Supporting Information A Concise Asymmetric Total Synthesis of Obolactone

Jiyong Zhang, ${ }^{+}$Yang Li, ${ }^{+}$Wenkuan Wang, ${ }^{\dagger}$ Xuegong She*, ${ }^{+, \ddagger}$ and Xinfu Pan*, ${ }^{*}$ Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
shexg@1zu.edu.cn

Table of Contents

1. Experimental Procedures and Spectroscopic Data

General MethodsS3
Synthesis of Compound 4 S3
Synthesis of Compound 5 S3-S4
Synthesis of Compound 7 S4
Synthesis of Compound 8 S5
2. Copies of NMR and HPLC Spectra
${ }^{1}$ HNMR Spectra of Compound 3 S6
${ }^{13}$ CNMR Spectra of Compound 3. S7
${ }^{1}$ HNMR Spectra of Compound 4 S8
${ }^{13}$ CNMR Spectra of Compound 4 S9
${ }^{1}$ HNMR Spectra of Compound 5 S10
${ }^{13}$ CNMR Spectra of Compound 5 S11
${ }^{1}$ HNMR Spectra of Compound 6 S12
${ }^{13}$ CNMR Spectra of Compound 6 S13
${ }^{1}$ HNMR Spectra of Compound 7 S14
${ }^{13}$ CNMR Spectra of Compound 7. S15
${ }^{1}$ HNMR Spectra of Compound 8 S16
${ }^{13}$ CNMR Spectra of Compound 8 S17
${ }^{1}$ HNMR Spectra of Compound 9 S18
${ }^{13}$ CNMR Spectra of Compound 9 S19
${ }^{1}$ HNMR Spectra of Compound 12 S20
${ }^{13}$ CNMR Spectra of Compound 12 S21
${ }^{1}$ HNMR Spectra of Compound 13 S22
${ }^{13}$ CNMR Spectra of Compound 13 S23
${ }^{1}$ HNMR Spectra of Obolactone 1 S24
${ }^{13}$ CNMR Spectra of Obolactone 1 S25
The Table of ${ }^{1}$ HNMR Comparison S26
CD Spectra of Obolactone 1 S27
HPLC Spectra of Mosher Ester Derived from Compound 3 S28
HPLC Standard Report S29

1. Experimental procedure and spectroscopic data

General Methods: Oxygen- and moisture-sensitive reactions were carried out under argon atmosphere. Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Column chromatography was performed on silica gel (200-300 mesh). Optical rotations were measured on a precision automated polarimeter. Infrared spectra were recorded on a FT-IR spectrometer. ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ spectra were recorded on a 300 MHz and a 400 MHz spectrometer. Chemical shifts are reported as δ values relative to internal chloroform ($\delta 7.26$ for ${ }^{1} \mathrm{H}$ and 77.0 for ${ }^{13} \mathrm{C}$).

(3R)-1-[(tert-Butyldimethylsilyl)oxyl]-3-[(tert-Butyldiphenyl)oxyl]hex-5-ene (4). A

 stirred solution of alcohol $3(2.663 \mathrm{~g}, 11.6 \mathrm{mmol})$ in dry DMF $(5.8 \mathrm{~mL})$ at rt was treated with imidazol $(2.36 \mathrm{~g}, 34.3 \mathrm{mmol})$ followed by $\operatorname{TBDPSCl}(4.46 \mathrm{~g}, 16.2 \mathrm{mmol})$. After stirring overnight, the reaction mixture was diluted with EtOAc (50 mL). The resulting mixture was washed with brine $(10 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (hexanes / EtOAc, 100:1) to give silyl ether $4(5.21 \mathrm{~g}, 96 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}-11^{\circ}$ (c $2.45, \mathrm{CHCl}_{3}$); IR (KBr) 2955, 2931, 2858, 1254, $1108835,704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.72(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.26(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.68(\mathrm{~m}, 2 \mathrm{H})$, 3.93-3.97 (m, 1H), 4.88-4.98 (m, 2H), 5.68-5.77 (m, 1H), 7.35-7.45 (m, 6H), $7.69(\mathrm{~d}, J=$ 7.2 Hz); ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.4,18.2,19.4,39.2,4.4,60.0,70.4,116.9,127.5$, 129.5, 134.3, 134.8, 135.9; HRMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na} 491.2773[\mathrm{M}+\mathrm{Na}]^{+}$, found 491.2781.
(3S)-3-[(tert-Butyldiphenyl)oxyl]-5-[(tert-Butyldimethylsilyl)oxyl]hexanal (5). To a solution of silyl ether $4(2.81 \mathrm{~g}, 6.00 \mathrm{mmol})$ in $3: 1 \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(120 \mathrm{~mL})$ was added N -methyl morpholine N -oxide ($844 \mathrm{mg}, 7.20 \mathrm{mmol}$) and aqueous $\mathrm{OsO}_{4}(0.1 \mathrm{M}, 3 \mathrm{~mL}, 0.3 \mathrm{mmol})$. The resulting solution was stirred 10 h at rt before being stopped by the addition of excess solid sodium sulfite. The reaction mixture was then diluted with EtOAc and the layers were separated. The aqueous phase extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phase were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The resultant oil was dissolved in $120 \mathrm{~mL} 3: 1 \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, to which was added $\mathrm{NaIO}_{4}(3.85 \mathrm{~g}, 18.0 \mathrm{mmol})$. The reaction mixture was stirred 2 h at rt before diluted with $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The layers were separated, and the aqueous phase extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic phase were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (hexanes / EtOAc, $50: 1)$ to give aldehyde $5(2.37 \mathrm{~g}, 84 \%)$ as a colorless oil: $[\alpha]_{D}{ }^{25}-2^{\circ}$ (c $1.45, \mathrm{CHCl}_{3}$); IR (KBr) 2955, 2951, 1727, $1107835,704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$ 1.09 (s, 9H), 1.75-1.89 (m, 2H), 2.55 (ddd, $J=15.6,5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59 (ddd, $J=15.6,5.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57-3.69(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 9.70$ (t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.5,18.1,19.3,25.8,26.9,40.0,50.4,59.4$, 67.2, 127.7, 129.8, 133.7, 135.8, 202.1; HRMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{O}_{3} \mathrm{Si}_{2} 471.2751[\mathrm{M}+\mathrm{H}]$, found 471.2758.

(3S,5R)-1-[(tert-Butyldimethylsilyl)oxyl]-3-[(tert-Butyldiphenyl)oxyl]oct-7-ene-5-yl

Acrylate (7). Under Ar, to a solution of alcohol $6(1.35 \mathrm{~g}, 2.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.47 \mathrm{~mL}, 10.5 \mathrm{mmol})$ and acroylyl chloride ($0.43 \mathrm{~mL}, 5.2 \mathrm{mmol}$). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, Saturated NaHCO_{3}, and water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (hexanes / EtOAc, 50:1) to give ester $7(1.38 \mathrm{~g}, 94 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}-12^{\circ}$ (c $2.65, \mathrm{CHCl}_{3}$); IR (KBr) 2955, 2931, 2858, 1725, 1469, 1428, 1405, 1256, 1193, 1108, 837, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.02(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.07$ $(\mathrm{s}, 9 \mathrm{H}), 1.69-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.09-2.23(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{ddt}, J=16.8,6.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94-3.98(\mathrm{~m}$,

2H), 4.92-4.99 (m, 2H), 5.08-5.11 (m, 1H), 5.57-5.63 (m, 1H), 5.73 (d, $J=10.8 \mathrm{~Hz}$), $5.94(\mathrm{dd}, J$ $=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.4,18.2,19.4,25.9,27.0,38.8,39.2,40.5,59.5,67.9,70.5,117.8 .127 .5$, $128.7,129.5,130.2,133.3,134.1,134.3,135.9,165.4$; HRMS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$ $589.3146[\mathrm{M}+\mathrm{Na}]^{+}$, found 589.3142.

(3S,5R)-3-[(tert-Butyldiphenyl)oxyl]oct-7-ene-1-ol-5-yl Acrylate (8). To a solution of ester 7 ($1.13 \mathrm{~g}, 2.00 \mathrm{mmol}$) in $20: 1 \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(10.5 \mathrm{~mL})$ was added $\mathrm{TsOH} \cdot 2 \mathrm{H}_{2} \mathrm{O}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$. The resulting solution was stirred at rt for 7 h . Saturated NaHCO_{3} was added, and the mixture was extracted with EtOAc $(4 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (hexanes / EtOAc, 10:1) to give $8\left(805 \mathrm{mg}, 89 \%\right.$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}-20^{\circ}\left(\mathrm{c} 1.80, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3425, 2931, 1722, 1428, 1406, 1272, 1195, 1108, 1066, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.66-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=12.2,6.2 \mathrm{~Hz}), 3.68-3.74(\mathrm{~m}$, $2 \mathrm{H}), 3.97-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.94-5.00(\mathrm{~m}, 3 \mathrm{H}), 5.54-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=10.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.89(\mathrm{dd}, J=17.2,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,27.0,37.5,39.0,40.2,59.5,69.1,70.3,118.1,127.6$, 127.7, 128.4, 129.8, 130.6, 133.0, 133.5. 133.7, 135.9, 135.9, 165.5; HRMS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa} 475.2281[\mathrm{M}+\mathrm{Na}]^{+}$, found 475.2276.

2. Copies of NMR and HPLC Spectra

－．．．．．．．」

$\longrightarrow-5.509$

4

\qquad I

Table 1: Comparison of the ${ }^{1} \mathrm{HNMR}$ spectrum of natural obolactone with that of the synthetic sample ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Synthetic obolactone	Natural obolactone
$2.09(\mathrm{dt}, J=14.7,5.0 \mathrm{~Hz}, 1 \mathrm{H})$	$2.09(\mathrm{dt}, J=14.7,5.1 \mathrm{~Hz}, 1 \mathrm{H})$
$2.48-2.53(\mathrm{~m}, 3 \mathrm{H})$	$2.50(\mathrm{~m}, 1 \mathrm{H})$ and $2.51(\mathrm{~m}, 2 \mathrm{H})$
$2.55(\mathrm{dd}, J=16.8,4.5 \mathrm{~Hz}, 1 \mathrm{H})$	$2.55(\mathrm{dd}, J=16.7,4.5 \mathrm{~Hz}, 1 \mathrm{H})$
$2.62(\mathrm{dd}, J=16.8,12.2 \mathrm{~Hz}, 1 \mathrm{H})$	$2.62(\mathrm{dd}, J=16.7,12.2 \mathrm{~Hz}, 1 \mathrm{H})$
$4.73-4.80(\mathrm{~m}, 2 \mathrm{H})$	$4.74(\mathrm{~m}, 1 \mathrm{H})$ and $4.77(\mathrm{~m}, 1 \mathrm{H})$
$5.54(\mathrm{~s}, 1 \mathrm{H})$	$5.54(\mathrm{~s}, 1 \mathrm{H})$
$6.09(\mathrm{dt}, J=9.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$	$6.08(\mathrm{dt}, J=9.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$
$6.55(\mathrm{dd}, J=16.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$	$6.55(\mathrm{~d}, J=16.0,1 \mathrm{H})$
$6.95(\mathrm{dt}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H})$	$6.93(\mathrm{dt}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H})$
$7.39(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$	$7.39(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$
$7.34-7.41(\mathrm{~m}, 3 \mathrm{H})$	$7.37(\mathrm{~m}, 3 \mathrm{H})$
$7.53-7.55(\mathrm{~m}, 2 \mathrm{H})$	$7.53(\mathrm{~m}, 2 \mathrm{H})$

Data name: 1-Smooth
File name: \quad G:lob.2.16-pxfols Created: \quad 2/16/2006 10:02:16 AM

Instrument: RSM
Collection mode: Scan
Number of points: 50
RSM Mono $=400$ to 200 nm (2400 linen/mm)
Timing mode: as Fxn of HV s
Reduction mode: Circular Dichroiem
Smoothing, Filter: 11
Scan mode: Fixed slitwidth
Total Elapsed Time $=2: 50.5$ (minseme)
Run File : c:\star\data\05-9-3-zjy.run
lethod File : c: \star\duzt.mth
ethod File : c:\star\duzt.mth
jample ID : Manual Sample
[njection Date: 04-9-4 3:30 Calculation Date: 04-12-16 16:49
Jperator : wls Detector Type: Dynamax (2 Volts)
Vorkstation: \quad Dus Address : 24
nstrument : hplc Sample Rate : 20.00 Hz
:hannel : $1=\quad$ Run Time $: 42.352 \mathrm{~min}$
'* Star Chromatography Workstation (Demo) Version 5.3d4 ** 05000-1a68-da2-3be9 **
$\begin{array}{ll}\text { Yart Speed }=0.51 \mathrm{~cm} / \mathrm{min} \quad \text { Attenuation }=47 \\ \text {;tart Time }=0.000 \quad \mathrm{~min} & \text { End Time }=42.352 \text { min } \quad \text { Zero Offset }=450 \%\end{array}$
隹

Title
Run File $:$ c: \star\data $\backslash 05-9-3-z j y$. run
Method File: c: \star\1 \quad mth
Sample ID : Manual Sample
Injection Date: 04-9-4 3: 30 Calculation Date: 04-12-16 16:49

Operator : wls
Workstation:
Instrument : hplc
Channel $: 1=$
** Star Chromatography Works
Run Mode $\quad:$ Analysis
Peak Measurement: Peak Area
Calculation Type: Percent

Peak No.	Peak Name	$\underset{0}{\text { Result }}$	Ret. Time (min)	Time Offset (min)	Area (counts)	Sep. Code	$\begin{gathered} \text { Width } \\ 1 / 2 \\ (\mathrm{sec}) \end{gathered}$	Status Codes
1		3. 9084	15.990	0.000				
2		96. 0916	18.935	0. 000	1141062	BB	31.4 44.8	U
		1,00. 0000		0.000	1187473			

Status Codes:
U - User-defined peak endpoint (s)
Total Unidentified Counts : 1187473 counts
Detected Peaks: $2 \quad$ Rejected Peaks: $0 \quad$ Identified Peaks: 0
Multiplier: 1 Divisor: $1 \quad$ Unidentified Peak Factor: 0 -

Baseline Offset: -126492 microVolts
Noise (used): 641 microVolts - monitored before this run

