The α-Heteroarylation of Esters, Lactones, Amides and Lactams by Nucleophilic Aromatic Substitution

Hong C. Shen,* Fa-Xiang Ding and Steven L. Colletti
Department of Medicinal Chemistry
Merck Research Laboratories

Merck \& Co., Inc.
P. O. Box 2000

Rahway, NJ 07065-0900
hong_shen@merck.com

All experiments were carried out in oven-dried glassware under an atmosphere of dry nitrogen with magnetic stirring. Anhydrous solvents were transferred by oven-dried syringe. Anhydrous toluene, THF, diethyl ether and dioxane were purchased from Aldrich and used as received.

Flash chromatography was performed with biotage system using $\mathrm{Si} 25 \mathrm{~S} / \mathrm{M}$ cartriges. Analytical thin layer chromatography (TLC) was performed with EM Reagent 0.25 mm silica gel $60-\mathrm{F}$ commercial silica gel plates. Visualization was accomplished with UV light and potassium permanganate stain, followed by heating.

LC/MS data were recorded by the Agilent 1100 series and Waters Micromass ZQ system.
${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were recorded on Varian UI-500 (500 MHz) spectrometers. The chemical shifts are reported in PPM with $\mathrm{CDCl}_{3}(\delta=7.24)$ or TMS $(\delta=0.00)$ as the internal standard unless otherwise noted.

General Procedures:
A (for α-arylation): The solution of $\mathbf{1 0}(111 \mathrm{mg}, 0.65 \mathrm{mmol})$ and t-butyl propionate ($86 \mathrm{mg}, 0.65 \mathrm{mmol}$) in 3 mL of toluene was degassed with nitrogen for 5 min . To this solution at $0^{\circ} \mathrm{C}$ was slowly added $\mathrm{NaHMDS}(1.3 \mathrm{mmol}, 2.2 \mathrm{~mL}, 0.6$ M in toluene). After 2 h , the resulting solution was warmed to rt and stirred for 12 h before the mixture was quenched with ammonium chloride aqueous solution $(10 \mathrm{~mL}, 1 \mathrm{~N})$. Extracted the mixture with ethyl acetate (20 mL x 2). The organic layers were combined and concentrated in vacuo. The residue was purified by biotage eluting with $5-25 \%$ ethyl acetate in hexanes to give $\mathbf{1 4}(156 \mathrm{mg}, 0.59 \mathrm{mmol}, 91 \%)$ as a colorless oil.

B (for tandem α-arylation and α-hydroxylation): The solution of $\mathbf{1 0}$ ($111 \mathrm{mg}, 0.65 \mathrm{mmol}$) and t-butyl propionate (86 mg , 0.65 mmol) in 3 mL of toluene was degassed with nitrogen for 5 min . To this solution at $0^{\circ} \mathrm{C}$ was slowly added NaHMDS ($1.3 \mathrm{mmol}, 2.2 \mathrm{~mL}, 0.6 \mathrm{M}$ in toluene). The reaction mixture was warmed to rt and stirred under nitrogen. After 2 h , the the resulting solution was exposed to air for 12 h before the mixture was quenched with ammonium chloride aqueous solution $(10 \mathrm{~mL}, 1 \mathrm{~N})$. Extracted the mixture with ethyl acetate ($20 \mathrm{~mL} x 2$). The organic layers were combined and concentrated in vacuo. The residue was purified by biotage eluting with $10-25 \%$ ethyl acetate in hexanes to give $\mathbf{1 5}$ ($152 \mathrm{mg}, 0.54 \mathrm{mmol}$, 84%) as a colorless oil.

A medium scale reaction (Preparation of compound 9): The solution of $\mathbf{8}(1.00 \mathrm{~g}, 5.09 \mathrm{mmol})$ and t-butyl propionate $(1.77 \mathrm{~g}, 2.1 \mathrm{~mL}, 15.3 \mathrm{mmol})$ in 20 mL of toluene was degassed with nitrogen for 5 min . To this solution at $0^{\circ} \mathrm{C}$ was slowly added NaHMDS ($25.5 \mathrm{~mL}, 15.3 \mathrm{mmol}, 0.6 \mathrm{M}$ in toluene). After 5 h , the resulting solution was warmed to rt and stirred for 12 h before the mixture was quenched with ammonium chloride aqueous solution $(50 \mathrm{~mL}, 1 \mathrm{~N})$. Extracted the mixture with ethyl acetate ($200 \mathrm{~mL} x 2$). The organic layers were combined and concentrated in vacuo. The residue was purified by biotage eluting with $5-15 \%$ ethyl acetate in hexanes to give $9(1.11 \mathrm{~g}, 4.02 \mathrm{mmol}, 79 \%)$ as a colorless oil.

Appendix: (The H-NMR and LC/MS of new compounds)

3

c Chemistry Open Access LC/MS Report		
ple ID:RY8004_005199-1	Instrument:	Submitter:Shen, Hong $\times 1755$ (SHENHO)
$: 17-$ Nov-2005	Time:13:28:35	Filename:RY800_04_0006742

ic Chemistry Open Access LC/MS Report iple ID:RY8004_005290-1 :22-Nov-2005
1od:C:MMassLynx\LC2M_Low_Pos.olp

11

JAD: 254

1. $9 \mathrm{e}+006$

15

15

c Unemistry Upen Access LU/MS Keport ple ID:RY8004_005408-1 :01-Dec-2005
iod:C:MassLynxiLC2M Low.Pos.olp
wS ES+ :TIC Smooth (Mn, 1x1 Time:17:40:44

Submitter:Shen, Hong x1755 (SHENHO) Filename:RY800_04_0007022

DAD: 254
$2.8 e+005$

c Chemistry Open Access LC/MS Report ple ID:RY8007_3172-1 :29-Nov-2005 od:C:MassLynx\LC2M_Low_Pos.olp

IAD: 254

21

23

23

25
ıod:C:MassLynx\LC2M_Low_Pos.olp

JAD: 254
$3.8 e+005$

25

c Chemistry Open Access LC/MS Report		- Page 1
ple ID:RY8004_005568-1	Instrument:	Submitter:Shen, Hong x1755 (SHENHO)
:07-Dec-2005	Time:12:43:54	Filename:RY800_04_0007252
Iod:C:MassLynx\LC2M_Low_Pos.olp		

29

33

: Chemistry Open Access LC/MS Report
Jle ID:RY8004_005501-1 Instrument:
Time:18:34:46
っd:C:\MassLynx\LC2M_Low_Pos.olp

35

c Chemistry Open Access LC/MS Report ple ID:RY8004_005373-1 :30-Nov-2005 30-Nov-2005

Instrument: Time:17:37:09

36

c Chemistry Open Access LC/MS Report pie ID:RY8004_005540-1 :06-Dec-2005 od:C:MassLynx \backslash LC2M_Low_Pos.olp

Instrument: Time:16:24:21

Submitter:Shen, Hong x1755 (SHENHO) Filename:RY800_04_0007215

JAD: TIC

39

42

42

ic Chemistry Open Access LC/MS Report iple ID:RY8004_005374-1 :30-Nov-2005
1od:C:\MassLynx\LC2M_Low_Pos.olp

DAD: TIC

MS ES+ :TIC Smooth (Mn, 1×1 Filename:RY800_04_0006979
Time:17:58:28
\qquad
1.22
2.00
$7.4 e+007$
$7.4 e+007$

DAD: 254
$8.7 e+005$

sic Chemistry Open Access LC/MS Report
nple ID:RY8004_005376-1
te:30-Nov-2005
thod:C:IMassLynxILC2M_Low_Pos.olp

DAD: TIC 3.2 e+007

