
The product was isolated in 99\% ee (Chiralcel AD-H, 5\% isopropyl alcohol/hexane: ret. time 10.8 (major -9), 11.6 (minor - ent-9) min)) $[\alpha]_{D}{ }^{20}-14$ (c 2.8, CHCl_{3}) (lit. ${ }^{\mathrm{i}}[\alpha]_{D}{ }^{20}-16.4$ (c 2.5, $\left.\mathrm{CHCl}_{3}\right)$); $\mathrm{R}_{\mathrm{f}} 0.45$ (30% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6$ $\mathrm{Hz}, 2 \times \mathrm{ArH}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 4.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 3.51$3.78\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}, \mathrm{HCOCH}\right), 2.20-2.40\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}=\mathrm{OCH}_{2}\right), 1.72-1.98(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.7, 159.4, 130.6, 129.4, 114.0, 77.5, 77.4, 74.2, 72.9, 66.0, 55.4, 48.0, 44.3, 36.6, 26.0, 18.5, -5.1 (2C); IR (thin film): 1734 (s, C=O) $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 463$ ($[\mathrm{M}+\mathrm{Na}+\mathrm{MeOH}]^{+}, 100 \%$); HRMS (ES+) calc. for [$\left.\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}\right]^{+} 431.2226$, found 431.2238.
(2S,6S)-2-((tert-Butyldimethylsilyloxy)methyl)-6-(2-hydroxyethyl)dihydro-2H-pyran-4(3H)-one 10

To a $0{ }^{\circ} \mathrm{C}$ stirred solution of pyranone $9(3.0 \mathrm{~g}, 7.34 \mathrm{mmol})$ in dichloromethane (130 mL) and pH 7 buffer (13 mL) was added anhydrous sodium carbonate ($0.93 \mathrm{~g}, 8.8 \mathrm{mmol}$), and DDQ $(2.5 \mathrm{~g}, 11.0 \mathrm{mmol})$ and the resultant dark red solution stirred at room temperature for 2 h . The reaction mixture was then decanted, filtered through a plug of celite and concentrated in vacuo. Flash chromatography (50\% ethyl acetate/hexane) afforded the alcohol 10 as a light red oil ($1.74 \mathrm{~g}, 82 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}-8.0$ (c 1.5, CHCl_{3}); $\mathrm{R}_{\mathrm{f}} 0.21$ (50% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.67-3.92 (4H, m, HCOCH, TBSOCH 2), $3.77\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.36-2.42(4 \mathrm{H}, \mathrm{m}$, $\left.(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}\right), 2.18(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.9,78.0,77.2,66.1,61.6,48.1,44.2,38.4,26.2$, 18.6, -5.0 (2C); IR (thin film): 1734 (s, C=O) $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (ES+) 599 ([2M+Na] ${ }^{+}, 100 \%$); HRMS (ES+) calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}\right]^{+}$311.1650, found 311.1643.
(2S,6S)-2-(6-((tert-Butyldimethylsilyloxy)methyl)-4-oxotetrahydro-2H-pyran-2-yl)acetaldehyde

Triethylamine ($13.7 \mathrm{~mL}, 98.3 \mathrm{mmol}$) was added to a stirred solution of alcohol $\mathbf{1 0}(5.67 \mathrm{~g}, 19.7$ $\mathrm{mmol})$ in dichloromethane (35 mL) and cooled to $0^{\circ} \mathrm{C}$. In a separate flask, sulfur trioxide pyridine complex ($9.4 \mathrm{~g}, 59.0 \mathrm{mmol}$) was dissolved in dimethylsulfoxide (35 mL) and added via cannula to the cold solution of the alcohol and triethylamine in dichloromethane. The mixture was allowed to warm up to room temperature and stirred for 3 h . The reaction was diluted with dichloromethane (50 mL) and quenched with water (100 mL). The layers were separated and the aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine (150 mL), dried over sodium sulfate and concentrated in vacuo. Flash chromatography (30% ethyl acetate/hexane) of the crude residue afforded the titled aldehyde as a light yellow oil ($4.43 \mathrm{~g}, 79 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}=-8.4\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{f}}=0.22$ (30% ethyl acetate/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5,2.4 \mathrm{~Hz}, \mathrm{CHO}), 4.16(1 \mathrm{H}, \mathrm{m}, \mathrm{HCOCH}), 3.65-3.78\left(3 \mathrm{H}, \mathrm{m}, \mathrm{TBSOCH}_{2}\right.$, $\mathrm{HCOCH}), 2.78$ (1 H , ddd, $J=2.4,7.9,16.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHO}$), 2.59 (1 H , ddd, $\mathrm{J}=1.5,4.6,16.6$ $\mathrm{Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHO}$), 2.18-2.48 (4H, m, $2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.3,199.7,77.9,72.3,65.9,49.7,47.4,44.1,26.2$, 18.6, -5.0 (2C); IR (thin film): 1718 (s, C=O), 1732 (s, CHO) $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (ES+) 373 $\left([\mathrm{M}+\mathrm{Na}+2 \mathrm{MeOH}]^{+}, 100 \%\right)$; HRMS (ES+) calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiNa}\right]^{+}$309.1494, found 309.1491.
(2S,6S)-((6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)methoxy)(tert-butyl)dimethylsilane

To a $0{ }^{\circ} \mathrm{C}$ stirred solution of methyltriphenylphosphonium bromide ($8.2 \mathrm{~g}, 22.9 \mathrm{mmol}$) in tetrahydrofuran (30 mL) under argon was added n-butyllithium (1.61 M in hexanes, 13.5 mL , $21.8 \mathrm{mmol})$. The resultant yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 20 min after which ($2 \mathrm{~S}, 6 \mathrm{~S}$)-2-(6-((tert-Butyldimethylsilyloxy)methyl)-4-oxotetrahydro-2H-pyran-2-yl)acetaldehyde (1.56 g, 5.45 mmol) in tetrahydrofuran (24 mL) was added via cannula and the resultant orange mixture allowed to warm up to room temperature. The reaction was then heated at reflux for

24 h . On completion the reaction was diluted with diethyl ether (100 mL) and quenched with saturated ammonium chloride (70 mL). The layers were separated and the aqueous phase was extracted with ether ($3 \times 70 \mathrm{~mL}$). The combined organic extracts were washed with brine (150 mL), dried over sodium sulfate and concentrated in vacuo. Flash chromatography (5% ethyl acetate/hexane) of the crude residue afforded the titled diene as a clear oil (1.25 g, 81\%).
$[\alpha]_{\mathrm{D}}{ }^{20}=-18\left(c 2.1, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{f}}=0.31$ (5% ethyl acetate/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.00-5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 5.3, $10.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OTBS}$), $3.56\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5,10.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OTBS}\right.$), 3.28-3.40(2H, m, $\mathrm{HCOCH}), 2.12-2.43\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 1.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 144.9, 135.1, 117.1, 109.0, 79.3, 78.2, 67.0, 41.0, 40.7, 37.7, 26.3, 18.7, -4.8 (2C); IR (thin film): 1651 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$) $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (ES+) 305 ([M+Na] ${ }^{+}, 100 \%$); HRMS (ES +) calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+} 305.1909$, found 305.1902.
(2S,6S)-(6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)methanol 11

To a $0{ }^{\circ} \mathrm{C}$ stirred solution of (2S,6S)-((6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)methoxy)(tert-butyl)dimethylsilane ($1.25 \mathrm{~g}, 4.42 \mathrm{mmol}$) in tetrahydrofuran (45 mL) was added tetra-n-butylammonium fluoride (1.0 M in tetrahydrofuran, $5.7 \mathrm{~mL}, 5.75 \mathrm{mmol}$) and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . On completion, the reaction was diluted with diethyl ether (50 mL) and concentrated in vacuo. Flash chromatography (25% ethyl acetate/hexane) of the crude residue afforded the alcohol 11 as a clear oil ($0.67 \mathrm{~g}, 90 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}-10.8$ (c 5.2, CHCl_{3}); $\mathrm{R}_{\mathrm{f}} 0.23$ (25\% ethyl acetate/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.78-5.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.05-5.12 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.75\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.65$ (1 H , dd, J 3.2, $11.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}$), $3.55\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.9,11.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right), 3.47-3.35(2 \mathrm{H}$, $\mathrm{m}, \mathrm{HCOCH}), 2.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.12(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 2.3,13.2$ $\mathrm{Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}$), $1.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 1.82\left(1 \mathrm{H}\right.$, brs, OH). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ 144.1, 134.7, 117.4, 109.6, 78.9, 78.1, 66.3, 40.9, 40.6, 36.6; IR (thin film): 1653 (s,
$\mathrm{C}=\mathrm{C}$) 3420 (brs, OH) $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}+\right.$) 186 ($\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%$); HRMS (ES +) calc. for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NaO}_{2}\right]^{+}$191.1043, found 191.1042.
(2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-carbaldehyde

Triethylamine ($2.8 \mathrm{~mL}, 20.1 \mathrm{mmol}$) was added to a stirred solution of alcohol 11 ($668 \mathrm{mg}, 3.97$ mmol) and $4 \AA$ molecular sieves ($100 \mathrm{mg} / \mathrm{mmol}$ of alcohol) in dichloromethane (7.5 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. In a separate flask, sulfur trioxide pyridine complex ($1.9 \mathrm{~g}, 11.9 \mathrm{mmol}$) was dissolved in dimethylsulfoxide (7.5 mL) and added via cannula to the cold solution of the alcohol and triethylamine in dichloromethane. The mixture was warmed up to room temperature and stirred for 3 h . Once t.l.c showed total consumption of starting material, the reaction was diluted with dichloromethane (50 mL) and concentrated in vacuo. Flash chromatography (30% diethyl ether/hexane) of the crude residue afforded the titled aldehyde as a light yellow oil ($574 \mathrm{mg}, 87 \%$) which was carried on immediately in the following reaction. $\mathrm{R}_{\mathrm{f}}=0.20$ (30% diethyl ether/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.6 \mathrm{~Hz}$, CHO), $5.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right) 3.76(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ $=0.5,2.9,12.1 \mathrm{~Hz}, \mathrm{HCOCH}) 3.41(1 \mathrm{H}, \mathrm{m}, \mathrm{HCOCH}), 2.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.29(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$), $2.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.7, 142.3, 134.4, 117.8, 110.9, 82.4, 78.6, 40.8, 40.3, 35.3.
(S)-1-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-2-methylprop-2-en-1-ol and (R)-1-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-2-methylprop-2-en-1-ol 12

A flask containing freshly distilled 2-bromopropene ($3.4 \mathrm{~mL}, 38.3 \mathrm{mmol}$) in diethyl ether (40 mL), maintained at $-78{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere, was charged with tert-butyllithium (45.6 mL of a 1.7 M solution in pentane, 77.5 mmol) and the resulting mixture stirred at $-78^{\circ} \mathrm{C}$ for 15 min after which $\mathrm{MgBr}_{2}{ }^{\bullet} \mathrm{Et}_{2} \mathrm{O}$ ($10.1 \mathrm{~mL}, 10.1 \mathrm{mmol}, 1.0 \mathrm{M}$ in ether/benzene) was added
and the mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for a further 15 min. (2S,6S)-6-Allyl-4-methylidenetetrahydro- 2 H -pyran-2-carbaldehyde ($1.29 \mathrm{~g}, 7.75 \mathrm{mmol}$) in diethyl ether (40 mL) was then added via cannula and the reaction mixture stirred for 15 min at $-78^{\circ} \mathrm{C}$ before being warmed up to room temperature, then quenched with water $(70 \mathrm{~mL})$ and extracted with diethyl ether ($3 \times 70 \mathrm{~mL}$). The combined organic extracts were washed with brine $(50 \mathrm{~mL})$, dried over sodium sulfate and concentrated in vacuo. Flash chromatography (10% ethyl acetate/hexane) of the crude residue afforded an inseparable diastereomeric mixture of alcohols 12 ($1.015 \mathrm{~g}, 63 \%$).
The product was isolated in a 86:14 / S:R diasteromeric ratio as determined by ${ }^{1} \mathrm{H}$ NMR. $[\alpha]_{D}{ }^{20}+29$ (c 2.2, CHCl_{3}); $\mathrm{R}_{\mathrm{f}} 0.23$ (10\% ethyl acetate/hexane); IR (thin film): 1655 (C=C), 3470 (brs, OH) cm ${ }^{-1}$; Major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81\left(1 \mathrm{H}, \mathrm{m} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), $4.95-5.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5 \mathrm{~Hz}$, $\mathrm{CHOH}), 3.24-3.46(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{O}-\mathrm{CH}), 2.75(1 \mathrm{H}$, brs, OH$), 2.20-2.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.74(3 \mathrm{H}$, d, J $1.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,143.6,134.6,117.4,112.3$, 109.8, 79.8, 79.4, 78.1, 40.8, 40.4, 36.9, 17.9; Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.81\left(1 \mathrm{H}, \mathrm{m} \mathrm{CH} 2 \mathrm{CH}=\mathrm{CH}_{2}\right), 4.95-5.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.73(2 \mathrm{H}$, $\mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$), $4.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.7 \mathrm{~Hz}, \mathrm{CHOH}), 3.24-3.46(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{O}-\mathrm{CH}), 2.75(1 \mathrm{H}$, brs, OH$)$, 2.20-2.40 (4H, m, CH $\left.\mathrm{CH}_{2}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.92(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.74\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right)$.
(S)-1-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-2-methylallyl 2-(4methoxybenzyloxy)acetate 14.

To a $0{ }^{\circ} \mathrm{C}$ stirred solution of a mixture of diastereomeric alcohol 12 ($370 \mathrm{mg}, 1.78 \mathrm{mmol}$), acid $13^{\text {iii }}$ ($870 \mathrm{mg}, 4.44 \mathrm{mmol}$) and 4-dimethylaminopyridine ($477 \mathrm{mg}, 3.91 \mathrm{mmol}$) in dichloromethane (18 mL) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($920 \mathrm{mg}, 4.80 \mathrm{mmol}$) and the mixture warmed to room temperature and stirred for 30 min after which it was left to stir overnight at $45^{\circ} \mathrm{C}$. The reaction was then diluted with
dichloromethane (50 mL) and quenched with water (50 mL). The layers were separated and the aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The organic extracts were combined, dried over sodium sulfate and concentrated in vacuo. Flash chromatography (10\% ethyl acetate/hexane) of the crude residue followed by preparative HPLC (Zorbax Sil 10% ethyl acetate/hexane: ret. time 17.4 (major - 14) 20.1 (minor - C16-epi-14) min)) afforded diasteromerically pure ester 14 ($520 \mathrm{mg}, 76 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}-16$ (c 2.9, CHCl_{3}); $\mathrm{R}_{\mathrm{f}} 0.13$ (10% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 5.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{COOCH}\right), 4.99-5.07\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.74(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right), 4.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PMBOCH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.46\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 2.1,7.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 3.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 2.30(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}$), 2.19-2.22 (2H, m, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}, \quad \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right), 2.08$ (1H, m, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right)$, $1.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right), 1.76\left(3 \mathrm{H}, \mathrm{s} \mathrm{CH} \mathrm{C}_{3} \mathrm{C}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,159.4,143.6,140.2,134.6,129.7,129.4,116.8,115.6,113.8,109.5$, $79.4,78.1,77.9,72.8,66.9,55.3,40.4,40.0,36.4,18.9$; IR (thin film): 1655 (s, C=C), 1751 (s, COOMe) $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 409\left(\left[\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)\right.$; HRMS (ES+) calc. for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NaO}_{5}\right]^{+}$ 409.1986, found 409.1989.
(R,E)-5-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-2-(4-methoxybenzyloxy)-4-methylpent-4-enoic acid 15

15
Ester 14 ($0.544 \mathrm{~g}, 1.41 \mathrm{mmol}$) was dissolved in tetrahydrofuran (24 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ and treated dropwise with lithium hexamethyldisilazide (1.0 M in tetrahydrofuran, $4.20 \mathrm{~mL}, 4.22$ $\mathrm{mmol})$. The mixture was stirred for 45 min after which freshly distilled trimethylsilyl chloride ($0.90 \mathrm{~mL}, 7.16 \mathrm{mmol}$) was added and the mixture left to warm up gradually over 12 h . The reaction was then diluted with dichloromethane $(50 \mathrm{~mL})$ and $\mathrm{HCl}(1.0 \mathrm{M}, 30 \mathrm{~mL})$ was added. The layers were separated and the aqueous phase extracted with dichloromethane (3×30 mL). The organic extracts were combined, dried over sodium sulfate and concentrated in
vacuo. Flash chromatography ($10 \% \mathrm{MeOH} / \mathrm{DCM}$) of the crude residue afforded the acid 15 as a single diastereomer (determined by ${ }^{1} \mathrm{H}$ NMR) ($0.544 \mathrm{~g}, 100 \%$). This was immediately taken on to the next step.
$\mathrm{R}_{\mathrm{f}}=0.27$ (10\% methanol/dichloromethane). ${ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4$ $\mathrm{Hz}, 2 \times \mathrm{ArH}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 6.80(1 \mathrm{H}, \mathrm{brs}, \mathrm{COOH}), 5.82(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right), 5.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.74(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,11.3 \mathrm{~Hz}, \mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.4,11.3 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 3.95-4.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PMBOCHC}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.27(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 1.87-2.51\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{H}_{2} \mathrm{CC}=\mathrm{C}\right)$, $1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}=\mathrm{C}\right)$.
(R,E)-5-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-2-(4-methoxybenzyloxy)-4-methylpent-4-en-1-ol 16.

Acid 15 ($72 \mathrm{mg}, 0.186 \mathrm{mmol}$) was dissolved in anhydrous diethyl ether (2 mL) and cooled to 0 ${ }^{\circ} \mathrm{C}$. Lithium aluminium hydride ($15.5 \mathrm{mg}, 0.41 \mathrm{mmol}$) was then added and grey mixture stirred for 3 h . The reaction was then quenched with $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and extracted into diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine $(50 \mathrm{~mL})$, dried over sodium sulfate and concentrated in vacuo. Flash chromatography (50% ethyl acetate/hexane) of the crude residue afforded the alcohol 16 as a pale yellow oil (55 mg , 79\%).
$[\alpha]_{D}{ }^{20}-28.3$ (c 2.3, CHCl_{3}); $\mathrm{R}_{\mathrm{f}} 0.46$ (50% ethyl acetate/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 5.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right), 5.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.51(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{2} \mathrm{O}\right), 3.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.51(1 \mathrm{H}, \mathrm{m}$, PMBOCHC), $3.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 2.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.24(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right), 2.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right), 2.04\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $1.93\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $1.88(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.3,144.5,135.6,134.6,130.4,129.5,128.6,116.9,113.9$,
108.7, 77.8, 77.3, 76.7, 75.5, 71.4, 64.5, 55.3, 41.4, 40.7, 39.9, 17.4; IR (thin film): 1651 (s, $\mathrm{C}=\mathrm{C}$), 3458 (brs, OH) $\mathrm{cm}^{-1} . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}+\right.$) 395 ($[\mathrm{M}+\mathrm{Na}]^{+}, 100 \%$); HRMS (ES+) calc. for

((R,E)-5-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-2-(4-methoxybenzyloxy)-4-methylpent-4-enyloxy)(tert-butyl)dimethylsilane

To a $0{ }^{\circ} \mathrm{C}$ stirred solution of alcohol $16(326 \mathrm{mg}, 0.876 \mathrm{mmol})$ in dichloromethane (1.0 mL) was added triethylamine ($0.2 \mathrm{~mL}, 1.49 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride (170 mg , $1.13 \mathrm{mmol})$. The mixture was warmed up to room temperature and stirred for 12 h . The reaction was then diluted with dichloromethane (3 mL) and concentrated in vacuo. Flash chromatography (25% ethyl acetate/hexane) of the crude residue afforded the titled compound as a clear oil ($379 \mathrm{mg}, 89 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}=-5.4$ (c 2.2, CHCl_{3}); $\mathrm{R}_{\mathrm{f}}=0.63$ (25\% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{xArH}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 5.87(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right), 5.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.76(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}, \mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}, \mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.02(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 3.57-3.65(2 \mathrm{H}, \mathrm{m}, \mathrm{PMBOCHC}$, $\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $3.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right)$, $2.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 2.16-2.29 (5H, m, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}, \quad \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}, \quad \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}\right), \quad 2.07 \quad(1 \mathrm{H}, \quad \mathrm{t}, \quad \mathrm{J}=11.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.96\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}\right), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 159.6,145.3,136.8,135.3,131.7,129.8,128.8,117.4,114.2,109.1,78.9,78.3,76.2,72.5$, 66.1, 55.8, 42.7, 42.4, 41.4, 40.6, 30.3, 26.5, 18.1, -4.7 (2C); IR (thin film): 1612, 1651 (s, $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 509\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) ; \mathrm{HRMS}(\mathrm{ES}+)$ calc. for $\left[\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{SiNa}\right]^{+}$ 509.3059, found 509.3046.
(R, E)-5-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-1-(tert-butyldimethylsilyloxy)-4-methylpent-4-en-2-ol 4.

To a $0{ }^{\circ} \mathrm{C}$ stirred solution of ((R,E)-5-((2S,6S)-6-Allyl-4-methylidenetetrahydro-2H-pyran-2-yl)-2-(4-methoxybenzyloxy)-4-methylpent-4-enyloxy)(tert-butyl)dimethylsilane (307 mg, 0.63 $\mathrm{mmol})$ in dichloromethane $(7.6 \mathrm{~mL})$ and pH 7 buffer $(0.4 \mathrm{~mL})$ was added DDQ ($186 \mathrm{mg}, 0.82$ mmol) and the resultant dark red solution stirred at room temperature for 2 h . The reaction mixture was then decanted, filtered through a plug of celite and concentrated in vacuo. Flash chromatography (10% ethyl acetate/hexane) afforded the alcohol 4 as a pale yellow oil (191 $\mathrm{mg}, 83 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}-16\left(c 0.57, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{f}} 0.23$ (10\% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.31\left(1 \mathrm{H}\right.$, dd, J $\left.1.1,7.8 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right), 5.07(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $4.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right), 3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.61(1 \mathrm{H}$, dd, J 3.8, $\left.9.9 \mathrm{~Hz} \mathrm{OCH} \mathrm{a}_{\mathrm{b}}\right), 3.46\left(1 \mathrm{H}\right.$, dd, J $\left.6.8,10.0 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 3.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} \mathrm{COCH}_{\mathrm{b}}\right)$, 2.27-2.46 (1H, m, C(OH) $\mathrm{HCH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}}$), 2.10-2.25 (6H, m, OH, C(OH) $\left.\mathrm{HCH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}}, 2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, 1.82-2.04 (2H, m, HCOCHCH 2) $1.73\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 144.9, 136.2, 135.1, 128.9, $117.2,109.0,78.1,75.9,70.0,67.3,43.6,41.2,41.1,40.4,26.3,18.7,17.3,-4.9$ (2C); IR (thin film): 1654 (s, C=C), 3458 (brs, OH) cm ${ }^{-1} . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}+\right.$) 389 ($[\mathrm{M}+\mathrm{Na}]^{+}, 100 \%$); HRMS (ES+) calc. for $\left[\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa}\right]^{+}$389.2484, found 389.2499.

4-Methyl-5,6-dihydro-2H-pyran-2-one $19{ }^{\text {iv }}$

19
3-Methylbut-3-enyl acrylate 18^{\vee} ($0.739 \mathrm{~g}, 5.28 \mathrm{mmol}$) was dissolved in 1,2-dichloroethane (40 mL). The solution was degassed and heated to $100^{\circ} \mathrm{C}$. A degassed solution of Grubbs' second generation catalyst $20(0.224 \mathrm{~g}, 0.26 \mathrm{mmol})$ in 1,2-dichloroethane (10.2 mL) was added via syringe pump ($0.5 \mathrm{~mL} / \mathrm{h}$). After 21 h , TLC (1:2, ethyl acetate / hexane) showed complete conversion to a lower R_{f} product. Upon cooling to room temperature, the reaction
mixture was applied directly to a flash chromatography column (1:3 then 3:1, diethyl ether / pentane), which gave lactone 19 ($0.564 \mathrm{~g}, 95 \%$).
$\mathrm{R}_{\mathrm{f}} 0.15$ (33% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}$), 4.34 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}$), $2.35(2 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 6.3 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,157.8,116.6,65.8,29.1,22.9$ IR (thin film): $1720(\mathrm{C}=\mathrm{O}), 1400,1223$, 1151, $1065 \mathrm{~cm}^{-1}$.
(2E,4Z)-Methyl 7-hydroxy-5-methylhepta-2,4-dienoate 22

DibalH (1.0 M in PhMe, $3.24 \mathrm{~mL}, 3.24 \mathrm{mmol}$) was added dropwise to lactone 19 (0.302 g , $2.70 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 90 mins at $-78^{\circ} \mathrm{C}$, TLC (1:2, ethyl acetate / hexane) showed complete conversion to a higher R_{f} product. Sodium potassium tartrate ($1.0 \mathrm{M}, 10 \mathrm{~mL}$) was added and the reaction mixture warmed to room temperature. Additional sodium potassium tartrate ($1.0 \mathrm{M}, 25 \mathrm{~mL}$) was added, and the resultant mixture was extracted with dichloromethane ($4 \times 30 \mathrm{~mL}$). The combined dichloromethane extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give 4-methyl-5,6-dihydro-2H-pyran-2-ol as a solution in toluene ($\sim 3 \mathrm{~mL}$). Additional toluene (45 mL) was added, followed by methyl triphenylphosphoranylidene acetate ($1.172 \mathrm{~g}, 3.51 \mathrm{mmol}$) and the reaction mixture was stirred for 16 h at $100^{\circ} \mathrm{C}$. TLC (1:2, ethyl acetate / hexane) suggested a new product at the same R_{f}. The reaction mixture was cooled to room temperature and applied directly to a flash chromatography column (1:3 then 2:1, diethyl ether / pentane), which enabled separation of the minor (2Z,4Z)- contaminant and afforded (2E,4Z)-methyl 7-hydroxy-5-methylhepta-2,4dienoate 22 ($0.397 \mathrm{~g}, 86 \%$).
$\mathrm{R}_{\mathrm{f}} 0.2$ (33\% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (1 H , dd, J 11.7, 15.2 $\mathrm{Hz}, \mathrm{C} 3-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{br}$ d, J $11.7 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 3.80-3.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}$), $2.57(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.62$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,146.1,140.4,126.2,119.3,60.9,51.4$, 36.0, 24.5; IR (thin film): 3700-3100 (OH), 1713 (C=O), 1635, 1281, $1155 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 171$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS (ES +) calc. for $\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\right]^{+}$193.0835, found 193.0835.
(2E,4Z)-Methyl 5-methyl-7-oxohepta-2,4-dienoate

(2E,4Z)-Methyl 7-hydroxy-5-methylhepta-2,4-dienoate 22 ($0.342 \mathrm{~g}, 2.01 \mathrm{mmol}$) was dissolved in dichloromethane (20 mL) and Dess-Martin periodinane ($1.109 \mathrm{~g}, 2.6 \mathrm{mmol}$) was added in a single portion. After 90 mins, TLC (1:2, ethyl acetate / hexane) suggested complete conversion to a higher R_{f} product. A 1:1 mixture of saturated NaHCO_{3} solution (20 mL) and saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (20 mL) was added and the mixture stirred for 15 mins until homogeneous, before extraction with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with saturated NaCl solution $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resultant residue was adsorbed onto silica from dichloromethane and subjected to flash chromatography (60% diethyl ether / hexane) which gave ($2 E, 4 Z$)-methyl 5-methyl-7-oxohepta-2,4-dienoate ($0.295 \mathrm{~g}, 87 \%$).
$\mathrm{R}_{\mathrm{f}} 0.5$ (1:2, ethyl acetate / hexane); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.8 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H})$, 7.42 (1H, dd, J 11.7, $15.1 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}$), 6.25 (1H, d, J $11.7 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), 5.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.1 \mathrm{~Hz}$, $\mathrm{C} 2-\mathrm{H}) 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.42(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,167.5,139.3,138.9,127.6,120.9,51.6,47.8,25.2$; IR (thin film): 1713 (C=O), 1639, 1435, 1277, $1155 \mathrm{~cm}^{-1} . \mathrm{m} / \mathrm{z}$ (EI+) 169 ($[\mathrm{M}+\mathrm{H}]^{+}, 15 \%$), 151 (30), 125 (55), 107 (25), 81 (40), 79 (100), 77 (45), 39 (50); HRMS (El+) calc. for $\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}\right]^{+}$168.0786, found 168.0783.
(2E,4Z)-Methyl 7-hydroxy-5-methyInona-2,4,8-trienoate 23

To dry ${ }^{\text {vi }}$ cerium(III) chloride ($0.220 \mathrm{~g}, 0.893 \mathrm{mmol}$) in THF (3 mL), at $-78^{\circ} \mathrm{C}$, was added vinylmagnesium bromide ($0.84 \mathrm{M}, 1.06 \mathrm{~mL}, 0.893 \mathrm{mmol}$). After 45 mins at $-78{ }^{\circ} \mathrm{C}$, a solution of (2E,4Z)-methyl 5-methyl-7-oxohepta-2,4-dienoate ($0.100 \mathrm{~g}, 0.595 \mathrm{mmol}$) in THF (3 mL) was added via cannula. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 2 h , when TLC (1:1, ethyl acetate / hexane) suggested very little starting aldehyde ($R_{f} 0.7$) and the formation of a new product ($\mathrm{R}_{\mathrm{f}} 0.65$). Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) was added and the reaction
mixture warmed to room temperature. The reaction mixture was partitioned between diethyl ether (50 mL) and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL). The aqueous mixture was further extracted with diethyl ether ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with saturated NaCl solution $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue obtained was dissolved in dichloromethane and adsorbed onto silica, giving a dry powder which was subjected to flash chromatography (30% ethyl acetate / hexane), to afford ($2 E, 4 Z$)-methyl 7-hydroxy-5-methylnona-2,4,8-trienoate 23 ($0.065 \mathrm{~g}, 56 \%$).
$\mathrm{R}_{\mathrm{f}} 0.3$ (30% ethyl acetate/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.7,15.1$ Hz, C3-H), 6.12 (1H, d, J $11.7 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), 5.89 (1H, ddd, J 17.2, 10.4, $6.0 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}$), 5.79 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.1 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 5.26\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 1.2,17.2 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}_{\mathrm{a}}\right), 5.13(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 1.2,10.4 \mathrm{~Hz}, \mathrm{C} 9-$ H_{b}), 4.34-4.24 (1H, m, C7-H), $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.63\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.2,13.5 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}_{\mathrm{a}}\right), 2.41$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.3,13.5 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}_{\mathrm{b}}$), $1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,145.7,140.5,140.1,126.5,119.4,115.9,71.4,51.4,40.5,25.0$; IR (thin film): 3600-3200 (OH), 1713 (C=O), 1632, 1435, 1281, $1157 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{El}+) 197$ ($[\mathrm{M}+\mathrm{H}]^{+}$, $55 \%), 179$ (100), 147 (25), 125 (35) 119 (20), 107 (23); HRMS (El+) calc. for [$\left.\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3}\right]^{+}$ 197.1172, found 197.1181.
(2E,4Z)-Methyl 7-(tert-butyldimethylsilyloxy)-5-methylnona-2,4,8-trienoate

To a $-78{ }^{\circ} \mathrm{C}$ solution of alcohol $23(102 \mathrm{mg}, 0.52 \mathrm{mmol})$ in dichloromethane (5 ml) was added 2,6-lutidine ($80 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) followed by tert-butyldimethylsilyltrifluoromethanesulfonate $(120 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$. The reaction mixture was stirred for 30 mins at $-78^{\circ} \mathrm{C}$, warmed to room temperature and quenched with water (10 mL). The layers were separated and the aqueous phase extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash chromatography (5\% ethyl acetate / hexane) afforded the title trienoate ($145 \mathrm{mg}, 90 \%$), as a pale yellow oil.
$\mathrm{R}_{\mathrm{f}} 0.7$ (1:3, ethyl acetate / hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.7,15.1$ Hz, C3-H), 6.06 (1H, d, J $11.7 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), 5.81 (1 H , ddd, J 6.0, $10.3,17.1 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}$), 5.76 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.1 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 5.17\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 1.2,17.1 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}_{\mathrm{a}}\right), 5.04(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 1.2,10.3 \mathrm{~Hz}, \mathrm{C} 9-$
H_{b}), 4.29-4.21 (1H, m, C7-H), 3.73 (3H, s, OCH ${ }_{3}$), 2.58 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.6,13.2 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}_{\mathrm{a}}$), 2.35 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.4,13.2 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}_{\mathrm{b}}$), $1.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.01(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,146.3,141.3,141.0$, 126.1, 118.7, 114.2, 72.8, 51.3, 41.7, 25.8, 25.6, 18.1, -4.6, -4.9; IR (thin film): 1720 (C=O), 1637, 1435, 1259, $1153 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 333$ ($\left.[\mathrm{M}+\mathrm{Na}]^{+}, 30 \%\right), 311\left([\mathrm{M}+\mathrm{H}]^{+}, 53\right) ;$ HRMS (ES +) calc. for $\left[\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}\right]^{+}$333.1856, found 333.1858.
(2E,4Z)-7-(tert-Butyldimethylsilyloxy)-5-methylnona-2,4,8-trienoic acid $3^{\text {vii }}$

(2E,4Z)-Methyl 7-(tert-butyldimethylsilyloxy)-5-methylnona-2,4,8-trienoate (0.098 g, 0.32 mmol) was dissolved in $\mathrm{MeOH}(1.6 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaOH}$ solution ($1.0 \mathrm{M}, 0.79 \mathrm{~mL}$, 0.79 mmol) was added dropwise. After 5 mins, the reaction mixture was warmed to room temperature and THF (0.5 mL) was added to aid dissolution. The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 16 h . Additional NaOH solution ($1.0 \mathrm{M}, 0.1 \mathrm{~mL}$) was added and stirring continued for 2 h . TLC (1:3, ethyl acetate/hexane) then suggested complete conversion to a lower R_{f} product. Upon addition of HCl solution ($1.0 \mathrm{M}, 0.9 \mathrm{~mL}$), a precipitate was observed. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted into ethyl acetate ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Addition of toluene effected azeotropic removal of $\mathrm{H}_{2} \mathrm{O}$, giving (2E,4Z)-7-(tert-butyldimethylsilyloxy)-5-methyInona-2,4,8-trienoic acid 3 ($0.087 \mathrm{~g}, 93 \%$).
$\mathrm{R}_{\mathrm{f}} 0.3$ (25% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.7,15.1$ Hz, C3-H), 6.10 (1H, d, J $11.7 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), 5.81 (1 H , ddd, J 6.1, $10.4,16.9 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}$), 5.76 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.1 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 5.18\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 1.4,17.1 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}_{\mathrm{a}}\right), 5.06(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 1.4,10.4 \mathrm{~Hz}, \mathrm{C} 9-$ \mathbf{H}_{b}), 4.32-4.22 (1H, m, C7-H), $2.60\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7,13.2 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}_{\mathrm{a}}\right), 2.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.2,13.2$ $\left.\mathrm{Hz}, \mathrm{C} 6-\mathrm{H}_{\mathrm{b}}\right), 1.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,147.8,143.5,140.9,126.0,118.1,114.3$, 72.9, 41.9, 25.8, 25.7, 18.1, -4.5, -4.9; IR (thin film): 3400-2400 (COOH), 1688 (C=O), 1632, 1283, $1256 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (ES-) 295 ([M-H] ${ }^{-}$, 100\%); HRMS (ES-) calc. for [$\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}^{-}$295.1735, found 295.1736 .
(2E,4Z)-((S,E)-5-((2S,6S)-6-Allyl-4-methylenetetrahydro-2H-pyran-2-yl)-1-(tert-butyldimethylsilyloxy)-4-methylpent-4-en-2-yl) 7-(tert-butyldimethylsilyloxy)-5-methylnona-2,4,8-trienoate $\mathbf{2 4}^{\text {vii }}$

Alcohol $4(30 \mathrm{mg}, 81.8 \mu \mathrm{~mol})$ and acid $3(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ were dissolved in degassed toluene ($700 \mu \mathrm{l}$) and added via cannula to a solution of DEAD ($40 \mu \mathrm{l}, 0.25 \mathrm{mmol}$) and triphenylphosphine ($66 \mathrm{mg}, 0.25 \mathrm{mmol}$) in degassed toluene $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then at room temperature for 2 h . The reaction was then quenched with saturated sodium bicarbonate and extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic extracts were combined, dried over sodium sulfate and concentrated in vacuo. Flash chromatography (5\% Ethyl acetate/hexane) afforded the ester 24 as a pale yellow oil (33 mg, 63\%).
The product was isolated as a $1: 1$ mixture of diastereomers; $[\alpha]_{D}{ }^{20}-47$ (c. $0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) (ent24 lit. ${ }^{\text {vii }}[\alpha]_{\mathrm{D}}{ }^{20}+28\left(c 0.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$); $\mathrm{R}_{\mathrm{f}} 0.13$ (5\% ethyl acetate/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.7,15.1 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 5.74-5.90(2 \mathrm{H}$, m, C8-H, C9-H), 5.76 (1H, d, J $15.1 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 5.31$ (1H, d, J $7.7 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}), 5.02-5.17$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C} 8=\mathrm{CH}_{2}, \mathrm{C} 9=\mathrm{CH}_{2}, \mathrm{C} 19-\mathrm{H}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 13=\mathrm{CH}_{2}\right), 4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{m}$, C15-H), $3.65-3.69(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 20-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 11-\mathrm{H}), 2.50-2.44\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, $1.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 17-\mathrm{CH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.0(2 \mathrm{C}), 146.2,146.1,144.5(2 \mathrm{C}), 141.1$ (2C), 141.0, 140.97, 135.0, 134.0, 134.6 (2C), 128.8, 128.7, 126.2, 126.1, 119.4, 119.37, 116.8 (2C), 114.2 (2C), 108.6 (2C), 77.7 (2C), 75.5 (2C), 72.9 (2C), 72.8, 72.78, 63.78, 63.76, 42.4 (2C), 40.8 (2C), 40.7 (2C), 40.5 (2C), 39.9 (2C), 25.8 (6C), 25.6, 25.5, 18.3, 18.1, 17.3, 17.2, -4.5, -4.9, -5.3 (2C); m/z (ESI) 667 ([M+Na] $\left.{ }^{+}, 100 \%\right)$; HRMS (ESI) calc. for $\left[\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}\right]^{+} 667.41900$, found 667.4172.
$(2 E, 4 Z)-((S, E)-5-((2 S, 6 S)-6-A l l y l-4-m e t h y l e n e t e t r a h y d r o-2 H-p y r a n-2-y l)-1-h y d r o x y-4-$ methylpent-4-en-2-yl) 7-hydroxy-5-methylnona-2,4,8-trienoate ${ }^{\text {vii }}$

Ester $24(30 \mathrm{mg}, 46.5 \mu \mathrm{~mol})$ was dissolved in methanol (1.0 mL) and dichloromethane (250 $\mu \mathrm{l})$ and cooled to $0^{\circ} \mathrm{C}$. Aqueous $\mathrm{HCl}(1.0 \mathrm{M}, \mathrm{mL})$ was added and the solution warmed up to room temperature and stirred for 6 h . The reaction was diluted with dichloromethane (5 mL) and concentrated in vacuo. Flash chromatography (50% ethyl acetate/hexane) afforded the titled compound as a pale yellow solid ($11.6 \mathrm{mg}, 60 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}=-14$ (c. 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (lit. ${ }^{v}[\alpha]_{\mathrm{D}}{ }^{20}=+11$ (c $0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)); $\mathrm{R}_{\mathrm{f}}=0.33$ (50\% Ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 6.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.7 \mathrm{~Hz}$, C4-H), $5.74-5.95(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}, \mathrm{C} 8-\mathrm{H}, \mathrm{C} 9-\mathrm{H}),, 5.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}), 5.01-5.30$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C} 8=\mathrm{CH}_{2}, \mathrm{C} 9=\mathrm{CH}_{2}, \mathrm{C} 19-\mathrm{H}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 13=\mathrm{CH}_{2}\right), 4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 15-\mathrm{H}), 3.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 20-\mathrm{H}_{\mathrm{a}}\right), 3.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 20-\mathrm{H}_{\mathrm{b}}\right), 3.35(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 11-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{C}=\mathrm{C}\right), 1.96-2.45\left(11 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{b}} \mathrm{C}=\mathrm{C}, 4 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, 2 \times \mathrm{OH}\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 1.73$ (3H, s, C17-CH3); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8$ (2C), 146.3 (2C), 144.5 (2C), 141.4, 141.3, 140.4, 140.3, 134.7 (2C), 134.54, 134.46, 129.4 (2C), 126.6 (2C), 119.52, 119.47, 117.0 (2C), 115.4, 115.3, 108.8 (2C), 77.9 (2C), 75.7, $75.673 .8,73.7,71.63,71.57,64.5$, 64.4, 40.8 (4C), 40.7 (4C), 40.0 (2C), 25.3 (2C), 17.3 (2C).
(1S,2E,5S, $8 E, 10 Z, 14 E, 17 S$)-13-Hydroxy-5-(hydroxymethyl)-3,11-dimethyl-19-methylene-6,21-dioxabicyclo[15.3.1]henicosa-2,8,10,14-tetraen-7-one 25vii

$(2 E, 4 Z)-((S, E)-5-((2 S, 6 S)-6-A l l y l-4-m e t h y l e n e t e t r a h y d r o-2 H-p y r a n-2-y l)-1-h y d r o x y-4-$ methylpent-4-en-2-yl) 7-hydroxy-5-methylnona-2,4,8-trienoate ($11.6 \mathrm{mg}, 27.8 \mu \mathrm{~mol}$) was dissolved in degassed dichloromethane (28 mL) under an argon atmosphere. Grubbs' second generation catalyst $20(2.3 \mathrm{mg}, 2.80 \mu \mathrm{~mol})$ was then added and the light purple solution stirred at room temperature for 70 mins. The mixture was then concentrated in vacuo. Flash chromatography (60% ethyl acetate/hexane) afforded 25 as a white solid (8.8 $\mathrm{mg}, 82 \%$).
$[\alpha]_{\mathrm{D}}{ }^{20}+2.7\left(c, 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{R}_{\mathrm{f}} 0.33$ (60% Ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6,15.1 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}) / 7.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6,15.2 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H})^{*}, 6.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $11.7 \mathrm{~Hz}, 2 \times \mathrm{C} 4-\mathrm{H}), 5.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}) / 5.76$ (1H, d, J $15.2 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H})^{*}, 5.56$ - 5.76 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C} 8-\mathrm{H}, 2 \times \mathrm{C} 9-\mathrm{H}$,), 5.29 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6 \mathrm{~Hz}, \mathrm{C} 19-\mathrm{H}) / 5.24$ (1H, d, J $7.7 \mathrm{~Hz}, \mathrm{C} 19-\mathrm{H}$) , $5.13-5.21(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C} 16-\mathrm{H}), 4.71-4.73\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C} 13-\mathrm{CH}_{2}\right), 4.30-4.40(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-$ H)/4.19-4.28* (1H, m, C7-H), $3.91-3.98$ ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C} 15-\mathrm{H}$), $3.66-3.80(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C} 20-$ H), $3.29-3.35(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C} 11-\mathrm{H}), 2.59-2.86\left(24 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, 4 \times \mathrm{OH}\right), 1.99(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C} 5-\mathrm{CH}_{3}\right) / 1.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{CH}_{3}\right),{ }^{*} 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 17-\mathrm{CH}_{3}\right) / 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 17-\mathrm{CH}_{3}\right)^{*}$ (* due to diastreromers); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,167.3,147.6,146.0,144.4$ (2C), 140.8, $140.6,133.5$ (2C), 131.9 (2C), 129.6 (2C), 129.1, 128.5, 125.7, 125.6, 119.5, 119.3, 108.7, 108.6, 77.7, 77.3, 75.9, 75.6, 72.6, 72.3, 72.1, 69.6, 65.3, 65.2, 41.7, 41.2, 41.1, 40.7, 40.6, $40.5,40.2$ (2C), 39.2, 38.6, 25.5, 23.9, 16.7, 16.5.
(-)-Dactylolide $\mathbf{1}^{\text {vii,viii }}$

(-)-dactylolide 1
A solution of $25(8.8 \mathrm{mg}, 22.6 \mu \mathrm{~mol})$ in dichloromethane (2.8 mL) was treated with anhydrous sodium bicarbonate (26.5 mg) followed by Dess-Martin periodinane ($57.5 \mathrm{mg}, 0.14 \mathrm{mmol}$). The white suspension was stirred for 1 h at room temperature and then quenched with
saturated $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1,8 \mathrm{~mL})$. After stirring for 30 min , the biphasic mixture was extracted with dichloromethane ($4 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over sodium sulfate and concentrated in vacuo. Flash chromatography (50\% ethyl acetate/hexane) afforded (-)-dactylolide 1 as a white solid ($6.2 \mathrm{mg}, 71 \%$).
$[\alpha]_{D}{ }^{20}-169(c, 0.42 \mathrm{MeOH}) ; \mathrm{R}_{\mathrm{f}} 0.27$ (50% ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 9.66 (1H, s, C20-H), 7.63 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6,15.0 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}$), 6.85 (1 H , ddd, J 6.3, 8.4, 15.0, C9H), $6.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 5.86-6.02(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}, \mathrm{C} 8-\mathrm{H}),, 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7 \mathrm{~Hz}$, C19-H), $5.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}), 4.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 13-\mathrm{CH}_{2}\right), 3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5 \mathrm{~Hz}, \mathrm{C} 6-$ $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 15-\mathrm{H}), 3.30-3.35(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 11-\mathrm{H}), 3.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.3 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $2.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CC}-\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.24-2.43\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CC}-\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}, \mathrm{C}=\mathrm{CCH}_{2}\right), 2.17(1 \mathrm{H}, \mathrm{d}$, J $13.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CC}-\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $2.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{CC}-\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$), 1.97 (1H, d, J $12.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CC}-$ $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{CC}-\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 17-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ. 199.1, 197.4, 166.3, 146.0, 144.0, 143.5140.4, 131.4, 130.9, 130.5, 125.6, 119.8, 109.3, 76.7, 75.7, 75.5, 44.9, 41.0, 40.8, 39.9, 39.7, 24.1, 16.0; m/z (ESI) 439 ([M+Na+MeOH $\left.]^{+}, 100 \%\right)$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra

SaIO

References:

i Paterson, I.; Tudge, M. Tetrahedron 2003, 59, 6833.
ii Enders, D.; Schübeler, T.; Synthesis, 2002, 15, 2280.
iii Stockley, M.; Clegg, W.; Fontana, G.; Golding, B. T.; Martin, N.; Rigoreau, L. J. M.; Smith, G. C. M.; Griffin, R. J. Bioorg. Med. Chem. Lett. 2001, 11, 2837.
iv (a) Cornforth, J.W.; Cornforth, R.H.; Popják, G.; Gore, I.R. Biochemical Journal 1958, 69, 146. (b) Mori, K.; Ohki, M.; Sato, A.; Matsui, M. Tetrahedron 1972, 28, 3739. (c) Herold, P.; Mohr, P.; Tamm, C. Helv. Chim. Acta 1983, 66, 744. (d) Fernandes, R.A.; Kumar, P. Tetrahedron: Asymmetry 1999, 10, 4349. (e) Hughes, G.; Kimura, M.; Buchwald, S.L. J. Am. Chem. Soc. 2003, 125, 11253-11258.
v Fürstner, A.; Thiel, O.R.; Ackermann, L.; Schanz, H.-J.; Nolan, S.P. J. Org. Chem. 2000, 65, 2204-2207.
vi (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 43924398. (b) Paquette, L.A. in e-EROS (Encylopedia of Reagents for Organic Synthesis), Paquette, L.A. (ed.), Cerium(III) Chloride entry, Wiley, 2005.
vii Ding, F.; Jennings, M.P. Org. Lett. 2005, 7, 2321-2324.
viii Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus, C.; Gomez-Paloma, L.; Riccio, R. Eur. J. Org. Chem. 2001, 775.

