Supporting Information for:

Exploiting Phosphonate Chemistry in Metal-Mediated Dearomatization: Stereoselective Construction of Functionalized Spirolactams from Arene Ruthenium Complexes

F. Christopher Pigge,* John J. Coniglio, and Rashmi DalviDepartment of Chemistry, University of Iowa, Iowa City, IA 52242 and Department of Chemistry \&Biochemistry, University of Missouri - St. Louis, St. Louis, MO 63121
Experimental S2-S14
References S14
Spectral Data. S15-S40

General Experimental. All commercially available reagents and solvents were used as received unless otherwise noted. Tetrahydrofuran was either distilled from Na-benzophenone or passed through an activated alumina column, DMF was distilled from CaH_{2} or passed through a column of activated molecular sieves. All reactions were performed in oven-dried glassware under a blanket of dry argon unless otherwise noted. Thin-layer chromatography was performed on silica gel 60 glassbacked TLC plates ($250 \mu \mathrm{~m}$). All reactions were monitored by TLC for consumption of starting substrate. Radial chromatography was performed using 2 mm plates coated with TLC grade silica. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were obtained at 300 or 500 MHz as indicated. Chemical shifts (δ) are reported relative to residual solvent peaks or TMS. IR spectra were recorded on an FT-IR spectrophotometer equipped with an ATR attachment. Melting points were determined using a capillary melting point apparatus and are uncorrected. High resolution mass spectra were obtained using electron impact ionization (EI), fast atom bombardment (FAB), or electrospray ionization (ESI).

Stereochemical Assignments. Olefin stereochemistry (Z) of spirocyclic compounds was determined experimentally for cyclohexadienyl complexes 5 and 9 via 2D NOESY NMR spectroscopy. Olefin geometry for the remaining compounds was assigned by analogy. The NOESY spectrum was also obtained for dienol (-)-22 in order to determine the regio- and stereochemistry of hydroxyl addition. The structural assignment of this latter compound along with dienol 19 were confirmed by single crystal X-ray diffractometry. ${ }^{1}$ Stereochemical assignments for 16 and 18 were made by analogy.

Preparation of η^{6}-arene ruthenium complexes:

N-Benzyl-N-methyl chloroacetamide (I) and N-4-methoxybenzyl-N-methyl chloroacetamide (II). To a mixture of chloroacetic anhydride $(2.79 \mathrm{~g}, 15.8 \mathrm{mmol})$ and DMAP (catalytic amount) in $\sim 10 \mathrm{~mL}$ THF was added dropwise a solution of N-methylbenzylamine ($1.32 \mathrm{~g}, 10.6 \mathrm{mmol}$) in 5 mL THF. Once the addition was complete the reaction was maintained at rt for $\sim 10 \mathrm{~min}$. The solvent was removed in vacuo and the resulting yellow oil was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3}. The organic phase was separated and dried over anhyd. MgSO_{4}. Filtration and removal of the solvent gave a dark yellow oil that was further purified by flash column chromatography (1:1 EtOAc:Hexanes) to afford \mathbf{I} as a light yellow oil ($2.09 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta 2.96(\mathrm{~s}, 1.2 \mathrm{H}), 2.99(\mathrm{~s}, 1.8 \mathrm{H}), 4.11(\mathrm{~s}, 0.8 \mathrm{H}), 4.14(\mathrm{~s}$, $1.2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers) $\delta 34.6$, $35.2,41.1,41.3,51.5,53.9,126.6,127.8,128.1,128.9,129.2,135.7,136.3,167.3,167.5,169.3$. The methoxybenzyl derivative II was prepared similarly in 90% yield from 2.37 g of 4-methoxy-Nmethylbenzylamine. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers) $\delta 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 6.84-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta 34.3,35.0,41.3,41.6,50.9,53.3,55.48,55.5,114.3$, 114.6, 127.8, 128.0, 128.7, 129.7, 159.3, 166.7. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 1657$.
β-Amidophosphonates III and IV. Arbuzov reaction of I and II afforded phosphonates III and IV, respectively. The preparation of III is representative. Chloroacetamide I ($5.54 \mathrm{~g}, 23.8 \mathrm{mmol})$ was mixed with $\mathrm{P}(\mathrm{OEt})_{3}(6.5 \mathrm{~mL})$ and heated to $100^{\circ} \mathrm{C}$ for 12 h . After cooling to rt , excess $\mathrm{P}(\mathrm{OEt})_{3}$ was removed in vacuo and the remaining residue was purified by flash column chromatography (EtOAc) to afford III as colorless oil ($5.34 \mathrm{~g}, 75 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers) $\delta 1.34$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.98(\mathrm{~s}, 1.1 \mathrm{H}), 3.07\left(\mathrm{~d}, J_{P H}=22.1 \mathrm{~Hz}, 0.8 \mathrm{H}\right), 3.05(\mathrm{~s}, 1.9 \mathrm{H}), 3.13\left(\mathrm{~d}, J_{P H}=22.1\right.$ $\mathrm{Hz}, 1.2 \mathrm{H}), 4.13-4.24(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{~s}, 1.2 \mathrm{H}), 4.70(\mathrm{~s}, 0.8 \mathrm{H}), 7.17-7.39(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta 16.3,16.4,33.0,33.1,34.1,34.1,34.6,36.1,51.1,54.3,62.6$, 62.6, 62.7, 126.3, 127.4, 127.9, 128.6, 129.0, 136.3, 136.9, 165.1, 165.2, 165.3, 165.4. IR (neat) v $\left(\mathrm{cm}^{-1}\right)$ 1642, 1021. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{P} 299.1286[\mathrm{M}]^{+}$, found 299.1287.

Phosphonate IV was prepared in 93% yield from 1.0 g of II using an identical procedure. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta 1.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}$, $2 \mathrm{H}), 3.08\left(\mathrm{~d} J_{P H}=21.0 \mathrm{~Hz}, 1.2 \mathrm{H}\right), 3.11\left(\mathrm{~d}, J_{P H}=21.0 \mathrm{~Hz}, 0.8 \mathrm{H}\right), 3.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.12-4.23$ $(\mathrm{m}, 4 \mathrm{H}), 4.5(\mathrm{~s}, 1.2 \mathrm{H}), 4.6(\mathrm{~s}, 0.8 \mathrm{H}), 6.83-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}, mixture of rotamers) $\delta 16.4,16.5,32.7,32.8,34.2,34.5,34.6,36.0,50.6,53.9,55.4,62.7$, $62.8,62.8,114.1,114.5,127.8,128.2,129.1,129.4,159.1,159.3,165.0,165.3,165.4$. IR (neat) v $\left(\mathrm{cm}^{-1}\right)$ 1649, 1027. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P} 329.1391[\mathrm{M}]^{+}$, found 329.1395 .

General procedure of the preparation of $\boldsymbol{\eta}^{6}$-Arene ruthenium complexes Arene complexes were prepared by treatment of arene ligands with equimolar amounts of $\left[(\mathrm{MeCN})_{3} \mathrm{RuCp}\right]\left[\mathrm{PF}_{6}\right]$ in 1,2-dichloroethane according to previously reported procedures. ${ }^{2}$ Complex 3 ($5.29 \mathrm{~g}, 82 \%$) was obtained as a brown viscous semi-solid from $3.16 \mathrm{~g}(10.6 \mathrm{mmol})$ of III after filtration of the crude
product through a short plug of neutral alumina (acetone). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 1.31$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.22\left(\mathrm{~d}, J_{P H}=21.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.35(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 4 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 5.53$ ($\mathrm{s}, 5 \mathrm{H}$) , 6.25-6.33 (m, 3H), $6.44(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 16.7,33.1$, 34.1, 38.1, 50.3, 63.0, 82.1, 85.8, 86.2, 87.1, 103.3, 166.9. HRMS (FAB, NBA) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{PRu} 466.0721[\mathrm{M}]^{+}$, found 466.0718. Complex $4(1.60 \mathrm{~g}, 92 \%)$ was obtained as pale brown solid from $0.90 \mathrm{~g}(2.72 \mathrm{mmol})$ of $\mathbf{I V} . \mathrm{Mp}=82-84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$ $\delta 1.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.21\left(\mathrm{~d}, J_{P H}=21.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 4 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 5 \mathrm{H}), 6.38-6.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 17.1,33.1,34.9$, $38.3,50.2,58.2,63.4,75.2,82.1,84.7,86.2,100.5,135.6,167.2$. HRMS (FAB, NBA) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{PRu} 496.0826[\mathrm{M}]^{+}$, found 496.0832. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Ru}^{2} \cdot \mathrm{PF}_{6}$: C 37.44, H 4.55, N 2.18. Found: C 37.68, H 4.49, N 2.30.

General procedure for the preparation of spirolactam complexes 5-14. The preparation of $\mathbf{5}$ is representative. A solution of $\mathbf{3}(341 \mathrm{mg}, 0.56 \mathrm{mmol})$ in $\sim 4 \mathrm{~mL}$ THF was added to $\mathrm{NaH}(60 \%, 78.2$ $\mathrm{mg}, 1.2 \mathrm{mmol}$) at rt . The resulting mixture was maintained for 30 min , during which time the reaction turned golden yellow. Acetaldehyde ($123 \mathrm{mg}, 2.8 \mathrm{mmol}$) was added via syringe and the reaction was stirred at rt for another 30 min . The reaction was quenched with a few drops of $\mathrm{H}_{2} \mathrm{O}$ and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried over anhyd. MgSO_{4}, filtered, and concentrated to afford a yellow solid. Purification by flash column chromatography gave 5 ($138 \mathrm{mg}, 70 \%$). Spirocyclizations involving complex 4 were performed in a similar fashion except that DMF was used as the solvent.

Complex 5. 70%. Mp 189-190 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.63$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 5 \mathrm{H}), 5.55(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.2,29.7,38.1,45.9,64.9,75.5$, 76.2, 79.6, 132.5, 142.4, 168.1. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1672. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NORu}$ $355.0510[\mathrm{M}]^{+}$, found 355.0513. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NORu}$: C 57.61, H 5.40, N 3.95. Found: C 57.55, H 5.44, N 3.98.

Complex 6. 71\%. Mp 148-149 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.39$ (dd, $J=5.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.66(\mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.89$ $(\mathrm{s}, 5 \mathrm{H}), 5.54(\mathrm{q} J=7.26,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.1,29.6,32.2,47.4,57.6,63.9,65.6$, 76.1, 132.2, 132.7, 141.6, 168.0. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1678. HRMS (FAB, NBA) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Ru} \cdot \mathrm{Na} 408.0513[\mathrm{M}+\mathrm{Na}]^{+}$, found 408.0519. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Ru}: \mathrm{C} 56.24, \mathrm{H}$ 5.51, N 3.64. Found: C 56.46, H 5.56, N 3.58.

Complex 7. From 3 and paraformaldehyde, 74%. Mp 157-158 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.61(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=6.1,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 5 \mathrm{H}), 4.98$ $(\mathrm{d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 30.0,36.4,45.4,64.6,75.7,76.1,80.1,115.6,150.9,167.3$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 1678$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NORu} 341.0353[\mathrm{M}]^{+}$, found 341.0352. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NORu}$: C 56.46, H 5.03, N 4.11. Found: C 56.73, H 4.98, N 4.13.

Complex 8. From 4 and paraformaldehyde, 70%. Mp 135-136 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.38(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}$, $5 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.1,30.7,46.9,57.7,63.7,65.5,76.3$, 115.6, 133.3, 150.0, 167.3. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1687. HRMS (FAB, NBA) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Ru} \cdot \mathrm{Na}$ $394.0357[\mathrm{M}+\mathrm{Na}]^{+}$, found 394.0356. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Ru}: \mathrm{C} 55.12$, H 5.17, N 3.78. Found: C 55.14, H 5.40, N 3.64.

Complex 9. From 3 and benzaldehyde, 59%. Mp 196-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.73$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 5 \mathrm{H}), 5.82(\mathrm{t}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $30.2,37.9,47.5,65.1,76.0,76.5,79.6,127.8,128.2,130.8,134.5,135.2,141.8,166.4$. IR (neat) v $\left(\mathrm{cm}^{-1}\right)$ 1669. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NORu} 417.0666[\mathrm{M}]^{+}$, found 417.0674. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NORu}: \mathrm{C} 63.45$, H 5.08, N 3.36. Found: C 63.22, H 5.14, N 3.12 .

Complex 10. From 4 and benzaldehyde, 80%. Mp 197-200 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.45(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{~s}$,
$5 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.2,32.1$, $49.0,57.7,64.2,66.0,76.4,127.2,130.8,132.9,134.3,135.1,141.2,166.4$. IR (neat) $v\left(\mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right)$ 1677. HRMS (FAB, NBA) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Ru} \cdot \mathrm{Na} 470.0670$, $[\mathrm{M}+\mathrm{Na}]^{+}$, found 470.0676 . Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Ru}$: C 61.87, H 5.19, N 3.14. Found: C 62.15, H 5.22, N 3.22

11

Complex 11. From 4 and p-anisaldehyde, 81%. Mp 190-191 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 2.49(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2$ H), $4.88(\mathrm{~s}, 5 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 30.2,32.5,48.9,55.4,57.7,64.3,66.0,76.2,113.2,127.9,132.7,132.8,134.1,139.3$, 159.7, 166.7. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1666. HRMS (FAB, NBA) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Ru} \cdot \mathrm{Na} 500.0776$ $[\mathrm{M}+\mathrm{Na}]^{+}$, found 500.0782. Anal calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Ru}: \mathrm{C} 60.49, \mathrm{H} 5.29, \mathrm{~N} 2.94$. Found: C 60.51, H 5.25, N 2.89 .

12
Complex 12. From 4 and p-nitrobenzaldehyde, 55%. Mp 189-190 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.92(\mathrm{~s}, 5 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 30.3,31.1,49.1,57.7,64.0,65.8,76.6,122.9,131.3,131.3,133.05,141.7,144.3,147.0$, 165.7. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1677. HRMS (FAB, NBA) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Ru} \cdot \mathrm{Na} 515.0521$
$[\mathrm{M}+\mathrm{Na}]^{+}$, found 515.0527. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Ru}: \mathrm{C} 56.21, \mathrm{H} 4.51, \mathrm{~N} 5.70$. Found: C 56.56, H 4.91, N 5.28.

13

Complex 13. From 4 and crotonaldehyde, 76%. Mp 182-184 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 5 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .14 .3,29.8,32.1,47.3,57.7,64.1,65.8,76.2,127.6,132.9,134.0,135.5,137.9$, 167.7. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1672. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{Ru} 412.0851[\mathrm{M}+\mathrm{H}]^{+}$, found 412.0856.

14
Complex 14. From 3 and 4-pyridylcarboxaldehyde, 74%. Mp 191-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=6.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~s}$, $5 \mathrm{H}), 5.84(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}$,
$2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.2,36.8,47.4,64.7,75.6,76.3,79.8,124.6,131.0,142.5$, 145.4, 149.3, 165.6. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1668. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ORu} 418.0618$ [M] ${ }^{+}$, found 418.0619. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ORu}$: C 60.42, H 4.83, N 6.71. Found: C 60.60, H 4.81, N 6.72.

15
Dienone 15. To a stirred solution of $10(50 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\sim 5 \mathrm{~mL} \mathrm{THF}, \mathrm{CuCl}_{2}(45 \mathrm{mg}, 0.33$ mmol) was added at rt. A dark brown solid formed in the reaction. The reaction was stirred for 30 min, after which time TLC indicated complete consumption of starting material. Solids were removed by gravity filtration and the filtrate was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The layers were separated and the organic phase was washed with brine, dried over anhyd. MgSO_{4}, and concentrated in vacuo to afford yellow oil which was then subjected to flash column chromatography (EtOAc:Hexanes, 1:1) to give 15 (24 mg, 79 \%) as a white solid. Mp $155-156{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.03(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{dd}, J=7.5,2.1, \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 30.6,47.0,54.4,128.2,128.7,129.7,131.4,133.5,138.0,149.8,165.6,185.5$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1677, 1666. HRMS (FAB, NBA) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2} 266.1181[\mathrm{M}+\mathrm{H}]^{+}$, found 266.1181. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$: C 76.96, H 5.70, N 5.28. Found: C 76.69, H 5.84, N 5.04.

16
Methoxy diene 16. To a stirred solution of $5(200 \mathrm{mg}, 0.564 \mathrm{mmol})$ in $\sim 5 \mathrm{~mL}$ methanol under 1 atm of CO (balloon), $\mathrm{CuBr}_{2}(0.34 \mathrm{~g}, 1.55 \mathrm{mmol})$ in 1 mL methanol was added dropwise via syringe. The reaction initially turned dark red, then gradually changed to pale yellow over a period of 2 h . The solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried over anhyd. MgSO_{4}, filtered and concentrated to give a yellow oil. Purification by flash column chromatography gave $16(76 \mathrm{mg}, 62 \%)$ as a colorless oil along with $\mathrm{RuCp}(\mathrm{CO})_{2} \operatorname{Br}(17,60 \%)$ as yellow needles whose spectral properties matched those previously reported. ${ }^{3}{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,29.7,46.2,55.7,58.4,80.6,124.2,124.9,125.07$, 131.1, 134.2, 135.1, 168.6. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1665. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2} 220.1338$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 220.1338.

$18 \mathrm{R}=\mathrm{CH}_{3}$
$19 \mathrm{R}=\mathrm{Ph}$
Dienol 18. To a stirred solution of $5(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ in 4 mL THF under 1 atm of CO (balloon), CuBr_{2} ($85 \mathrm{mg}, 0.38 \mathrm{mmol}$) in 1 mL of $\mathrm{H}_{2} \mathrm{O}$ was added via syringe. The reaction became dark red, then pale yellow over a period of 2 h . Workup of the reaction as described for $\mathbf{1 6}$ above and purification by flash column chromatography (1:1 Hexanes:EtOAc) gave $18(19 \mathrm{mg}, 65 \%)$ as a white crystalline solid along with $\mathrm{RuCp}(\mathrm{CO})_{2} \mathrm{Br}(62 \%)$ as yellow needles. $\mathrm{Mp} 105-107{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{q}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,29.8,47.0,55.3,70.9,124.4,125.0,127.3,131.0,133.5$, 168.2. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 1677,3377$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$: C 70.22, H 7.37, N 6.82 . Found: C 69.70 H 7.21, N 6.68.

Dienol 19. Dienol 19 was prepared from 9 using the procedure described above. 70%. Mp 130$132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H})$, $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.1,48.1,54.2,70.1,124.8$, 126.6, 127.8, 128.7, 131.0, 131.4, 132.8, 134.2, 137.1, 166.4. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 1665,3300$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 76.38, H 6.41, N 5.24. Found: C 75.66, H 6.64, N 4.98.

Preparation of η^{6}-arene ruthenium complex 20:

β-Amidophosphonate VI Arbuzov reaction of \mathbf{V}^{4} afforded phosphonate VI. Chloroacetamide \mathbf{V} $(2.51 \mathrm{~g}, 11.8 \mathrm{mmol})$ was mixed with $\mathrm{P}(\mathrm{OEt})_{3}(3.14 \mathrm{~mL}, 17.8 \mathrm{mmol})$ and heated to $100{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to rt, excess $\mathrm{P}(\mathrm{OEt})_{3}$ was removed in vacuo and the remaining oily residue was purified by flash column chromatography (EtOAc) to afford VI as colorless oil ($3.55 \mathrm{~g}, 96 \%$). $[\alpha]_{\mathrm{D}}$ $=-96.8(c=0.008, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers) $\delta 1.34(\mathrm{~m}, 6 \mathrm{H}), 1.50$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 4 \mathrm{H})$, $5.32(\mathrm{q}, J=9.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.05(\mathrm{q}, J=6.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$,
mixture of rotamers) $\delta 15.5,16.2,16.3,16.3,17.7,28.3,30.6,32.9,34.4,34.7,50.6,55.7,62.5$, 126.4, 127.1, 127.2, 127.4, 128.3, 128.6, 139.9, 140.1, 164.9, 164.9. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1641. HRMS (FAB, NBA) calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NOP} 314.1521[\mathrm{M}+\mathrm{H}]^{+}$, found 314.1521.
η^{6}-Arene ruthenium complex 20. The η^{6}-arene complex was prepared by using the general procedure given previously. Complex 20 ($1.54 \mathrm{~g} .82 \%$) was obtained as a brown viscous semi-solid from $0.93 \mathrm{~g}(2.99 \mathrm{mmol})$ of VI after filtration of the crude product through a short plug of neutral alumina (acetone). $[\alpha]_{\mathrm{D}}=+78.4(c=0.006, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 1.31(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 4 \mathrm{H}), 5.5($ $\mathrm{s}, 5 \mathrm{H}), 5.75(\mathrm{q}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, acetone $-\mathrm{d}_{6}$) $\delta 16.7,32.1,33.1,34.8,51.2,63.1,62.9,82.1,85.2,85.6,86.0,86.3,107.5,166.6$. HRMS (FAB, NBA) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{PRu} 480.0878$ [M] ${ }^{+}$, found 480.0883 .

21
Complex 21. This complex was prepared using the general spirocyclization procedure. $74 \% . \mathrm{Mp}$ $202-204^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=-77.2(c=0.002, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.36$ $(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 5 \mathrm{H}), 5.43(\mathrm{q}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.72(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.2,14.4,28.0,30.1,41.5,50.3$, 67.7, 75.6, 79.6, 131.8, 140.3, 167.1. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 1665. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NORu}: \mathrm{C}$ 58.68, H 5.74, N 3.80. Found: C 59.01, H 5.90, N 3.70.

Dienol (-)-22. This material was obtained from 21 using the procedures described for the preparation of 18-19. $55 \% . \mathrm{Mp} 155-157{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=-186.1\left(c=0.003, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 13.8,16.7,28.2,51.7,57.2,68.4,125.8,125.9,126.0,130.7,131.9,135.9,168.1$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 1663,3412$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2} 220.1338[\mathrm{M}+\mathrm{H}]^{+}$, found 220.1336.

References

1. Pigge, F. C.; Coniglio, J. J.; Dalvi, R.; Rath, N. P. unpublished results.
2. Gill, T. P.; Mann, K. R. Organometallics 1982, 1, 485. Kündig, E. P.; Monnier, F. R. Adv. Synth. Catal. 2004, 346, 901.
3. Haines, R. J.; du Preez, A. L. J. Chem. Soc., Dalton Trans. 1972, 944.
4. Pallavicini, M.; Valoti, E.; Villa, L.; Resta, I. Tetrahedron: Asymmetry 1994, 5, 363.

$\#$	Name	Area \% [\%]	Time [Min]
1	Peak 1	53.090	33.41
2	Peak 2	46.910	35.91
	100.000		

\#	Name	Time [Min]	Area \% [\%]
1	Peak	33.16	100.000

Column: ChiralPak AD-H $4.6 \times 250 \mathrm{~mm}$
Eluent: 96:4 Hexanes:IPA

