Stereocontrolled Synthesis of *cis*- and *trans*-Oligo(phenylene vinylene)s via Palladium-Catalyzed Cross-Coupling Reactions

Hiroyuki Katayama, *,[†] Masato Nagao,[†] Fumiyuki Ozawa,^{*, †} Masashi Ikegami,[‡] and Tatsuo Arai[‡] International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan, and Department of Chemistry, Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan hiroyuki@scl.kyoto-u.ac.jp, ozawa@scl.kyoto-u.ac.jp

Supporting Information

Table of contents:	
General Experimental Methods	S2
References	S2
¹ H and ¹³ C{ ¹ H} NMR of <i>cis</i> - OPV1	S3
¹ H and ¹³ C{ ¹ H} NMR of <i>cis</i> - OPV2	S4
¹ H and ¹³ C{ ¹ H} NMR of $1c$	\$5
¹ H and ¹³ C{ ¹ H} NMR of $2c$	S6
¹ H and ¹³ C{ ¹ H} NMR of <i>cis</i> - OPV3	\$7
¹ H and ¹³ C{ ¹ H} NMR of <i>cis</i> - OPV4	S8
¹ H NMR of <i>trans</i> - OPV1	S9
¹ H NMR of <i>trans</i> - OPV2	S9
¹ H and ¹³ C{ ¹ H} NMR of 6	S10
¹ H and ¹³ C{ ¹ H} NMR of 7	S11
¹ H and ¹³ C{ ¹ H} NMR of 8	S12
¹ H and ¹³ C{ ¹ H} NMR of 9	S13
¹ H and ¹³ C{ ¹ H} NMR of $4c$	S14
¹ H and ¹³ C{ ¹ H} NMR of $3c$	S15
¹ H and ¹³ C{ ¹ H} NMR of <i>trans</i> - OPV3	S16
¹ H and ¹³ C{ ¹ H} NMR of <i>trans</i> - OPV4	S17
¹ H NMR of OPV2 before and after photoisom	erizationS18
¹ H NMR of OPV3 before and after photoisom	erizationS19
¹ H NMR of OPV4 before and after photoisomerizationS20	

General Experimental Methods. All manipulations using organometallic compounds were carried out under a nitrogen atmosphere using standard Schlenk-line techniques. ¹H and ¹³C NMR spectra were recorded at 300.11 and 75.46 MHz, respectively. Chemical shifts are reported in δ (ppm), referred to the ¹H (of residual protons) and ¹³C signals of deuterated solvents. Mass spectra were measured with a GCmass spectrometer (EI, 70 eV). GLC analysis was performed on an instrument equipped with an FID detector and CBP-1 capillary column (25 m × 0.25 mm). Recycle GPC (preparative) was performed with CHCl₃ as an eluent. Flash column chromatography was performed using silica gel 60 (230-400 mesh). The following compounds were synthesized according to literatures: 2,5-dioctyloxybenzeneboronic acid (1a),¹ 2,5-dioctyloxybenzene-1,4-diboronic acid (1b),² (Z)-styryl bromide (2a),³ (Z,Z)-1,4-bis(2bromoethenyl)benzene (**2b**),⁴ 2,5-dioctyloxyiodobenzene (**3a**),⁵ 2,5-dioctyloxy-1,4-diiodobenzene (**3b**),⁶ (Z)-dimethyl[3,5-bis(trifluoromethyl)phenyl]styrylsilane $(4a),^{7}$ (E, E)-1,4-bis[2-{dimethyl(3,5bis(trifluoromethyl)phenyl)silyl}ethenyl]benzene (**4b**),⁸ dimethyl[3,5-bis(trifluoromethyl)phenyl]silane,⁹ (*p*-bromophenyl)acetylene, ¹⁰ Pd(PPh₃)₄, ¹¹ [Pd(η^3 -allyl)(μ -Cl)]₂, ¹² and RuHCl(CO)(PPh₃)₃, ¹³ All other chemicals were obtained from commercial suppliers and used without further purification.

References

(1) Johansson, D. M.; Wang, X.; Johansson, T.; Inganäs, O.; Yu, G.; Srdanov, G.; Andersson, M. R. *Macromolecules* **2002**, *35*, 4997.

(2) Hu, Q.-S.; Huang, W.-S.; Vitharana, D.; Zhang, X.-F.; Pu, L. J. Am. Chem. Soc. 1997, 119, 12454.

(3) Kim, S. H.; Wei, H.-W.; Willis, S.; Li, G. Synth. Commun., 1999, 29, 4179.

(4) Nagao, M.; Asano, K.; Umeda, K.; Katayama, H.; Ozawa, F. J. Org. Chem. 2005, 70, 10511.

(5) Hilberer, A.; van Hutten, P. F.; Wildeman, J.; Hadziioannou, G. Macromol. Chem. Phys. 1997, 198, 2211.

(6) Swager, T. M.; Gil, C. J.; Wrington, M. S. J. Phys. Chem. 1995, 99, 4886.

(7) Katayama, H.; Taniguchi, K.; Kobayashi, M.; Sagawa, T.; Minami, T.; Ozawa, F. J. Organomet. Chem. 2002, 645, 192.

(8) Katayama, H.; Nagao, M.; Moriguchi, R.; Ozawa, F. J. Organomet. Chem. 2003, 676, 49.

(9) Larioniva, Y. A.; Ponomerev, A. I.; Klebanskii, A. L.; Yuzhelevskii, Y. A.; Zaitsev, N. B.; Bogdanova, V. V. Zh. Obshch. Khim. **1971**, 41, 1256.

(10) Takahashi, Y.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627.

(11) Coulson, D. R. Inorg. Synth. 1972, 13, 121.

(12) Tatsuno, Y.; Yoshida, T.; Otsuka, S. Inorg. Synth. 1979, 19, 220.

(13) Levinson, J. J.; Robinson, S. D. J. Chem. Soc. A 1970, 2947.

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 75 MHz) of cis-OPV2

 $^{13}\mathrm{C}$ NMR (CDCl_3, 75 MHz) of $1\,c$

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 75 MHz) of $2\,c$

¹H NMR (CDCl₃, 300 MHz) of *cis*-**OPV3**

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 75 MHz) of cis-OPV3

¹H NMR (CDCl₃, 300 MHz) of *cis*-**OPV4**

¹³C{¹H} NMR (CDCl₃, 75 MHz) of *cis*-OPV4

¹H NMR (CDCl₃, 300 MHz) of trans-OPV2

S9

¹³C{¹H} NMR (CDCl₃, 75 MHz) of $\mathbf{6}$

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 75 MHz) of ${\bf 8}$

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 75 MHz) of $4\,c$

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (CDCl₃, 75 MHz) of $3\,c$

¹H NMR (CDCl₃, 300 MHz) of *trans*-**OPV3**

¹³C{¹H} NMR (CDCl₃, 75 MHz) of *trans*-**OPV3**

¹H NMR (CDCl₃, 300 MHz) of trans-OPV4

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 75 MHz) of trans-**OPV4**

¹H NMR (CDCl₃, 300 MHz) of **OPV4** before (top) and after (bottom) photoisomerization

